
ON BIDIGARE’S PROOF OF SOLOMON’S THEOREM

1. Introduction

This note gives a version of Bidigare’s proof [1] of an important theorem of

Solomon [3, Theorem 1] that emphasises certain combinatorial and algebraic

features of the proof. There are no essentially new ideas.

To state Solomon’s theorem we need the following definitions. A com-

position of n ∈ N0 is a sequence (p1, . . . , pk) of natural numbers such that

p1 + · · ·+ pk = n. To indicate that p is a composition of n we write p |= n.

Let Sn denote the symmetric group of degree n and let ZSn be the integral

group ring of Sn. Given p |= n, let Ξp ∈ ZSn be the sum of all mini-

mal length coset representatives for the right cosets Sp\Sn. Equivalently, if

p = (p1, . . . , pk), then Ξp is the sum of all g ∈ Sn such that

Des(g) ⊆ {p1, p1 + p2, . . . , p1 + p2 + · · ·+ pk−1},

where Des(g) =
{
x ∈ {1, . . . , n− 1} : xg < (x + 1)g

}
is the descent set of g.

Given compositions p, q and r of N such that p has k parts and q has `

parts we define mr
pq to be the number of k× ` matrices A with entries in N0

such that

(i) the ith row sum is pi for each i,

(ii) the jth column sum is qj for each j,

(iii) the entries, read in the order A11, . . . , A1`, . . . , Ak1, . . . , Ak` with any

zero entries ignored, form the composition r.

Theorem 1 (Solomon). If p, q and r are compositions of n ∈ N0 then

ΞpΞq =
∑
r|=n

mr
pqΞ

r.

2. The proof

Define a set composition of n to be a tuple (P1, . . . , Pk) such that P1 ∪
· · · ∪ Pk = {1, . . . , n} and the sets P1, . . . , Pn are disjoint and non-empty.

If |Pi| = pi for each i then we say that (P1, . . . , Pk) has type (p1, . . . , pk).

Let Πn be the set of all set compositions of n. There is an action of Sn

on Πn defined by

(P1, . . . , Pk)g = (P1g . . . , Pkg) for g ∈ Sn.

We define an associative product ∧ : Πn ×Πn → Πn by

(P1, . . . , Pk) ∧ (Q1, . . . , Q`)

= (P1 ∩Q1, . . . , P1 ∩Q`, . . . , Pk ∩Q1, . . . , Pk ∩Q`)
?
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where the ? indicates that any empty sets in the tuple should be deleted.

(Thus in forming P ∧Q we loop through the sets in Q faster than the sets

in P , and reading P ∧Q in order, if i < j then we see all the elements of Pi

before any of the elements of Pj .) We record some further basic properties

below.

(1) ∧ is idempotent, i.e. P ∧ P = P for all P ∈ Πn.

(2) {1, . . . , n} is the identity for ∧.

(3) If P has type p and Q has type q then the type of P ∧Q is a common

refinement of p and q.

(4) If P has type (1n) then P ∧Q = P , for any Q ∈ Πn.

(5) The product ∧ is Sn-invariant. That is, if g ∈ Sn and P , Q ∈ Πn

then (P ∧Q)g = Pg ∧Qg.

Thanks to (1) and (2), Πn is an idempotent semigroup. Note that in (3)

‘refinement’ allows for some rearrangement of parts in the case of Q: for

example ({1, 2}, {3})∧ ({3}, {1, 2}) = ({1, 2}, {3}) has type (2, 1), and is the

wedge product of set compositions of types (2, 1) and (1, 2).

The Z-algebra ZΠn is an associative unital algebra whose product is Sn-

invariant. Here are some of its basic properties.

(A) ZΠn is a right ZSn-module by linear extension of the action of Sn

on Πn.

(B) Let Π(1n) be the collection of set compositions of type (1n). Given

P = ({a1}, . . . , {an}) ∈ Π(1n), let P ∈ Sn be the permutation sending i to ai
for each i. The map P 7→ P is then a linear isomorphism ZΠ(1n) → ZSn of

ZSn-modules.

(C) By (3) above, ZΠ(1n) is an ideal of ZΠn. Moreover, by (4), each

Q ∈ Πn acts trivially on ZΠ(1n) on the right.

(D) By (5), the fixed point space (ZΠn)Sn is a subalgebra of ZΠn. Given

q |= n, let Xq be the sum of all set compositions of type q. Then {Xq : q |= n}
is a basis of (ZΠn)Sn . If q has ` parts then Xq is the orbit sum under the

action of Sn for the set composition

T q = ({1 . . . q1}, . . . , {q1 + · · ·+ q`−1 + 1, . . . , n}).

Let I = ({1}, . . . , {n}) ∈ Πn. By (3) above P ∧I ∈ Π(1n) for each P ∈ Πn.

The main step in Bidigare’s proof is the following theorem.

Theorem 2. The map f 7→ f from (ZΠn)Sn to ZSn defined by linear ex-

tension of P 7→ P ∧ I is a Z-algebra homomorphism such that Xp ∧ I = Ξp.

The final claim concerning Ξp is clear. The first part is a corollary of the

following stronger proposition.

Proposition 3. If f ∈ (ZΠn)Sn and x ∈ ZΠn then f ∧ I x ∧ I = f ∧ x ∧ I.
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Proof. Let p be a composition with k parts. It suffices to prove the propo-

sition when f = Xp, the sum of all set compositions of type p, and x = Q,

an arbitrary set composition.

Suppose that Q has type q where q has ` parts. Let g = Q ∧ I ∈ Sn;

equivalently, g is the permutation of minimal length such that T qg = Q.

We have

Xp ∧ I Q ∧ I =
∑
P

P ∧ I g

where the sum is over all P ∈ Πn of type p. Fix such a P . Set di =

p1 + · · · + pi−1 for 1 ≤ i < k. Claim: (P ∧ I)g = (P ∧ Tq)g ∧ I. Proof

of claim: Since Tq ∧ I has increasing entries, the singleton sets in positions

di + 1, . . . , di + pi on both sides are obtained by taking the entries of Pi in

increasing order, and applying g to each. || Hence

Xp ∧ I Q ∧ I =
∑
P

P ∧ I g

=
∑
P

(P ∧ Tq)g ∧ I

= (Xp ∧ Tq)g ∧ I

= (Xp ∧Q) ∧ I

as required. �

It follows from Theorem 2 that the span of the Ξp for p |= n is a subalgebra

of ZSn isomorphic to (ZΠn)Sn . To complete the proof of Theorem 1 we

compute the structure constants for this algebra. The following definition

will be helpful: say that T ∈ Πn is increasing if whenever 1 ≤ i < i′ ≤ ` and

x ∈ Ti, x
′ ∈ Ti′ , we have x < x′. (Equivalently, T is increasing if and only if

T = T p for some p |= n.)

Proposition 4. Let p, q and r be compositions of n. Then the coefficient

of Xr in Xp ∧Xq is mr
pq.

Proof. It is equivalent to show that the coefficient of T r in Xp ∧ Xq is

mr
pq. If T r = P ∧ Q where P and Q are set compositions then, since T r is

increasing, P must also be increasing. Therefore it suffices to show that if

Q = {Q ∈ Πn : T p ∧Q = T r, Q has type q}

then |Q| = mr
pq. Suppose that p has k parts, q has ` parts and that r has m

parts. Given Q ∈ Q define M(Q) to be the k × ` matrix such that

M(Q)ij = |T p
i ∩Qj | for 1 ≤ i ≤ k, 1 ≤ j ≤ `.

The ith row sum of M(Q) is |T p
i | = pi and the jth column sum of M(Q)

is |Qj | = qj . Moreover, reading the non-zero entries of M(Q) in the order

specified in (iii) gives the composition r. Claim: Conversely, given a ma-

trix M satisfying these conditions, there is a unique Q such that M(Q) = M
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and T p ∧Q = T r. Proof of claim: fix a row i and suppose inductively that

we have allocated the elements of T p
i up to and including a to the sets

Q1, . . . , Qj−1. (For the base case j = 1, take a = p1 + · · ·+ pi−1.) Then we

must put a+ 1, . . . , a+Mij into the set Qj to have T p∧Q increasing. || �
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