
MT341/441/5441 CHANNELS

MARK WILDON

These notes are intended to give the logical structure of the course; proofs
and further examples and remarks will be given in lectures. Further in-
stallments will be issued as they are ready. All handouts and problem
sheets will be put on Moodle.

These notes are based in part on notes written by Dr Alastair Kay. I grate-
fully acknowledge his advice. I would very much appreciate being told
of any corrections or possible improvements.

You are warmly encouraged to ask questions in lectures, and to talk to
me after lectures and in my office hours. I am also happy to answer ques-
tions about the lectures or problem sheets by email. My email address is
mark.wildon@rhul.ac.uk.

Lectures: In 2019–20: Monday 2pm–4pm McCrea 0-04, Thursday 9am
BLT2

Office hours in McCrea LGF 0-25: Tuesday 3.30pm, Wednesday 11am,
Thursday 11.30am or by appointment.

Date: First Term 2019/20.

2

CHANNELS

We shall study how to compress messages and put then into binary
form (source coding) and how to transmit them reliably on a noisy chan-
nel (channel coding). A fundamental unifying idea will be entropy: the
amount of information in a message. We shall prove Shannon’s two main
theorems on source and channel coding and see many interesting and il-
luminating examples.

Outline. In the introduction we shall see the basic problems solved by
source and channel coding and review binary notation and conditional
probability.

(A) Source coding: entropy, prefix-free codes, Kraft inequality. Noise-
less Coding Theorem. Huffman codes and their optimality.

(B) Channel coding: binary symmetric channel (BSC). Hamming balls
and connection with entropy. Noisy Coding Theorem for BSC.
Conditional entropy and mutual information. Channel capacity.
Fano’s Lemma and Data Processing Inequality. Noisy Coding
Theorem in general.

(C) Ergodic sources and Asymptotic Equipartition Property (AEP):
AEP for memoryless sources. AEP for ergodic sources (stated
only). Noiseless Coding Theorem for sources with AEP. Lempel–
Ziv encoding.

Recommended Reading. All these books are in the library. If you find
there are not enough copies, email me.

[1] Codes and cryptography, D. Welsh, Oxford University Press (1988),
001.5436 WEL.
Covers all of the course. Very clear and concise. Also useful for
MT361/461/5461 Error Correcting codes and MT362/ 462/5462
Cipher Systems.

[2] Elements of information theory, Thomas M. Cover and Joy A. Thomas,
Wiley (1991), 001.539 COV.
Covers the entire course and more.

[3] Information theory: Inference and learning algorithms, David J. C.
Mackay, Cambridge University Press (2003), 001.539 MAC.
More advanced book on more recent directions in coding theory,
with connections to machine learning and statistical inference.

Also you will find a link on Moodle to Dr. Alastair Kay’s notes. These will
give you a different view of the course material. Highly recommended.

3

Prerequisites. You need some probability theory, binary numbers and
modular arithmetic. Since probability, especially expectation and condi-
tional probability is a big part of this course, we shall spend some time
reviewing it in lectures. Revision notes on probability are available on
Moodle.

Problem sheets. There will be 8 marked problem sheets; the first is due
in on Thursday 10th October. 10% of your final mark for the course is
given for making a reasonable attempt at the problem sheets.

Moodle. All handouts, problem sheets and answers will be posted on
Moodle. Once you are registered for the course you should find a link
under ‘My courses’. If not please go to

moodle.royalholloway.ac.uk/course/view.php?id=374.
This is the Moodle page for MT441 (the M.Sci. course) and MT5441 (the
M.Sc. course) as well as MT341: everyone should have access. If you
find you do not, email me at once.

Exercises in these notes. Exercises set in these notes are mostly simple
tests that you are following the material. Some will be used for quizzes
in lectures. Doing the others will help you to review your notes.

Optional questions and extras. Optional questions on problem sheets
and any ‘extras’ in these notes are included for interest only, and to show
you some mathematical ideas beyond the scope of this course. You should
not worry if you find them difficult.

If you can do the compulsory questions on problem sheets, know the
definitions and main results from lectures, and can prove the results
whose proofs are marked as examinable in these notes, then you should
do very well in the examination.

4

1. INTRODUCTION

Question. What is information? What are source and channel cod-
ing and what problems do they solve?

In this section we shall give some informal answers to these questions.
We then review probability theory and see its applications to coding.

Binary, bits and information.

Example 1.1. A friend has chosen a number x between 0 and 15. How
many ‘Yes’/‘No’ questions do you need to find x?

Exercise 1.2. Is there a questioning strategy that can guarantee to use
three or fewer questions? Can you prove that your belief is correct?

One simple strategy uses binary. If

x = 2m−1xm−1 + · · ·+ 2x1 + x0.

then we say that x is xm−1 . . . x1x0 in binary, and write, for example, 13 =
01101 = 1101 = (You can write 11012 if you want to emphasise the
base 2 of binary.) The binary digits 0 and 1 are called bits.

x binary form x binary form

0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

This table gives an easy four question strategy: just ask one question
about each bit of x in turn. It also solves Exercise 1.2: clearly there is no
way to learn four bits by asking three ‘Yes’/‘No’ questions.

Exercise 1.3. Say that x ∈ N0 has length ` in binary if has a binary form
x`−1 . . . x1x0 with x`−1 = 1. For instance 35 = 1000112 has length 6 and 0
has length 0.

(a) Let m ∈N. Which numbers x have length at most m?
(b) How many questions would you need if the game in Example 1.1

was changed so that x ∈ {0, 1, 2, . . . , 99}?
(c) Let ` ∈N. Which numbers x have length exactly `?

We shall see in this course that the bit is the fundamental unit of infor-
mation. To make this rigorous we need to bring in ideas of randomness.

5

For example, a number in {0, 1, 2, . . . , 15}, chosen uniformly at random,
has exactly 4 bits of information.

Source coding. The aim of source coding is to encode messages (English
texts, large numbers, music, videos . . .) into bits, compressing them as
much as possible. For instance, the encoder for the messages {0, 1, . . . , 15}
corresponding to the four question strategy is simply 0 7→ 0000, 1 7→
0001, . . . , 15 7→ 1111. By Exercise 1.2, no further compression is possible.

Exercise 1.4. Suppose that your friend’s number is 0 with probability 1
2 ,

and each of 1, . . . , 15 with equal probability 1
30 . Suggest a good question-

ing strategy. How many questions does it use on average? What is the
corresponding encoder?

The encoder 0 7→ 1, 1 7→ 0000, 2 7→ 00010, 3 7→ 00011, . . . , 14 7→ 01110,
15 7→ 01111 has the shortest possible expected length of codewords for
the probability distribution 1

2 , 1
30 , . . . , 1

30 . We shall prove this in Part A,
as a corollary of the optimality of Huffman codes. It gives an optimal
strategy for the game in Exercise 1.4.

Example 1.5. The expected length for this encoder is

1
2
× 1 +

1
30
× 4 +

14
30
× 5 =

15 + 4 + 70
30

=
89
30

= 3− 1
30

.

Why does this not contradict Exercise 1.2?

Exercise 1.6. Suppose that multiple numbers are encoded using this en-
coder by concatenating the codewords. You receive

1011 1100 0011 1011 0111.

(For readability this is split into blocks of size 4.) What numbers were
you sent? Why can you be sure?

Exercise 1.7. Suppose that messages a, t, g, c have probabilities 1
8 , 1

8 , 1
4 , 1

2 .
Using the 8 bit ASCII coding, the encoder is a 7→ 01000001, t 7→ 01010100,
g 7→ 01000111, c 7→ 01000011. Since there are only four messages, it
seems wasteful to use 8 bits. Suggest a more efficient binary code u(a),
u(t), u(g), u(c).

Noisy channel coding. Suppose that Alice wants to send Bob a single
‘Yes/No’ message. She can only communicate by sending Bob the bits 0
and 1 through the binary symmetric channel with cross-over probability p, or
BSC(p), that flips each bit with probability p, as shown overleaf.

6

0 0

1 1
p

p

1−p

1−p

When multiple bits are sent, each flips independently.

Exercise 1.8. Why may we, and Alice and Bob, assume that p < 1
2?

If Alice encodes her ‘Yes’/‘No’ message by a single bit, then with prob-
ability p, Bob will not receive the intended message.

Instead Alice and Bob decide to pad out the single bit with some redun-
dant bits using the binary repetition code of length 3, with codewords 000
and 111. The agreed encoder is ‘No’ 7→ 000 and ‘Yes’ 7→ 111. Bob decodes
by assuming that the majority bit in a received word is correct. So

• 000, 001, 010, 100 (grey dots) are decoded as 000 meaning ‘No’;
• 111, 110, 101, 011 (white dots) are decoded as 111 meaning ‘Yes’.

All this is public knowledge: there is nothing secret about codes used for
source encoding or for error correction.

000

100 001

101

010

110 011

111

Let X be Alice’s sent codeword. Let Y be Bob’s received word. Then

P[Y = 000|X = 000] = (1− p)3

P[Y = 110|X = 000] = p2(1− p).

The hardest thing here may be the notation for conditional probability.
Informally P[A|B] is ‘the probability of event A, given that event B has
occurred’. This informal definition should work for this exercise.

7

Exercise 1.9. Find P[Y = 111|X = 000] and

P[Y ∈ {111, 110, 101, 011}|X = 000].

The second probability is P[Bob decodes as 111|Alice sends 000].
(a) Why is this equal to P[Bob decodes wrongly]?
(b) Is this an improvement on Alice sending a single bit 0 or 1 to Bob?
(c) How does this probability change if instead Alice and Bob use the

binary repetition code of length 5?

The aim of channel coding is to minimize the (general version) of the
probability P[Bob decodes wrongly]. In our toy model there are only two
codewords, and repetition codes are optimal. In Part B we shall see the
much richer theory when there are many messages and codewords.

The bigger picture. The diagram below shows how source coding and
channel coding combine. Source coding removes redundancy. For example
in Exercise 1.7 you replaced 8 bit ASCII with a much shorter code. Chan-
nel coding adds redundancy, in a controlled way to minimize the probabil-
ity of a decoding error. Repetition codes are the simplest example.

- - -

?

���

source
coding

channel
coding

Alice’s
message

compress encode/
pad

Bob’s decode
of Alice’s
message

decompress decode

noise
in channel

Exercise 1.10. In Exercise 1.7 you solved the source coding problem for
the messages A, T, G, C with probabilities 1

8 , 1
8 , 1

4 , 1
2 .

(a) Using the binary repetition code of length 3 as the channel code,
what would you send through the BSC to communicate CCTGC?

(b) Give an example of a received binary word and how it is decoded.
(c) How is redundancy removed and added in this process?

Probability revision. Here is the setup for discrete probability.

Definition 1.11.
• A probability measure p on a finite set Ω assigns a real number pω

to each ω ∈ Ω so that 0 ≤ pω ≤ 1 for each ω and

∑
ω∈Ω

pω = 1.

8

We say that pω is the probability of ω.

• A probability space is a finite set Ω equipped with a probability
measure. The elements of Ω are called outcomes.

• An event is a subset of Ω.

• The probability of an event A ⊆ Ω, denoted P[A], is the sum of the
probability of the outcomes in A; that is

P[A] = ∑
ω∈A

pω.

It follows at once from this definition that P[{ω}] = pω for each ω ∈ Ω.
We also have P[∅] = 0 and P[Ω] = 1.

Example 1.12.
(1) To model a throw of a single unbiased die, we take

Ω = {1, 2, 3, 4, 5, 6}
and put pω = 1

6 for each outcome ω ∈ Ω. The event that we
throw an even number is A = {2, 4, 6} and as expected, P[A] =
p2 + p4 + p6 = 1

6 +
1
6 +

1
6 = 1

2 .

(2) To model a throw of a pair of dice we could take

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}
and give each element of Ω probability 1

36 . Alternatively, if we
know we only care about the sum of the two dice, we could take
Ω = {2, 3, . . . , 12} with p2 = 1/36, p3 = 2/36, . . . , p6 = 5/36,
p7 = 6/36, p8 = 5/36, . . . , p12 = 1/36. The former is natural and
more flexible.

Definition 1.13. Let Ω be a probability space, and let A, B ⊆ Ω be events.
If P[B] 6= 0 then we define the conditional probability of A given B by

P[A|B] = P[A ∩ B]
P[B]

.

The events A, B are said to be independent if P[A ∩ B] = P[A]P[B].

Suppose that each element of Ω has equal probability p. Then

P[A|B] = |A ∩ B|p
|B|p =

|A ∩ B|
|B|

is the proportion of elements of B that also lie in A. This agrees with the
intuitive idea that P[A|B] is the probability that, given B has occurred,
then A has also occurred.

Exercise 1.14. Show that if A and B are events in a probability space such
that P[B] 6= 0, then P[A|B] = P[A] if and only if A and B are independent.

Conditional probability can be quite subtle.

9

Exercise 1.15. Let Ω = {HH, HT, TH, TT} be the probability space for
two flips of a fair coin, so each outcome has probability 1

4 . Let A be the
event that both flips are heads, and let B be the event that at least one flip
is a head. Write A and B as subsets of Ω and find P[A|B].

Example 1.16 (The Monty Hall Problem). On a game show you are of-
fered the choice of three doors. Behind one door is a car, and behind the
other two are goats. You pick a door and then the host, who knows where
the car is, opens another door to reveal a goat. You may then either open
your original door, or change to the remaining unopened door. Assum-
ing you want the car, should you change?

Random variables and expectation.

Definition 1.17. Let Ω be a probability space. A random variable on Ω is a
function X : Ω→ R, for some setR.

For instance in Example 1.12(2), define X, Y : Ω → N by X
(
(i, j)

)
= i

and Y
(
(i, j)

)
= j. Thus X is the first number rolled, Y is the second, and

X + Y is their sum. We have P[X + Y = 7] = 6
36 = 1

6 .

Often R will be the set R of real numbers. But it will be useful in
this course to allow other sets: for instance in Exercise 1.9, X and Y took
values in {000, 001, 010, 100, 011, 101, 110, 111}.

Definition 1.18. Let Ω be a probability space with probability measure p.
The expectation E[X] of a random variable X : Ω→ R is defined to be

E[X] = ∑
ω∈Ω

X(ω)pw.

Intuitively, the expectation of X is the average value of X on elements
of Ω, if we choose ω ∈ Ω with probability pω. We have

E[X] = ∑
ω∈Ω

X(ω)pω = ∑
x∈R

∑
ω

X(ω)=x

xpω = ∑
x∈R

xP[X = x].

A critical property of expectation is that it is linear. Note that we do not
assume any independence in this lemma. The proof is left as an exercise.

Lemma 1.19 (Linearity of expectation). Let Ω be a probability space. If
X1, X2, . . . , Xk : Ω→ R are random variables then

E[a1X1 + a2X2 + · · ·+ akXk] = a1E[X1] + a2E[X2] + · · ·+ akE[Xk]

for any a1, a2, . . . , ak ∈ R.

10

Variance and Chebyshev’s inequality.

Definition 1.20. Let Ω be a probability space. The variance Var[X] of a
random variable X : Ω→ R is defined to be

Var[X] = E
[
(X− E[X])2].

The variance measures how much X can be expected to depart from
its mean value E[X]. So it is a measure of the ‘spread’ of X. This is made
precise by Chebyshev’s inequality.

Lemma 1.21. If X is a random variable and a > 0 then

P
[
|X− EX| ≥ a

]
≤ Var[X]

a2 .

We shall use Chebyshev’s inequality later in the course. A proof is
outlined on the first problem sheet.

Reliable communication. A subtle point, related to conditional probability
is seen in this question.

Question 1.22. Should we conclude from Exercise 1.9 that Alice and Bob can
reliably communicate a ‘Yes’/‘No’ message using a long enough repetition code?

Probably the best answer is ‘it depends’.

Exercise 1.23. Suppose that Alice’s message is ‘No’ with probability 1
100

and ‘yes’ with probability 99
100 and that the cross-over probability in the

BSC is 1
10 . Using the repetition code of length 3, show that

P[Alice’s message is ‘No’|Bob decodes as ‘No’] ≈ 0.26

and find P[Alice’s message is ‘Yes’|Bob decodes as ‘No’]. What should
Bob do when he receives 000?

On the first problem sheet we make an analogy with medical testing.
Suppose that one in a hundred people have a rare disease. In its early
stages there are no symptoms, but the disease can be identified by a test:

P[test positive|have disease] = 1− p

P[test positive|do not have disease] = p

It is correct to say the test works with probability 1− p; correspondingly
an output bit from the BSC equals the input bit with probability 1− p.
Continuing the analogy,

P[Bob decodes as ‘No’|Alice’s message is ‘No’]←→ P[test positive|have disease]

P[Alice’s message is ‘No’|Bob decodes as ‘No’]←→ P[have disease|test positive].

If you find the answer to Question 1.22 surprising, you may well be con-
fusing the top and bottom probabilities. Imagine you have just taken the
medical test. Which of the two probabilities on the right do you care
more about? Which of the probabilities on the left is more important?
How small must p be for the test to be of use?

(A) Source coding

2. PREFIX-FREE BINARY CODES AND KRAFT’S INEQUALITY

Question. What properties should a binary code have so that we
can decode it easily? How do these restrict its codewords?

Prefix-free codes and trees. Recall that if A is a set then A` is the set of all
`-tuples of elements of A. For example R3 = {(x, y, z) : x, y, z ∈ R} is
3-dimensional space.

Definition 2.1. Let A be a set. A word of length ` from A is an element of
A`. We write A? for the set of all words from A. We write `(u) for the
length of the word u. We write ∅ for the empty word.

Definition 2.2. A binary word is a word from {0, 1}. A binary code is a
non-empty finite set of binary words. The words in a code are called
codewords.

For example (1, 1, 0, 1) ∈ {0, 1}4 is a binary word of length 4. As al-
ready seen, we usually write binary words more simply: for example,
the binary words of length 3 are 000, 001, 010, 011, 100, 101, 110, 111; these
form a binary code of size 8. We have `(010) = 3 and `(∅) = 0.

Note that there is nothing secret about binary codes. For example, one
important binary code is the ASCII code for letters in the Roman alphabet
mentioned in Exercise 1.7. The entire world (or at least, their computers
and mobile phones) needs to know that T is represented by 01010100.

Exercise 2.3. How many binary words are there of length n?

In Exercise 1.4 we created the binary code C with codewords 1, 0000,
00010, 00011, . . . , 01111. In Exercise 1.6 we saw that when codewords
from this code are concatenated to make a long binary word one can read
the word left-to-right, and unambiguously decode it by stopping as soon
as each codeword is seen. This worked because the code is prefix-free.

Definition 2.4. Let u and w be binary words, of lengths ` and m, respec-
tively. We say that u is a prefix of w is ` ≤ m and w = u1 . . . u`w`+1 . . . wm.
A binary code C is prefix-free if no codeword in C is a prefix of another
codeword in C.

In Exercise 1.7 we saw the binary codes C = {0, 10, 110, 111} and C′ =
{0, 01, 011, 111}. The first is prefix-free. The second is not, but there is still
a unique way to decode each concatenation of codewords. Such codes are
said to be uniquely decipherable.

12

Exercise 2.5.

(a) Observe that C′ is prefix-free when codewords are reversed. Why
does this show that C′ is uniquely decipherable?

(b) Find a binary word equal to concatenations of codewords from
the code {0, 01, 100, 101} in at least two different ways. Is this
code uniquely decipherable? Is it useful for communication?

We shall concentrate on prefix-free codes, which are by far the most
important in practice. For more on uniquely decipherable codes and their
formal definition, see the ‘extras’ for this part.

It is useful to represent prefix-free binary codes by oriented rooted bi-
nary trees. The trees for {00, 01, 10, 11}, {0, 10, 110, 111}, {000, 001, 011, 1}
are below. (The rightmost tree is used in Exercise 2.6(b).) Since it is nat-
ural to read the codewords left to right, we grow the tree the same way,
stepping up for 1 and down for 0.

11

10

01

00

0

10

111

110

000

001

011

1

Exercise 2.6.

(a) How could the third code {000, 001, 111, 1} be made more effi-
cient, while keeping it prefix-free? How can this improvement be
seen from the tree?

(b) What is the code corresponding to the fourth tree above?

Exercise 2.7. Draw the tree corresponding to the prefix-free code in Exer-
cise 1.4. What is the corresponding questioning strategy?

Kraft’s Inequality.

Exercise 2.8. Which of the following are the lengths of the codewords in
a prefix-free binary code: (i) 1, 3, 3, 3; (ii) 1, 3, 3, 2, (iii) 1, 2, 2, 3; (iv) 3, 2, 2, 2;
(v) 1, 3, 3, 4, 4, 4, 5, 5?

Proposition 2.9 (Kraft’s Inequality). Let `1, `2, . . . , `s ∈N. There is a prefix-
free binary code whose codewords have lengths `1, `2, . . . , `s if and only if

2−`1 + 2−`2 + · · ·+ 2−`s ≤ 1.

13

For instance, in (ii) the sum is 2−1 + 2−3 + 2−3 + 2−2 = 1, so the ‘if’
direction says that there is a prefix-free code with lengths 1, 3, 3, 2. In (iii)
the sum is 2−1 + 2−2 + 2−2 + 2−3 = 9

8 , so the ‘only if’ direction says there
is not a prefix-free code with lengths 1, 2, 2, 3.

Proof of ‘if’ direction. Suppose that there are a` lengths equal to `, for each
` ∈N. Let m be the maximum length. The hypothesis is equivalent to

2−1a1 + 2−2a2 + · · ·+ 2−(m−1)am−1 + 2−mam ≤ 1.

Multiplying through by 2m and rearranging we get

am ≤ 2m − 2m−1a1 − 2m−2a2 − · · ·+ 2am−1.

Hence 0 ≤ 2m − 2m−1a1 − 2m−2a2 − · · ·+ 2am−1. Dividing by 2 and rear-
ranging we get

am−1 ≤ 2m−1 − 2m−2a1 − 2m−3a2 − · · · − 2am−2.

Continuing in this way gives the further inequalities

am−2 ≤ 2m−2 − 2m−3a1 − 2m−4a2 − · · · − 2am−3
...

a3 ≤ 23 − 22a1 − 2a2

a2 ≤ 22 − 2a1

a1 ≤ 2.

We now use each inequality, working from bottom to top. At each step
except the last we use (?): a prefix u1 . . . uk of length k forbids the prefixes
u1 . . . uk0, u1 . . . uk1 of length k + 1.

(1) Pick a1 codewords of length 1. This is possible because a1 ≤ 2. By
(?) there are now 2a1 forbidden prefixes of length 2.

(2) Pick a2 codewords of length 2, avoiding the 2a1 forbidden prefixes
of length 2. This is possible because there are 22 binary words of
length 2 and a2 ≤ 22 − 2a1. By (?) there are now 2(2a1 + a2) =
22a1 + 2a2 forbidden prefixes of length 3.

(3) Pick a3 codewords of length 3, avoiding the 22a1 + 2a2 forbidden
prefixes of length 3. This is possible because there are 23 binary
words of length 3 and a3 ≤ 23 − 22a1 − 2a2. By (?) there are now

2(22a1 + 2a2 + a3) = 23a1 + 22a2 + a3

forbidden prefixes of length 4.
...

(m) Pick am codewords of length m, avoiding the

2m−1a1 + 2m−2a2 + · · ·+ 2am−1

forbidden prefixes of length m. This is possible because there are
2m binary words of length m and am ≤ 2m − 2m−1a1 − · · · − 2am−1.

We now have a prefix-free code with the specified lengths. �

14

One of the most valuable things you can do when trying to understand
a proof is to work through an example in parallel. This often shows one
‘why things work’.

Example 2.10. We shall use the proof of the ‘if’ direction of Kraft’s In-
equality to construct a prefix-free binary code with codewords of lengths
1, 3, 3, 4, 4, 4, 5, 5.

Proof of ‘only if’ direction. Let C be a prefix-free binary code. Let m be the
maximum length of a codeword in C. To prove Kraft’s inequality holds,
we must show that ∑u∈C 2−`(u) ≤ 1. We work by induction on m.

Base case: If m = 1 then C is either {0}, {1} or {0, 1} and Kraft’s Inequality
holds.

Inductive step: let m ≥ 2. The oriented rooted binary tree for C looks like

codewords in C of form 1u2 . . . u`

define C1 = {u2 . . . u` : 1u2 . . . u` ∈ C}

codewords in C of form 0u2 . . . u`

define C0 = {u2 . . . u` : 0u2 . . . u` ∈ C}

Since C is prefix-free, so are C0 and C1 Each has maximum length at most
m− 1. By induction, ∑v∈C0

2−`(v) ≤ 1 and ∑v∈C1
2−`(v) ≤ 1. Hence

∑
u∈C

2−`(u) = ∑
v∈C0

2−(`(v)+1) + ∑
v∈C1

2−(`(v)+1) (definition of C0, C1)

=
1
2
(

∑
v∈C0

2−`(v) + ∑
v∈C1

2−`(v)
)

(take out factor of 1/2)

≤ 1
2
(1 + 1) (inductive hypothesis)

= 1

as required. �

3. SOURCES, ENTROPY AND SHANNON CODES

Question. What is an efficient way to code messages when some
are much more frequent than others?

Coding for sources. To answer this question we need some definitions.

Definition 3.1. An alphabet is a finite non-empty set of symbols. A source
is a random process producing a sequence U1, U2, . . . of symbols from an
alphabet. A source is memoryless if the Ut are independent and identically
distributed.

15

Example 3.2.
(1) A coin that lands heads with probability p, independently of pre-

vious flips, is a memoryless source producing symbols from the
alphabet {H, T}. We have P[Ut = H] = p for all t.

(2) A binary source emits 0, 0, 0, . . . or 1, 1, 1, . . . with equal probabil-
ity 1

2 . Like the previous example with p = 1
2 , we have P[Ut = 0] =

P[Ut = 1] = 1
2 for all t. But since U1 and U2 are not independent,

the source is not memoryless.
(3) A source produces random meaningful English messages in lower

case with all punctuation except spaces deleted. The alphabet
is the Roman alphabet together with space. After receiving ‘the
source is not memoryles’ you can easily guess the next charac-
ter. Therefore . . .

Example 3.3. A memoryless source produces symbols from the alpha-
bet {1, 2, 3, 4} such that P[Ut = i] = pi for each i ∈ {1, 2, 3, 4}, where
(p1, p2, p3, p4) = (1

2 , 1
4 , 1

8 , 1
8). We encode symbols using the prefix-free

binary code {0, 10, 110, 111} by

1 7→ 0, 2 7→ 10, 3 7→ 110, 4 7→ 111

The expected length of a codeword is then 1
21 + 1

42 + 1
83 + 1

83 = 7
4 .

Equivalently, suppose in the guessing game that your friend’s number
is 1, 2, 3, 4 with the probabilities in Example 3.3. The prefix-free code used
above corresponds to the decision tree in the margin. (The question can
be ‘do I step up for your number?’ every time!) Minimizing the average
number of questions is the same as minimizing the codeword length.

1 7→ 0

2 7→ 10

3 7→ 111
4 7→ 110

Exercise 3.4. For each of the following alphabets and probability mea-
sures find a binary encoder using a prefix-free code. Try to minimize the
expected length of the codeword. [Hint: Kraft’s Inequality tells you what
lengths are possible; (iii) is related to Exercise 2.10(v).]

(i) {1, 2, 3, 4}: (1
4 , 1

4 , 1
4 , 1

4);
(ii) {1, 2, 3}: (1

2 , 1
4 , 1

4);
(iii) {1, 2, 3, 4, 5, 6, 7, 8}: (1

2 , 1
23 , 1

23 , 1
24 , 1

24 , 1
24 , 1

25 , 1
25);

(iv) {1, 2, 3, 4, 5}: (1
5 , 1

5 , 1
5 , 1

5 , 1
5).

Remarkably there is a simple formula for the minimum possible ex-
pected length in the case when all the probabilities are of the form 1/2c.
Here, before you turn the page, is your last chance to discover the defini-
tion of entropy for yourself.

Exercise 3.5. With the setup of Exercise 3.4, suppose that the alphabet is
{1, . . . , s} and that pi = 1/2ci for each i. Show that there is a prefix-free
binary code with codewords u(1), . . . , u(s) such that u(i) has length ci
for each i. What is the expected codeword length? Express the expected
codeword length just in terms of p1, . . . , ps.

16

Entropy. The following definition is fundamental to the course.

Definition 3.6 (Entropy of probability measure). Let px for x ∈ Ω be a
probability measure on a set Ω. The entropy of p is

H(p) = − ∑
ω∈Ω

pω log2 pω.

To deal with the case when px = 0, we use the convention that 0 log2 0 =
0. This is consistent with the graph of x loge x: see margin. In Exercise 3.5
you might have discovered the equivalent form H(p) = ∑ω∈Ω pω log2

1
pω

.

−x loge x

1

1
e

Exercise 3.7.
(a) Suppose that pi =

1
s for i ∈ {1, . . . , s}. What is H(p)?

(b) Show that in each case in Example 3.4, the expected length of the
code is at least H(p), and that equality holds for (i), (ii) and (iii).

Shannon codes. By Exercise 3.5, when all the probabilities in a probability
measure p are powers of 2 there is a prefix-free binary code with expected
length h(p). In general, we cannot do quite so well, but using almost the
same idea, we can still get a good code.

Recall that if x ∈ R then dxe is the least natural number n such that
x ≤ n. The function x 7→ dxe is called the ceiling function. For example

d31
4e = dπe = d4e = 4.

Proposition 3.8 (Shannon Code). Let p be a probability measure on {1, . . . , s}
such that pi > 0 for each i.

(i) There is a prefix-free binary code with codewords u(1), . . . , u(s) such
that u(i) has length dlog2

1
pi
e.

(ii) When u(i) is used to encode i for each i ∈ {1, . . . , s}, the expected
codeword length is less than 1 + H(p).

Proof. Let `i = dlog2
1
pi
e. By definition of the ceiling function

log2
1
pi
≤ `i. (†)

By (†), we have 1
pi
≤ 2`i and so 2−`i ≤ pi for each i. Hence

s

∑
i=1

2−`i ≤
s

∑
i=1

pi = 1.

Therefore Kraft’s Inequality is satisfied for the lengths `1, . . . , `s and (i)
follows from the ‘if’ direction of Proposition 2.9. Again by (†), we have
`i < 1 + log2

1
pi

. Hence if l̄ is the expected length then

¯̀ =
s

∑
i=1

pi`i <
s

∑
i=1

pi(1 + log2
1
pi
) =

s

∑
i=1

pi +
s

∑
i=1

pi log2
1
pi

= 1 + H(p)

as required for (ii). �

17

A binary code with lengths as in Proposition 3.8 is called a Shannon
code. Note that if pi = 1/2ci then the corresponding length is ci, as in
Exercise 3.5.

Gibbs’ Inequality. Motivated by Exercise 3.7, we now show that the ex-
pected length of a prefix-free binary code for a probability measure p is
always at least H(p). Thus Shannon Codes have expected length within 1
of the best possible. We need the following fundamental inequality.

Lemma 3.9 (Gibbs’ Inequality). Let p and q be probability measures on the
set {1, . . . , s}. Then

−
s

∑
i=1

pi log2 pi ≤ −
s

∑
i=1

pi log2 qi

where the right-hand side is interpreted as +∞ if qi = 0 for some pi 6= 0.

This proof is non-examinable, since the ideas come from analysis rather
than coding theory, but is I hope of interest. The main idea is in the third
paragraph: it is related to the theory of Lagrange multipliers.

Proof. We may assume without loss of generality that pi > 0 for all i,
since the ith summand on both sides is 0 when pi = 0. If s = 1 then p = q
so equality holds. Suppose that s ≥ 2.

Let G(q) = −∑s
i=1 pi log2 qi. We consider how G(q) changes as we

vary q over the set {(q1, . . . , qs) ∈ Rs : qi ≥ 0, ∑s
i=1 qi = 1} of probability

measures. Since the set of probability measures is closed and bounded, a
minimum exists. Suppose that G takes its minimum value at q?. We have
0 < q?i < 1 for each i, since −pi log2 qi → ∞ as qi → 0.

Let 1 ≤ j < k ≤ s. On the line through q? where we slightly increase qj
and slightly decrease qk, the values of G(q) are given by

g(t) = G(q?1 , . . . , q?j + t, . . . , q?k − t, . . . , q?s)

= pj log2(q
?
j + t) + pk log2(q

?
k − t) + ∑

i 6=j,k
pi log2 q?i

The function g is minimized when t = 0. Therefore, differentiating with
respect to t, we get

g′(t) =
pj

q?j loge 2
− pk

q?k loge 2
.

Here we used that the derivative of log2 x =
loge x
loge 2 is 1

x loge 2 . Hence
pj/q?j = pk/q?k for all j and k. Since pi > 0 for each i, there exists a
constant C such that q?i = Cpi for all i. Since ∑s

i=1 q?i = 1, we have C = 1.
Therefore the unique minimum is at q? = p and

−
s

∑
i=1

pi log2 qi ≥ −
s

∑
i=1

pi log2 q?i = −
s

∑
i=1

pi log2 pi

as required. �

18

Corollary 3.10. Suppose that a prefix-free binary code with codewords of lengths
`1, . . . , `s is used to encode symbols from {1, . . . , s}. If symbol i has probabil-
ity pi then the expected codeword length ¯̀ is at least H(p).

As motivation for the following proof observe that

¯̀ =
s

∑
i=1

pi`i = −
s

∑
i=1

pi log2 2−`i .

If ∑s
i=1 2−`i = 1 we could apply Gibbs’ Inequality. What do we know

about ∑s
i=1 2−`i in general?

Proof. Let K = ∑s
i=1 2−`i . By Kraft’s Inequality in the ‘only if’ direction,

K ≤ 1. Take qi = 2−`i /K in Gibbs’ Inequality to get

−
s

∑
i=1

pi log2
2−`i

K
≥ −

s

∑
i=1

pi log2 pi = H(p).

The left-hand side above is
s

∑
i=1

pi`i −
s

∑
i=1

pi log2
1
K

= ¯̀ +
s

∑
i=1

pi log2 K = ¯̀ + log2 K.

Since K ≤ 1, we have log2 K < 0. Therefore combining the two displayed
equations we get

¯̀ ≥ ¯̀ + log2 K ≥ H(p)
as required. �

Summary. If symbols come from an alphabet with probability
measure p then the expected length of a prefix-free binary code
is at least H(p). A Shannon code has expected length less than
H(p) + 1.

4. ENTROPY AND THE NOISELESS CODING THEOREM

Definition 4.1 (Entropy of random variable). Let X be a random variable
taking values in a set X . The entropy of X is

H(X) = − ∑
x∈X

P[X = x] log2 P[X = x].

Equivalently, H(X) = H(p) where the probability measure p on X is
defined by px = P[X = x] and H(p) is as defined in Definition 3.6.

Since the bit is the unit of information, Exercise 3.4 and the results in
Proposition 3.8 and Corollary 3.10 (summarized in the box above) sug-
gest the following intuitive interpretation of entropy.

The entropy of a random variable X is the average number of bits
needed to store X. This is the amount of information in X.

19

Exercise 4.2.
(1) Let X and Y be independent tosses of a fair coin. Then H(X) =

H(Y) = 1 and H((X, Y)) = 2.
(2) Let U be a toss of a coin biased to land heads with probability

p. Then H(U) = −p log p − (1− p) log(1− p) as shown in the
graph below.

p

−p log2 p− (1− p) log2(1− p)

0

1
2

1
2

1

1

Prove that, as suggested by the graph, the entropy is 0 when p = 0
and when p = 1 and is maximized at 1 when p = 1

2 . Is it intuitive
that the graph is symmetric about 1

2?

We define the joint entropy of random variables X and Y taking values
in sets X and Y by

H(X, Y) = − ∑
x∈X

∑
y∈Y

P[X = x, Y = y] log2 P[X = x, Y = y].

Equivalently, H(X, Y) is the entropy of the random variable (X, Y) taking
values in X ×Y .

Exercise 4.3. Let X and Y be two independent flips of a coin biased to
land heads with probability p. What is the joint distribution of X and Y?
Express H(X), H(Y), H(X, Y) and H(X, X) in terms of h = −p log2 p−
(1− p) log2(1− p).

The proof of the following lemma is left to you on Problem Sheet 3. A
special case was seen in the previous exercise.

Lemma 4.4. If X and Y are independent random variables then H(X, Y) =
H(X) + H(Y).

Example 4.5. A memoryless source produces symbols from the alphabet
{a, b, c} so that P[Ut = a] = 1

2 , P[Ut = b] = 2
5 , P[Ut = c] = 1

10 for all
times t. We have

H(U1) =
1
2 log2 2 + 2

5 log2
5
2 +

1
10 log2 10 = 1

5 +
1
2 log2 5 ≈ 1.361.

The Shannon code for the probability distribution (1
2 , 2

5 , 1
10) has code-

words of lengths dlog2 2e = 1, dlog2
3
2e = 2, dlog2 10e = 4. With one

20

choice of codewords,

a 7→ 0, b 7→ 10, c 7→ 1111.

(We avoid shortening 1111 in order to follow the proof of Theorem 4.6.)
The expected length is 1

21 + 2
52 + 1

104 = 17
10 . As expected by Proposi-

tion 3.8 (upper bound) and Corollary 3.10 (lower bound),

H(U1) ≤ 17
10 < H(U1) + 1.

Since 1.7− H(U1) ≈ 0.339, for every symbol encoded, the Shannon code
is worse by 0.339 bits compared to the entropy bound. Just for this exam-
ple, say that 0.339 bits are wasted per symbol.

Suppose we now encode pairs of symbols. By a similar argument to Ex-
ercise 4.3, the probability distribution is as shown in the table below:

a b c

a 1
4

1
5

1
20

b 1
5

4
25

1
25

c 1
20

1
25

1
100

For example the entry in row a and column b is the probability of ab,
namely 1

2 × 2
5 = 1

5 . The Shannon code has codewords of lengths dlog2 4e,
dlog2 5e, dlog2 20e, dlog2 5e, dlog2

25
4 e, dlog2 25e, dlog2 20e, dlog2 25e,

dlog2 100e, namely 2, 3, 5, 3, 3, 5, 5, 5, 7. The expected length is

1
42 + 1

53 + 1
205 + 1

53 + 4
253 + 1

255 + 1
205 + 1

255 + 1
1007 = 315

100 .

By Lemma 4.4, the entropy of a pair of symbols is 2H(U1) ≈ 2.722. Since
3.15− 2H(U1) ≈ 0.428, 0.428/2 = 0.214 bits are wasted per symbol. This
improves on 0.339 encoding single symbols.

The table below shows what happens when we encode symbols r at a
time: ¯̀(r) is the expected length of the Shannon code and the final column
shows

ε(r) =
¯̀(r)

r
− H(U1),

the number of wasted bits per symbol.

21

r ¯̀(r) rH(U1) ¯̀(r) − rH(U1) ε(r)

1 1.700 1.361 0.339 0.339
2 3.150 2.722 0.428 0.214
3 4.475 4.083 0.392 0.131
4 5.800 5.444 0.356 0.089
5 7.156 6.805 0.351 0.070
6 8.528 8.1658 0.362 0.060
7 9.900 9.5267 0.373 0.053
8 11.268 10.889 0.380 0.048
9 12.634 12.249 0.386 0.043
10 14.000 13.610 0.390 0.039

For example, when r = 10, only 0.039 bits are wasted per symbol.

To state Shannon’s Noiseless Coding Theorem concisely we need some
more notation. Given a source U1, U2, . . . producing symbols from an
alphabet A, a binary code C(r) and an encoder f (r) : Ar → C(r), let f̄ (r)

be the expected length of a codeword encoding (U1, . . . , Ur). In symbols

f̄ (r) = ∑
(u1,...,ur)∈Ar

`
(

f (r)(u1, . . . , ur)
)
P
[
(U1, . . . , Ur) = (u1, . . . , ur)

]
.

When r = 1, we encode symbols one at a time and write f rather than f (1).

For instance in Example 4.5, we had A = {a, b, c} and saw prefix-
free encoders f (r) for the r-tuples of symbols from A. When r = 1 we
encoded symbols one at a time with f (a) = 0, f (b) = 10, f (c) = 1111;
the expected length was f̄ = f̄ (1) = 1

21 + 2
52 + 1

104 = 1.7. The second
column in the table shows the values of f̄ (r); for instance f̄ (10) = 14.000.

Theorem 4.6 (Shannon’s Noiseless Coding Theorem, Memoryless Case).
A memoryless source produces symbols U1, U2, . . . from an alphabetA such that
each symbol has positive probability. Let h = H(U1).

(i) There exists a prefix-free binary code C and an injective encoder f :
A → C such that f̄ < h + 1.

(ii) For any prefix-free injective encoder g, we have ḡ ≥ h.

Proof. We may assume without loss of generality thatA = {1, . . . , s}. Let
pi = P[U1 = i] for each i ∈ A.

(i) Define f so that f (1), . . . , f (s) is the prefix-free Shannon code
given by Proposition 3.8(i) for p. (Note the hypothesis pi > 0
for each i is satisfied.) By Proposition 3.8(ii), we have f̄ < h + 1.

(ii) Suppose that g : A → C is a prefix-free injective encoder. Then
g(1), . . . , g(s) is a prefix-free binary code so by Corollary 3.10 we
have ḡ ≥ h. �

22

Observe from the final column of the table in Example 4.5, the propor-
tion of ‘wasted’ bits f̄ (r)/r− H(U1) gets smaller with r. The asymptotic
version of Shannon’s theorem below says this proportion can be made
arbitrarily small. For example, f̄ (10)/10− H(U1) ≈ 0.039, so f (10) is a
suitable encoder in Theorem 4.7(i) when ε = 0.05, but not when ε = 0.01.

Theorem 4.7 (Shannon’s Source Coding Theorem, Asymptotic Memory-
less Case). A memoryless source produces symbols U1, U2, . . . from an alphabet
A such that each symbol has positive probability. Let h = H(U1).

(i) For every ε > 0 there exists r ∈ N, a prefix-free binary code C(r) and
an injective encoder f (r) : Ar → C(r) such that

f̄ (r)

r
< h + ε.

(ii) For any r and any prefix-free injective encoder g(r),

ḡ(r)

r
≥ h.

Proof. For r ∈ N, let S1 = (U1, . . . , Ur), S2 = (Ur+1, . . . , U2r), and so on
by the r-tuples of symbols produced by the source. Then S1, S2, . . . is a
memoryless source with alphabet Ar, producing each r-tuple in Ar with
non-zero probability. By the generalization of Lemma 4.4 to r indepen-
dent random variables we have

H(S1) = H(U1, . . . , Ur) = H(U1) + · · ·+ H(Ur) = hr.

By Theorem 4.6(i) there is a prefix-free code C(r) and an injective encoder
f (r) : Ar → C(r) such that f̄ (r) ≤ hr + 1. Hence if we choose r so that
r > 1/ε then

f̄ (r)

r
< h +

1
r
< h + ε

as required for (i). For (ii), Theorem 4.6(ii) immediately implies that
ḡ(r) ≥ hr, again as required. �

It is routine to extend Theorem 4.6 and Theorem 4.7 to the case when
some symbols in A are never produced by the source. We illustrate this
at the end of the following example.

Example 4.8. A memoryless source U1, U2, . . . produces symbols from the
Roman alphabet {a, b, . . . , z} according to the the probability distribution
of standard English:

pe = 0.127, pt = 0.091, pa = 0.082, . . . , pz = 0.001.

We have H(U1) = H(p) = 4.195 . . . < 4.2.

By Theorem 4.6(i), there is a prefix-free binary code C and an injective
prefix-free encoder f : A → C such that f̄ < 5.2. Exercise: why is using
5.2 bits per character not very impressive?

By Theorem 4.7(i), taking ε = 1
100 , there exists r ∈ N, a prefix-free bi-

nary code C and an injective prefix-free encoder f (r) : Ar → C such that

23

f̄ (r)/r < 4.21. (In fact the proof shows that we may take r = 100.) Now
about 4.21 bits per character are used. This improves on using 26 code-
words of length 5.

If instead the source produces English words then it is not memoryless;
instead, as seen in Example 3.2(3), one can often predict the next character
from those before. We shall see how to encode such sources in Part C
of the course. According to one estimate of Shannon, only 2.6 bits per
character are needed.

Finally, suppose that the alphabet is extended by a new symbol ♥, such
that P[Ut = ♥] = 0 for all times t. Let v = f (r)(aa . . . a) be the encod-
ing of ‘a’ repeated r times. We extend f (r) by setting f̃ (r)(u1, . . . , ur) = v
whenever some ui is ♥. The new encoder f̃ (r) is not injective, but decod-
ing is still unambiguous because the codeword v is only seen when the
message contains aa . . . a ∈ Ar.

5. HUFFMAN CODES

Returning to encoding symbol by symbol, we end by defining Huff-
man codes. We prove in Corollary 5.9 that they have the shortest possi-
ble expected length of prefix-free codes. Huffman codes are widely used
because they are efficient to construct: they are used in JPEG image com-
pression, MP3 audio compression and ZIP file compression.

The following definition is non-standard, but very useful.

Definition 5.1. A Huffman set for a probability measure (p1, . . . , ps) is a
set of pairs

(
i, u) where, in each pair, i ∈ {1, . . . , s} and u is a binary word.

The weight of a Huffman set is the sum of the pi for those i in a pair in
the set.

The input and output to each step of the Huffman algorithm is a col-
lection of Huffman sets. We shall see that (i, v) appears in a Huffman set
if and only if the codeword v(i) encoding i ends with v. We say that v is
a suffix of v(i).

For example, {(1,∅)} and {(2, 001), (3, 101)} are Huffman sets having
weights p1 and p2 + p3. From the second Huffman set we know that the
codeword v(3) encoding 3 has 101 as a suffix. For instance, v(3) might be
101 or 0101 or 1101, and so on.

Algorithm 5.2 (Huffman). The input is a probability measure (p1, . . . , ps)
with s ≥ 2.

• Begin. Take the s Huffman sets: {(1,∅)}, . . . , {(s,∅)}.
• Step. Let X and Y be Huffman sets of the least two weights. Let

Z =
{
(i, 0v) : (i, v) ∈ X

}
∪
{
(j, 1w) : (j, w) ∈ Y

}
.

Replace X and Y with Z. [Was misprinted as 0w, change!]

24

• End. End when there is only one Huffman set. Its pairs are(
1, v(1)

)
, . . . ,

(
s, v(s)

)
where v(i) is the codeword encoding i.

Example 5.3. Let (p1, p2, p3, p4, p5) = (1
8 , 1

8 , 1
6 , 1

4 , 1
3). The table shows the

full Huffman algorithm. Note that after step (1) there are two Huffman
sets of the second least weight 1

4 . We chose
{
(1, 0), (2, 1)

}
(rather than{

(4,∅)}); each of its suffixes 0 and 1 then had 0 prepended.

Begin
{
(1,∅)

}
,
{
(2,∅)

}
,
{
(3,∅)

}
,
{
(4,∅)

}
,
{
(5,∅)

}

(1)
{
(1, 0), (2, 1)

}
,
{
(3,∅)

}
,
{
(4,∅)

}
,
{
(5,∅)

}

(2)
{
(1, 00), (2, 01), (3, 1)

}
,
{
(4,∅)

}
,
{
(5,∅)

}

(3)
{
(1, 00), (2, 01), (3, 1)

}
,
{
(4, 0), (5, 1)

}

(4)
{
(1, 000), (2, 001), (3, 01), (4, 10), (5, 11)

}

End 1 7→ 000, 2 7→ 001, 3 7→ 01, 4 7→ 10, 5 7→ 11

It is convenient to perform the algorithm by constructing an oriented
rooted binary tree, starting with s leaves, and finishing at the root. We
follow the same convention from §2 that we step up for 1 and down for 0
(and now horizontally for no change). Huffman sets are shown in ellipses
with the weight to the right, denoting the pair (2,∅) by ∅2 and the pair
(1, 00) by 001, and so on, to save space.

∅1
1
8

∅2
1
8

∅3
1
6

∅4
1
4

∅5
1
3

01
12

1
4

∅3
1
6

∅4
1
4

∅5
1
3

001
012
13

5
12

∅4
1
4

∅5
1
3

001
012
13

5
12

04
15

7
12

0001
0012
013
104
115

1

Exercise 5.4. Use the tree method to construct the Huffman code for the
probability distribution (p1, p2, p3, p4, p5) = (1

8 , 1
8 , 1

6 , 1
4 , 1

3) in Example 5.3
choosing at step (2) the Huffman sets

{
(3,∅)

}
and

{
(4,∅)

}
. (See the

slides on Moodle for the tree and code.) Is there a more efficient code?

Question 5 on Sheet 3 gives a bigger example where choices in the
Huffman algorithm lead to codes having different codeword lengths and
different maximum length. By Corollary 5.9, these choices do not change
the expected codeword length.

Lemma 5.5. Huffman codes are prefix-free

Proof. Consider the codewords v(i) and v(j) output by the algorithm.

25

• Find the step when there are pairs (i, v) and (j, w) entering the
same Huffman set. By swapping i and j if necessary, we may
suppose that in this step we prepend 0 to v and 1 to w.
• After this step, (i, 0v) and (j, 1w) are in the same Huffman set.
• In each subsequent step involving the Huffman set for i and j, we

prepend the same bit to all suffixes in pairs in the set. Therefore
0v is extended to v(i) = x0v and 1w is extended to v(j) = x1w,
for some binary word x.

Comparing on x0 and x1 shows that v(i) is not a prefix of v(j) and v(j) is
not a prefix of v(i). �

We end by showing that Huffman codes are best possible, in the fol-
lowing sense.

Definition 5.6. We say that the binary code v(1), . . . , v(s) is optimal for the
probability measure (p1, . . . , ps) if it is prefix-free, and no other prefix-
free code with s codewords has a smaller expected length.

We require the following lemma. As motivation, we note that the con-
clusion of this lemma holds for Huffman codes. For instance in Exam-
ple 5.3, the two least probable symbols 1 and 2 got the longest codewords
000 and 001, differing only in their final position.

Part (a) should be intuitive: it simply says that in an optimal code less
probable symbols get longer codewords. You are asked to give a careful
proof in Question 1 on Problem Sheet 4.

Lemma 5.7. In an optimal code for the probability measure p1 ≤ p2 ≤ . . . ≤ ps
in which the codewords v(1), v(2), . . . , v(s) have lengths `1, `2, . . . , `s,

(a) `1 ≥ `2 ≥ . . . ≥ `s;
(b) `1 = `2 and two of the codewords of this length differ only in their final

positions.

Proof of (b). By (a), `1 is the longest length. Let ` = `1. Thus v(1) =
v1 . . . v`−1v`. Since the code is prefix-free, v1 . . . v`−1 is not a codeword.
We can reduce the expected length of the code by replacing v(1) with
v1 . . . v`−1 unless v1 . . . v`−1 is a prefix of another codeword. Since ` is the
longest length, the only codeword that may have v1 . . . v`−1 as a prefix is
v1 . . . v`−1v`, where v` = 1− v` is the bit-flip of v`. Therefore v1 . . . v`−1v`
is a codeword, differing from v1 . . . v`−1u` only in its final position. �

Proposition 5.8. Suppose that the probability measure p1 ≤ p2 ≤ p3 ≤ . . . ≤
ps [inequalities added in lecture] has an optimal code with expected length
L and that the probability measure p1 + p2, p3, . . . , ps has an optimal prefix-free
code with expected length M. Then

L ≥ M + p1 + p2.

26

Proof. Let v(1), v(2), v(3), . . . , v(s) be an optimal code for p1, p2, p3, . . . , ps.
Let ` = `

(
v(1)

)
. By Lemma 5.7(a), ` is the longest length of a codeword.

By Lemma 5.7(b), reordering the codewords of length ` if necessary, we
may assume that

v(1) = x1 . . . x`−10

v(2) = x1 . . . x`−11

for some binary word x1 . . . x`−1. Since the code is prefix-free, x1 . . . x`−1
is not a codeword. Hence x1 . . . x`−1, v(3), . . . , v(s) is a prefix-free code for
p1 + p2, p3, . . . ps with codewords of length `− 1, `3, . . . , `s. Its expected
length is

L− (p1`− p2`) + (p1 + p2)(`− 1) = L− (p1 + p2).

Since an optimal prefix-free code for p1 + p2, p3, . . . , ps has expected length
M, we have L− (p1 + p2) ≥ M as required. �

Corollary 5.9. Huffman codes are optimal.

Proof. We work by induction on the size of the alphabet s. In the base
case s = 2 and the Huffman algorithm gives the clearly optimal code 0, 1.
By reordering symbols if necessary, we may assume that the probability
measure is (p1, . . . , ps) where

p1 ≤ p2 ≤ p3 ≤ . . . ≤ ps

and that in Step 1 we form the Huffman set
{
(1, 0), (2, 1)

}
of weight p1 +

p2. The algorithm continues with Huffman sets of weights p1 + p2, p3 ≤
. . . ≤ ps. As seen in the proof of Lemma 5.5, in each subsequent step
involving the Huffman set for 1 and 2, we prepend the same bit to all
suffixes in pairs in the set. Therefore if the algorithm terminates with
v(1), v(2), v(3), . . . , v(s) then

v(1) = x1 . . . x`−10

v(2) = x1 . . . x`−11

for some x1 . . . x`−1. By making the same choices but starting at Step 2
with the the probability measure is q = (p1 + p2, p3, . . . , ps), we obtain the
Huffman code with codewords x1 . . . x`−1, v(3), . . . , v(s). The expected
length of this code, for the probability measure q, is

m = (p1 + p2)(`− 1) + p3`
(
v(3)

)
+ · · ·+ ps`

(
v(s)

)
.

and the expected length of the original code for p is

` = p1`+ p2`+ p3`
(
v(3)

)
+ · · ·+ ps`

(
v(s)

)
.

By the same calculation as Proposition 5.8, ` = m + p1 + p2.
Let L be the expected length of an optimal code for p. By induction,

the Huffman code for q of expected length m is optimal. Proposition 5.8

27

implies that L ≥ m+ p1 + p2. We just saw that m+ p1 + p2 = `. Therefore
L ≥ ` and the code for p is optimal. �

6. EXTRAS FOR PART A

This section is non-examinable and included for interest only.

More on unique decipherability. Recall from Definition 2.1 thatA? is the set
of words (of any length) from the alphabetA. Given a binary code C and
an encoder f : A → C, define f ? : A? → {0, 1}? by

f ?(u1, . . . , us) = f (u1) . . . f (us)

where the right-hand side is the concatenation of the codewords f (u1),
. . . , f (us) ∈ C. Earlier in §2 we said that C was uniquely decipherable
if there was a unique way to decode each such concatenation. This is
consistent with the following standard definition.

Definition 6.1. An encoder f : A → C is uniquely decipherable if f ? :
A? → {0, 1}? is injective. If such an encoder exists we say that C is
uniquely decipherable.

Our concentration on prefix-free codes is justified by the following
proposition (proof temporarily deferred) and corollary.

Proposition 6.2. A uniquely decipherable binary code C has ∑v∈C 2−`(v) ≤ 1.

Corollary 6.3. If C is a uniquely decipherable binary code then there is a prefix-
free binary code with the same codeword lengths as C.

Proof. Let C have codewords v(1), . . . , v(s) of lengths `1, . . . , `s. By Propo-
sition 6.2, we have ∑s

i=1 2−`i ≤ 1. Hence the lengths satisfy Kraft’s In-
equality. By the ‘if’ direction of Proposition 2.9, there is a prefix-free bi-
nary code with codewords of lengths `1, . . . , `s. �

Thus any uniquely decipherable binary code can be replaced with a
prefix-free binary code without changing the expected codeword length.

There is a very nice proof of Proposition 6.2 using generating functions.
For more on generating functions see Wilf’s book generatingfunctionology
(the 2nd edition is free on his website), or do our course MT354/454/5454
Combinatorics. It will be convenient to denote by [xn] f (x) the coefficient
of xn in a polynomial or power series.

Proof of Proposition 6.2. Suppose that C has a` codewords of length ` for
` ∈N. Let m be the maximum length of a codeword. Let

f (x) = a1x + a2x2 + · · ·+ amxm,

28

chosen so that [xn] f (x) = an for all n ∈ N. We must show that f (1
2) ≤ 1.

For n ∈N,
[xn] f (x)2 = ∑

i,j∈{1,...,k}
i+j=n

aiaj

is the number of concatenated codewords vw of length n; the summand
aiaj counts those concatenations where v has length i and w has length j.
More generally, the coefficient of xn in f (x)t is the number of t-fold con-
catenated codewords of length n. Since there are 2n binary words of
length n, and C is uniquely decipherable, we have

[xn] f (x) + [xn] f (x)2 + · · ·+ [xn] f (x)n ≤ 2n

for all n ∈N. The left-hand side is the coefficient of xn in (1− f (x))−1 =
1 + f (x) + f (x)2 + · · · . Hence, comparing coefficients,

1
1− f (x)

≤ 1 + 2x + 4x2 + · · ·+ 2nxn + · · · = 1
1− 2x

(‡)

for all x < 1
2 . Evaluating both sides at 1

2 − ε shows that 1− f (1
2 − ε) > 0

for all ε > 0. Hence f (1
2 − ε) < 1 for all ε > 0. Since f is continuous, it

follows that f (1
2) ≤ 1, as required. �

The following example should help you to see the main idea in the
proof. It also shows a typical use of partial fractions to evaluate generat-
ing functions.

Example 6.4. The code {0, 10, 11} is prefix-free and so is uniquely deci-
pherable. Let f (x) = x + 2x2 as in the proof and for n ∈ N0, let wn
be the number of concatenated codewords of total length n. For exam-
ple, w3 = 5 counts 010, 011, 100, 110, 000; it is the coefficient of x5 in
f (x) + f (x)2 + f (x)3. Correspondingly, [x3] f (x)2 = [x3](x2 + 4x3 + 4x4)
counts the 4 concatenations 010, 011, 100, 110 and [x3] f (x)3 counts 000.
By (‡) we have

∞

∑
n=0

wnxn =
1

1− f (x)
=

1
1− x− 2x2 =

2
3(1− 2x)

+
1

3(1 + x)
.

Expanding each partial fraction as a geometric series we get

wn = 2
32n + 1

3(−1)n

for n ∈N0. In particular, limn→∞
wn
2n = 2

3 . Thus of the 2n binary words of
length n, about 2

3 are concatenations of codewords.

The general result is given by the following exercise: it needs the idea
from Theorem 2.4.3 in Wilf’s book.

Exercise 6.5. Suppose that C is a uniquely decipherable binary code. Let
f (x) be as in the proof of Proposition 6.2.

(i) Show that there exists a unique κ ∈ R with 1 ≤ κ ≤ 2 such that
f (1/κ) = 1.

29

(ii) Let wn be the number of concatenated codewords of length n.
Show that limn→∞

log2 wn
n = log2 κ.

In particular, in the ideal situation for source encoding where Kraft’s
Inequality is an equality, so ∑v∈C 2−`(v) = 1, we have κ = 2. The exer-
cise then says that (as seen in Example 6.4) a positive proportion of all
binary words of length n are concatenations of codewords, provided n is
sufficiently large.

Thus after source encoding a long message, the sequence of bits should
look random. For example, splitting the source encoded message into
blocks of 8 bits, we can expect each of the 256 binary words of length
8 to appear roughly equally often. This justifies our assumption in Part
B that each symbol (here the symbols correspond to 8 bit binary words)
sent across the noisy channel is equally probable.

For example, the graphs below show the frequencies of the 64 binary
words of length 6 in the encoding of Chapter 1 of Persuasion, first by the
inefficient ASCII encoding, and then by the optimal Huffman code. (See
the MATHEMATICA notebook AustenHuffmanExample on Moodle.)

10 20 30 40 50 60

500

1000

1500

2000

2500

3000

10 20 30 40 50 60

500

1000

1500

(B) Channel coding

7. CHANNEL CAPACITY

Question. How quickly can we communicate reliably through a
noisy channel?

Noisy channels. In practice the communication channel might be the hard
disk (or SSD) in your computer for communication through time, or the
air carrying microwave radiation for communication by a mobile phone
through space. We use the following mathematical abstraction.

Definition 7.1. Let A and B be alphabets. A discrete memoryless channel
sends a symbol α ∈ A to β ∈ B with a fixed probability pαβ.

Here ‘memoryless’ is the property that each transmission through the
channel is independent of those before.

Denote by X the input symbol and Y the output symbol. Thus

P[Y = β|X = α] = pαβ

for all α ∈ A and β ∈ B. The matrix with rows labelled byA, columns la-
belled by B and entries pαβ is called the channel matrix. Since ∑β∈B pαβ =

∑β∈B P[Y = β|X = α] = 1, by the law of total probability, the channel
matrices are stochastic: that is, every row has sum 1.

Example 7.2.

(1) In the introduction we saw the binary symmetric channel in which
A = B = {0, 1} and each bit flips independent with probability p.
The channel matrix and the corresponding diagram are:

(0 1
0 1− p p
1 p 1− p

)
0 0

1 1

p

p

1−p

1−p

(2) In the binary erasure channel with erasure probability p, A = {0, 1}
and B = {0, ?, 1}. Each sent bit is received as sent with probabil-
ity 1− p, and otherwise erased by the channel: we model this by
supposing that after an erasure, the special symbol ? is received.
(Thus the receiver knows a bit was sent, but not what it was.)

30

The channel matrix and the corresponding diagram are:

(0 ? 1
0 1− p p 0
1 0 p 1− p

)
0 0

1 1

?

p

p

1−p

1−p

(3) The lazy typist channel with s symbols has input alphabet A =
{0, 1, . . . , s − 1} and the same output alphabet. The transition
probabilities are

P[Y = x|X = x] = P[Y = x + 1 mod s|X = i] = 1
2 .

When s = 4 these are shown by the diagram in the margin, in
which all arrows have the same probability 1

2 .

0 0

1 1

2 2

3 3

Exercise 7.3. Take s = 4 in the lazy typist channel, so the input and out-
put alphabets are {0, 1, 2, 3}.

(a) Write down the channel matrix.
(b) Find a way to encode the four messages A, T, G, C using 4 code-

words of the same length so that the receiver can decode with
zero probability of error.

(c) Specify the decoding rule as a function from words in the output
symbols {0, 1, 2, 3} to {A, T, G, C}.

(d) For each message sent, how many symbols are required? For a
perfect typist, how many symbols are required per message?

You are asked to generalize this to the case s = 2t on Problem Sheet 5
Question 3.

Conditional entropy and the Chaining Rule.

Definition 7.4. Let X and Y be discrete random variables taking values
in sets A and B, respectively. The conditional entropy of X given that Y = β

is defined by

H(X|Y = β) = − ∑
α∈A

P[X = α|Y = β] log2 P[X = α|Y = β].

The conditional entropy of X given Y is defined by

H(X|Y) = ∑
β∈B

P[Y = β]H(K|Y = y).

Observe that H(X|Y = β) is the entropy of the probability distribution
on A in which pα = P[X = α|Y = β] for each α ∈ A. The conditional
entropy of X given Y is then the expected value of H(X|Y = β) as β

varies over B.
If you have seen conditional expectation, do not be confused into think-

ing that conditional entropies are random variables: they are just num-
bers, like usual entropies.

31

Exercise 7.5. Fix s ∈ N. Take the lazy typist channel with input and
output alphabets A = B = {0, 1, . . . , s− 1}. As usual, let X be the input
symbol and let Y be the output symbol.

(i) Suppose that X is uniformly distributed on {0, 1, . . . , s − 1}, so
P[X = x] = 1

s for each x. Find

H(X), H(Y), H(X|Y = 0), H(X|Y), H(X, Y).

(ii) Now suppose that s = 4 and X is 0 with probability q and 1 with
probability 1− q. Find
(a) P[Y = 1|X = 0], H(Y|X = 0), H(Y|X), P[Y = 1], H(Y);
(b) P[X = 0|Y = 1], H(X|Y = 1), H(X|Y).

The conditioning argument P[Y = β] = ∑α∈A P[Y = β|X =
α]P[X = α] is often useful.

The answers are on the slides available from Moodle. The probabilities
P[Y = β|X = α] can easily be read from the channel matrix. But a user of
the channel cares much more about the probabilities P[X = α|Y = β]; we
have seen how to compute these using conditional probability, or Bayes’
Law. For an analogy with medical testing, see Question 7 on Problem
Sheet 1.

Lemma 7.6 (Chaining Rule). Let X and Y be random variables. Then

H(X|Y) + H(Y) = H(X, Y).

Intuitively, the chaining rule says that, after learning the H(Y) bits of
information in Y, the pair (X, Y) is determined by a further H(X|Y) bits
of information.

The two ‘extreme’ cases are important:

• If X and Y are independent then Y gives no information about X
and H(X|Y) = H(X): this follows from Lemma 4.4, that H(X, Y) =
H(X) + H(Y) when X and Y are independent.

• If X is determined by Y (more formally, X is a function of Y) then
H(X|Y) = 0 and H(X, Y) = H(Y).

In Question 4 on Sheet 4 you are asked to use Gibbs’ Inequality to gener-
alize the first case by showing that H(X) ≥ H(X|Y) with equality if and
only if X and Y are independent.

If you are doing MT361/461/5461 Cipher Systems, then you will have
already seen a proof of the Chaining Rule. Otherwise please do Ques-
tion 5 on Sheet 4 which breaks it down into small steps.

In Example 7.5(ii) we saw that when s = 4 and P[X = 0] = q, P[X =
1] = 1− q we have H(X) = H(q, 1− q) and H(Y|X) = 1. Hence

H(X, Y) = H(Y|X) + H(X) = 1 + H(q, 1− q)

32

Since H(Y) = 1+ 1
2 H(q, 1− q) and H(X|Y) = 1

2 H(q, 1− q), applying the
Chaining Rule the other way round gives

H(X, Y) = H(X|Y) + H(Y) = 1 + H(q, 1− q).

As expected we get the same answer. As expected by the remark before
Lemma 7.6, the calculation using H(Y|X) was easier.

Mutual information. Interpreting number of bits of information as a mea-
sure of uncertainty, we interpret H(X|Y) as the uncertainty that remains in
X after learning Y. Therefore H(X)− H(X|Y) is the uncertainty in X that
is removed by learning Y; that is H(X)− H(X|Y) is the number of bits of
information that Y tells us about X.

Definition 7.7. The mutual information of random variables X and Y is

I(X; Y) = H(X)− H(X|Y).

Since H(X) ≥ H(X|Y) with equality if and only if X and Y are inde-
pendent, we have I(X; Y) ≥ 0, with equality if and only if X and Y are
independent.

Exercise 7.8. Since entropies are positive, I(X; Y) ≤ H(X). When does
I(X; Y) = H(X) hold?

Example 7.9. Let X be the roll of a fair die and let Y be the answer to the
question ‘Did you roll 1 or 2?’. Then

H(X|Y) = 1
3 log2 2 + 2

3 log2 4 = 5
3

and so I(X; Y) = H(X) − H(X|Y) = log2 6 − 5
3 . Exercise: compute

I(Y; X) = H(Y)− H(Y|X): is it intuitive that it is the same as I(X; Y)?

Exercise 7.10. By the Chaining Rule H(X)−H(X|Y) = H(X)−
(

H(X, Y)−
H(Y)

)
= H(X) + H(Y)− H(X, Y). Write down the analogous formula

for H(Y)− H(Y|X) and deduce that I(X; Y) = I(Y; X).

Thus, as seen in Example 7.9 in a special case, Y is exactly as infor-
mative about X as X is about Y. This symmetry justifies representing
conditional entropies and mutual information by Venn diagrams, such
as the one below in which the shaded region represents H(X|Y).

H(X|Y) I(X;Y) H(Y |X)

X Y

33

Example 7.11. Let X and Y be the input and output symbols in the lazy
typist channel with s symbols.

(a) By Exercise 7.5(i), if all s input symbols have equal probability 1
s

then I(X; Y) = log2 s− 1.
(b) Let s be even. Suppose that

pα =

{
2
s if α is even
0 if α is odd.

.

Then Y is uniformly distributed so H(Y) = log2 s and I(X; Y) =
H(Y)− H(Y|X) = log2 s− 1.

(c) Suppose that s = 4 and p0 = p1 = 1
2 . Then Y has probability

distribution (1
4 , 1

2 , 1
4 , 0) and H(Y) = 3

2 . We have I(X; Y) = 3
2 − 1 =

1
2 . The maximum value of I(X; Y) is 1; by (b) the maximum is
attained for p = (1

4 , 1
4 , 1

4 , 1
4) and p = (1

2 , 0, 1
2 , 0). Exercise: find

another probability measure on X that maximizes I(X; Y).

Here, and in general, it is easiest to compute I(X; Y) using I(X; Y) =
H(Y)−H(Y|X). To motivate the following definition, think of I(X; Y) as
the amount of information a symbol β ∈ B output by the channel tells us
about the input symbol α ∈ A.

Definition 7.12. Let X ∈ A be in the input symbol and let Y ∈ B be the
output symbol to a channel. The capacity of the channel is maxq I(X; Y),
where the maximum is taken over all probability measures q on A.

After entropy, this is the fundamental definition in this course.

Example 7.13.
(a) Let p ≤ 1/2. The capacity of the Binary Symmetric Channel with

error probability p is 1− H(p, 1− p).
(b) The capacity of the Binary Erasure Channel with erasure prob-

ability p is 1 − p. You are asked to show this in Question 1 on
Problem Sheet 5. Exercise: draw a graph comparing (a) and (b).

(c) We saw in Example 7.11 that for the lazy typist channel with s =
4, the maximum of I(X; Y) is 1. Correspondingly, we saw that it
is possible to transmit 1 bit of information through the channel
with zero probability of incorrect decoding, using the codewords
{0, 2} ⊆ {0, 1, 2, 3}. In general for s symbols, the same argument
shows that the maximum is log2 s − 1, so this is the capacity of
the channel, and log2 s − 1 bits can be sent with each use of the
channel. (See Question 3 on Problem Sheet 5.)

Statement of Shannon’s Noisy Coding Theorem.

Theorem 7.14. Fix a discrete memoryless channel with input alphabet A and
output alphabet B of capacity c.

(a) Let ε > 0 be given. For every r < c there exists n ∈ N and a code
C ⊆ An such that |C| ≥ 2rn and the error probability when C is used
to send codewords through the channel is less than ε.

34

(b) If r > c then, when n is large, it is impossible to find a code as in (a).

We make the following remarks:
• In fact we will have |C| ≈ 2rn: the inequality is necessary only

because 2rn may not be an integer.
• For a codeword u ∈ C, we define the error probability for u to

be the probability that when u is sent through the channel, and
v is received, v is not decoded as u. The claim in (a) is that, by
choosing the code and decoding rule suitably, we can make all these
probabilities < ε.

Example 7.15. Take the lazy typist channel on {0, 1, 2, 3}. The capacity of
the channel is 1 by Example 7.11. In Example 7.3 we used the encoder

A 7→ 00, T 7→ 02, G 7→ 20, C 7→ 22.

and decoder 00, 01, 10, 11 7→ A, and so on. By generalizing the encoder
to n-tuples of symbols it is not hard to prove that (a) in Shannon’s Noisy
Coding Theorem holds.

Example 7.15 is slightly unusual in that we can take r = c and n does
not need to be large. In general, as seen in the proof of Theorem 4.7
(Shannon’s Source Coding Theorem), it is necessary to take n large.

8. NEAREST NEIGHBOUR DECODING AND HAMMING DISTANCE

Question. What decoding rule minimizes the probability of de-
coding error?

Hamming distance. In this section we answer the question above using
ideas due to Hamming. These are developed more further in our course
MT361/461/5461 Error-correcting Codes.

Definition 8.1. Let A be an alphabet. Let u, v ∈ An be words of length n.
The Hamming distance between u and v, denoted d(u, v), is the number of
positions in which u and v are different.

In mathematical notation, d(u, v) =
∣∣{i ∈ {1, 2, . . . , n} : ui 6= vi

}∣∣. We
will usually abbreviate ‘Hamming distance’ to ‘distance’.

Example 8.2. Working with binary words of length 4 in {0, 1}4, we have
d(0011, 1101) = 3 because the words 0011 and 1101 differ in their first
three positions, and are the same in their final position. Working with
words over the alphabet {a, b, . . . , z}, we have d(tale, take) = 1 and
d(tale, tilt) = 2.

35

Theorem 8.3. Let A be an alphabet and let u, v, w ∈ An.
(a) d(u, v) = 0 if and only if u = v;
(b) d(u, v) = d(v, u);
(c) d(u, w) ≤ d(u, v) + d(v, w).

Part (c) is called the triangle inequality. As an exercise, find all English
words v such that

d(warm, v) = d(cold, v) = 2
and check that the triangle inequality holds when u, v, w are warm, wall,
cold, respectively.

If you have seen metric spaces then you may have noticed that Theo-
rem 8.3 says that (An, d) is a metric space.

Binary Symmetric Channel. In Exercise 1.9 Alice sent Bob a codeword X ∈
{000, 111} across the Binary Symmetric Channel with error probability p,
and Bob received Y ∈ {0, 1}3. We saw that P[Y = 111|X = 000] = p3,
P[Y = 110|X = 000] = p2(1− p), and so on.

In general, the power of p in P[Y = v|X = u] is the number of bits
flipped by the channel. This is the Hamming distance d(u, v). It is also
the number of edges between u and v in the graph of {0, 1}3.

000

100 001

101

010

110 011

111

Lemma 8.4. Suppose that u ∈ {0, 1}n is sent through the BSC(p). The proba-
bility that v ∈ {0, 1}n is received is pd(u,v)(1− p)n−d(u,v).

Theorem 8.5. Suppose that we use a binary code C of length n to send messages
through the BSC(p) with p < 1/2, and that each codeword in C is equally likely
to be sent. Let X be the sent codeword and Y the received word. For each u ∈ C,

P[X = u|Y = v] = pd(u,v)(1− p)n−d(u,v)c(v).

where c(v) does not depend on u. Hence P[X = u|Y = v] is maximized by
choosing u to be the nearest codeword to v.

The assumption that every codeword is equally likely to be sent is vital
to Theorem 8.5.

For instance suppose that, as in the introduction, Alice sends Bob a
‘yes’/‘no’ using the repetition code 111, 000. We saw in Question 5 on
Sheet 1 that if 000 has probability 1

10 and 111 has probability 9
10 .

P[X = 000|Y = 000]
P[X = 111|Y = 000]

=
27
77
≈ 0.351.

When 000 is received, it is almost three times as likely that 111 was sent as
000. Therefore, decoding by choosing u to maximize P[X = u|Y = v] Bob
will always decode as 111. We conclude that this combination of code
and channel is useless for communication.

The quantity P[X = u|Y = v] is the likelihood that we are correct in
decoding a received word v by u. Here Y = v is the event we observe,

36

and X = u is our inference; this is an example of maximum likelihood de-
coding. It is the right decoding strategy to use in Shannon’s Noisy Coding
Theorem.

We saw at the end of §1 that the binary string given by source coding
a long text with a good code, such as a Huffman code, has each word
in {0, 1}m about the same number of times, provided m is not too large.
Therefore if we encode the text by splitting this binary string into words
of length m, the hypothesis for Theorem 8.5 holds. A code C with 2m

codewords is required.

Nearest neighbour decoding and Hamming balls.

Definition 8.6. Let C ⊆ An be a code. Suppose that a codeword is sent
through the channel and we receive the word v. To decide v using nearest
neighbour decoding look at all the codewords of C and pick the one that
is nearest, in Hamming distance to v, choosing arbitrarily if there are
several equally close.

Exercise 8.7. Take the code C = {00000, 11100, 00111, 11011} from Ques-
tion 4 on Problem Sheet 5. Show that the received words 00000, 01111
decode to 00000 and 00111 and that an arbitrary choice must be made to
decode 01010.

Definition 8.8. Let A be an alphabet and let u ∈ An. The Hamming ball
of radius r about u is the set

Br(u) = {v ∈ An : d(u, v) ≤ r}.
We saw in Exercise 8.7 that the Hamming balls of radius 1 about code-

words are disjoint; therefore using this code, nearest neighbour decoding
always finds the sent codeword when at most 1 error occurs. For exam-
ple, the words in

B1(11100) = {11100, 01100, 10100, 11000, 11110, 11101}
decode to 11100. See Question 4 on Sheet 5 for a related example and the
formal definition of a 1-error correcting binary code.

Let 0 denote the all-zeros word 0 . . . 0. The table below shows the sizes
of the Hamming balls of radius r about 0000 ∈ F4

2. The second line shows
the sizes of the shells: the words at distance exactly r.

r 0 1 2 3 4
∣∣Br(0)

∣∣ 1 5 11 15 16∣∣Br(0)
∣∣−
∣∣Br−1(0)

∣∣ 1 4 6 4 1

Lemma 8.9. Let n ∈N.
(a)

∣∣{v ∈ {0, 1}n : d(u, v) = s}
∣∣ = (n

s).
(b) |Br(0)| = ∑r

s=0 (
n
s);

The size of a Hamming ball does not depend on its centre.

37

More on maximum likelihood decoding. Consider the Binary Erasure Chan-
nel. Since any received bit is correct, it is natural to modify nearest neigh-
bour decoding with a binary code C so that a received word v ∈ {0, ?, 1}n

is decoded as a closest codeword u ∈ C, changing only the ? bits in v.

Example 8.10. As in Exercise 8.7 let C = {00000, 11100, 00111, 11011}.
The received words 0000? , 001? ? , and 00? ? ? decode as 00000, 00111
and either 00000 or 00111, depending on an arbitrary choice. We saw in
Exercise 8.7 that the distance between every pair of codewords in this
code is 3, therefore any two errors can be corrected.

Exercise 8.11. Show that this modification of nearest neighbour decoding
implements maximum likelihood decoding. That is, the codeword u ∈ C
is chosen so that P[X = u|Y = v] is maximized.

9. SHANNON’S NOISY CODING THEOREM FOR THE BSC(p)

To prove Shannon’s Noisy Coding Theorem for the Binary Symmetric
Channel we need some good bounds on the sizes of Hamming balls. The
size does not depend on the centre, so we choose the all-zeros word 0.

Proposition 9.1. Let n ∈ N and let 0 ≤ r ≤ n/2. Let h = H(r
n , 1− r

n).
Then

1
n + 1

2hn ≤
(

n
r

)
≤ |Br(0)| ≤ 2hn.

Proof. Set p = r/n. Let H be the number of heads when a coin biased
to lands heads with probability p is flipped n times. Thus H ∼ Bin(n, p)
and P[H = s] = (n

s)ps(1− p)n−s. (Some simulations are shown below.)
Observe that P[H = s] is maximized when s = E[H] = pn = r. This
explains the appearance of the entropy function:

pr(1− p)n−r =2log2(pr(1−p)n−r) = 2r log2 p+(n−r) log2(1−p)

= 2(p log2 p+(1−p) log2(1−p))n = 2−H(p,1−p)n = 2−hn.

For the lower bound we argue that since H takes n + 1 different values,
with its maximum at r, we have P[H = r] ≥ 1/(n + 1). Hence

(
n
r

)
pr(1− p)n−r ≥ 1

n + 1

and so (
n
r

)
≤ 1

n + 1
1

pr(1− p)n−r =
2hn

n + 1
.

For the upper bound, we use the inequalities seen in the proof of The-
orem 8.5: (1 − p)n > p(1 − p)n−1 > . . . > ps(1 − p)n−s > ps+1(1 −

38

p)n−(s+1) > . . . to get

1 ≥
r

∑
s=0

(
n
s

)
ps(1− p)n−s ≥

r

∑
s=0

(
n
s

)
pr(1− p)n−r.

Hence, using Lemma 8.9,

|B0(r)| =
r

∑
s=0

(
n
s

)
≤ 1

pr(1− p)n−r = 2hn

as required. [In the lecture I got lost at this step, but it follows immedi-
ately from the previous line.] �

Another tool we need is linearity of expectation. This is stated formally
in Lemma 1.19. For two real valued random variables X and Y it says
E[X + Y] = E[X] + E[Y].

Exercise 9.2.

(a) Let X, Y be independent rolls of a fair die. Let Z = X. Find E[X],
E[X + Y], E[X + Z], E[X + Y + Z]. [Hint: the hard way to com-
pute E[X + Y] is to use its probability distribution on {2, . . . , 12},
namely (1

36 , 2
36 , . . . , 6

36 , . . . , 2
36 , 1

36). The easy way is to use linearity
of expectation.]

(b) Let F be the flip of a coin biased to lands heads with probability p
and let

X =

{
1 if F = heads
0 if F = tails.

Then

E[X] = 1× P[F = heads] + 0× P[F = tails]

= 1× p + 0× (1− p)

= p.

Thus the expectation of an ‘indicator’ random variable such as
X is the probability of the event defining it. We use this to find
E[gi(v)] in (2) in the proof below.

(c) Suppose that 4 boys and 8 girls sit in a circle, choosing seats at
random. On average, how many girls have a boy to their right?
Outline solution. Number chairs from 0 to 11. Define

Xi =

{
1 if chair i has a girl and chair i + 1 (mod 12) has a boy
0 otherwise.

.

Show, using the idea in (b) that E[Xi] =
8

12 × 4
11 and hence that

the expected number of GB pairs is 12× 8
12 × 4

11 = 32
11 . Find the

expected number of GG, BG and BB pairs similarly.

39

To reduce the technicalities in the proof, we simplify the Binary Sym-
metric Channel as follows.

Definition 9.3. Given 0 < p < 1/2 and n ∈N such that pn ∈N, the Toy
BSC(p, n) is the channel with input and output alphabets {0, 1}n such
that when u ∈ {0, 1}n is sent, exactly pn of the positions of u flip.

As motivation, observe that if F is the number of flips then F ∼ Bin(n, p)
and so Var F = np(1 − p). By Chebychev’s Inequality (see Problem
Sheet 1, Question 5), we have

P
[
|F− pn| > εn

]
≤ np(1− p)

n2ε2 =
p(1− p)

ε2
1
n
→ 0 as n→ ∞ (†)

for any ε > 0. Therefore the number of flips is concentrated around pn,
and the channel behaves like the Toy BSC(p, n). The histograms below
show the number of flips for p = 1

3 simulating by 10000 samples the
number of flips when n = 10, 100 and 1000 bits are sent.

0 2 4 6 8 10
0

500

1000

1500

2000

2500

20 30 40 50 60
0

200

400

600

800

280 300 320 340 360 380 400
0

50

100

150

200

250

How small must ε be for the event |F − 1
3 n| > εn never to occur in the

simulation? When n = 10, every number occurred, so the least ε is 2
3 ;

when n = 100, every sample was within 20 of the mean, so we can take
ε = 20

100 = 0.2; when n = 1000, we can take ε = 60
1000 = 0.06. This

‘concentration of measure’ is also predicted by the Weak Law of Large
Numbers or the Central Limit Theorem.

Lemma 9.4. Let cn be the capacity of the Toy BSC(p, n). We have
cn

n
→ 1− H(p, 1− p)

as n→ ∞.

Proof. See Question 5 on Problem Sheet 6 and the model answers. �

Since n is part of the definition of the Toy BSC, the statement of Theo-
rem 7.14 changes slightly.

Proposition 9.5. Let h = H(p, 1− p). Let r < 1− h. Let ε > 0 be given. Pro-
vided n is sufficiently large, there exists a binary code C of size ≥ 2rn such that
when C is used to communicate on the Toy BSC(p, n) using nearest neighbour
decoding, the error probability is < ε.

40

Shannon’s great insight was that choosing the code at random is likely
to work. To go from this to a particular code that works, we need this basic
lemma. In words it says ‘not everyone can be strictly above average’. I
hope this convinces you it’s true: if not, see Problem Sheet 7. Applications
of this lemma are sometimes called the ‘First Moment Method’.

Lemma 9.6. If X : Ω → R is a random variable then there is an outcome
ω ∈ Ω such that X(ω) ≤ E[X]. 2

For technical reasons we must choose twice as many codewords as are
eventually required. Set M = 2d2rne and let U(1), . . . , U(M) ∈ {0, 1}n

be codewords, chosen independently and uniformly at random. We now
have two probability spaces: to distinguish them we write

• Pch for probabilities computed using the channel, such as P[Y =
v|X = u], the probability that when u is sent, v is received;
• Pcode and Ecode for probabilities and expectations depending on

the random choice of code; for instance, P[U(1) = u] = 1
2n for

each u ∈ {0, 1}n, since codewords are chosen uniformly at ran-
dom.

We are now ready for the proof.

Proof of Proposition 9.5. Let Pi be the probability that, given X = U(i) is
sent, the received word Y is not decoded as U(i) using nearest neighbour
decoding.

Step 1: Upper bound on Pi. Conditioning on Y we have

Pi = ∑
v∈{0,1}n

P[Y = v|X = U(i)]

{
1 if v is not decoded as U(i)
0 otherwise.

By definition of the Toy BSC, d(U(i), v) = pn. If there are no codewords
U(j) ∈ Bpn(v) then v is decoded as U(i). If U(j) ∈ Bpn(v) then either
d(U(j), v) < pn and U(j) is preferred to U(i) in nearest neighbour de-
coding, or d(U(j), v) = pn and, assuming the worst case, U(j) may be
chosen in preference to U(i). Hence for each v ∈ {0, 1}n,

{
1 if v is not decoded as U(i)
0 otherwise

≤
∣∣{j : j 6= i, U(j) ∈ Bpn(v)}

∣∣.

Set gi(v) =
∣∣{j : j 6= i, U(j) ∈ Bpn(v)}

∣∣. We have shown that

Pi ≤ ∑
v∈{0,1}n

P[Y = v|X = U(i)]gi(v).

41

Step 2: Expectations. We now find the expectation of Pi in the probability
space of the random code of Pi. Note that gi(v) depends only on the U(j)
for j 6= i, whereas P[Y = v|X = U(i)] depends only on U(i). Therefore
P[Y = v|X = U(i)] and gi(v) are independent random variables. Hence

Ecode
[
P[Y = v|X = U(i)]gi(v)

]
= Ecode

[
P[Y = v|X = U(i)]

]
Ecode[gi(v)].

Since U(i) is uniformly distributed on {0, 1}n, so is the received word Y
when U(i) is sent. Hence Ecode

[
P[Y = v|X = U(i)]

]
= 1/2n. (For full

details see Question 1 on Problem Sheet 7.) We may write

gi(v) = ∑
j 6=i

{
1 if U(j) ∈ Bpn(v)
0 otherwise.

By the same argument as Exercise 9.2(b) and linearity of expectation we
have

Ecode[gi(v)] = ∑
j 6=i

P[U(j) ∈ Bpn(v)].

By Lemma 8.9, |Bpn(v)| ≤ 2hn. Since U(j) is distributed uniformly at
random on {0, 1}n, it follows that P[U(j) ∈ Bpn(v)] ≤ 2hn/2n. Since
|C| = M,

E[gi(v)] ≤
(M− 1)2hp

2n ≤ 2d2rne2hn

2n .

Since 2d2rne ≤ 2
(
2rn + 1) = 2rn+1 + 2 ≤ 2rn+2 [details added] (this

bound is very crude) we have

E[gi(v)] ≤ 2rn+2+hn−n = 2(r+h−1+ 2
n)n = 2(−η+ 2

n)n

where η = 1− r− h. [Typo 1− r + h corrected to 1− r− h] By our choice
of r, we have η > 0 and so −η + 2

n < −η/2 for n sufficiently large and
E[gi(v)] ≤ 2−ηn/2. Therefore

Ecode
[
P[Y = v|X = U(i)]

]
Ecode[gi(v)

]
≤ 2−n2−ηn/2.

Summing over all v ∈ {0, 1}n we get Ecode[Pi] ≤ 2−ηn/2.

Step 3: We pick a code. Let P = 1
M ∑M

i=1 Pi. By linearity of expectation and
the bound just proved, [Typo: m in upper bound below corrected to M]

Ecode[P] =
1
M

M

∑
i=1

E[Pi] ≤
1
M

M

∑
i=1

2−ηn/2 = 2−ηn/2.

Hence there exists a particular code C? such that, for this code, 1
M ∑m

i=1 Pi ≤
2−ηn/2.

42

Step 4: We use C? to find a suitable code. Recall that M = 2d2rne and so
M/2 ≥ 2rn. We may relabel the codewords in C? so that P1 ≤ . . . ≤
PM/2 ≤ PM/2+1 . . . ≤ PM. By our choice of C?,

M2−ηn/2 ≥ P1 + · · ·+ PM/2 + PM/2+1 + · · ·+ PM ≥
M
2

PM/2.

Cancelling M, we get PM/2 ≤ 2× 2−ηn/2 and so

P1 ≤ . . . ≤ PM/2 ≤ 2× 2−ηn/2.

The right-hand side tends to 0 as n→ ∞. Therefore when n is sufficiently
large, P1, . . . , PM/2 < ε. The code {u(1), . . . , u(M/2)} therefore is as re-
quired. �

This proof will take a lot of thinking about.

• Question 1 on Problem Sheet 7 asks you to fill in the details in the
argument at the start of Step 2. This should clarify the role played
by the two different probability spaces.

• Question 2 then asks you to adapt the proof to the Toy Binary
Erasure Channel, in which exactly pn bits are erased.

Extra: Shannon’s Noisy Coding Theorem for the normal Binary Symmetric
Channel. The proof above for the Toy BSC can be adapted, but there are
several technical points that have to be addressed. See Question 6 on
Problem Sheet 6 and the model answers for a detailed proof.

In outline: using (†) we may choose n? so that if F is the number of
errors in the channel when a binary word of length n? is sent, then P

[
|F−

pn?| > εn
]
< ε/2. Thus in the typical case the BSC behaves very like

the Toy BSC. In the atypical case, we make the worst case assumption
that nearest neighbour decoding never succeeds. This increases the upper
bound for each Pi by ε/2, but still by taking n sufficient large (with n ≥
n?), each step in the proof can be adapted.

10. CONVERSE IN SHANNON’S NOISY CODING THEOREM

The proof depends on two inequalities, both of interests in their own
right.

• The Data-Processing Inequality states that if X, Y are random vari-
ables, taking values in sets X and Y , and d : Y → Z is a function,
then I(X; Y) ≥ I(X; d(Y)). In words: processing Y by the function
d cannot increase the amount of information Y has about X.

• Fano’s Inequality states that if X and Y are random variables taking
values in a set of size M, and P[X = Y] ≥ 1− ε then H(X|Y) ≤
H(ε, 1− ε) + ε log2(M− 1).

43

We shall see that the Data-Processing Inequality easily reduces to the
following lemma. For a characterisation of when equality holds, see the
optional question on Problem Sheet 7.

Lemma 10.1. Let X, Y and Z be random variables. Then

H
(
X|(Y, Z)

)
≤ H(X|Z).

Proof. Let X, Y, Z take values in X , Y , Z , respectively. Fix y ∈ Y and
z ∈ Z . Consider the two probability measures on X defined by px =
P[X = x|Y = y, Z = z] and qx = P[X = x|Z = z]. By Gibbs’ Inequality
(Lemma 3.9) we have

H(X|Y = y, Z = z) = − ∑
x∈X

px log2 px ≤ − ∑
x∈X

px log2 qx.

Multiplying by P[Y = y, Z = z] we get

P[Y = y, Z = z]H(X|Y = y, Z = z)

≤ − ∑
x∈X

P[Y = y, Z = z]P[X = x|Y = y, Z = z] log2 P[X = x|Z = z].

We now let y and z vary and take the sum of both sides over all y ∈ Y ,
z ∈ Z . On the left-hand side we get, by Definition 7.4, the conditional
entropy H(X|Y, Z). Using P[Y = y, Z = z]P[X = x|Y = y, Z = z] =
P[X = x, Y = y, Z = z] to simplify the right-hand side we get

H(X|Y, Z) ≤ − ∑
x∈X

∑
z∈Z

(
∑

y∈Y
P[X = x, Y = y, Z = z]

)
log2 P[X = x|Z = z]

= − ∑
x∈X

∑
z∈Z

P[X = x, Z = z] log2 P[X = x|Z = z]

= ∑
x∈X

∑
z∈Z

P[Z = z]P[X = x|Z = z] log2 P[X = x|Z = z]

= H(X|Z)
as required. �

Lemma 10.2 (Data-Processing Inequality). If X, Y are random variables, tak-
ing values in sets X and Y respectively, and d : Y → Z is a function, then
I(X; Y) ≥ I

(
X; d(Y)

)
.

Proof. Since Y determines d(Y), we have I(X; Y) = I(X; (Y, d(Y))). By
Lemma 10.1 taking Z = d(Y) we get

I(X; Y) = I
(
X; (Y, d(Y)

)
= H(X)− H(X|(Y, d(Y)

)

≥ H(X)− H
(
X|d(Y)

)
= I
(
X; d(Y)

)

as required. �

To motivate the proof of Fano’s Inequality consider the following ex-
ample.

44

Example 10.3. Alice and Bob may go to the cinema, theatre or stay at
home, each with equal probability. With probability 1 − p where we
imagine p is small, their decisions X and Z agree. In the ‘error’ case they
differ. A nice way to find the joint entropy (X, Z) is to condition on the
event that X 6= Z. For this we introduce the ‘indicator’ random variable,
as in Example 9.2(b),

F =

{
1 if X 6= Z
0 if X = Z.

Since F is determined by (X, Z) we have

H(X, Z) = H(X, Z, F) = H(X, Z|F) + H(F)

using the Chaining Rule (Lemma 7.6) for the second equality. Now H(F) =
H(p, 1− p),

H(X, Z|F = 0) = H(X, X) = H(X) = log2 3

and H(X, Z|F = 1) = log2 6 = 1 + log2 3 since there are 6 equally
likely pairs of destinations when X 6= Z. Therefore H(X, Z|F) = (1−
p) log2 3 + p(1 + log2 3) = 1− p and

H(X, Z) = p + log2 3 + H(p, 1− p).

To prove Fano’s Inequality we need that if X is a random variable tak-
ing m different values then H(X) ≤ log2 m. By Question 6 on Problem
Sheet 3, this follows easily from Gibbs’ Inequality.

Lemma 10.4 (Fano’s Inequality). Let X and Z be random variables taking
values in a set of size M. Let ε < 1

2 . If P[X = Z] ≥ 1− ε then H(X|Z) ≤
H(ε, 1− ε) + ε log2(M− 1).

Proof. We can suppose that X and Z take values in {1, . . . , M}. Let F be
the indicator random variable for the event X 6= Z, as defined in Exam-
ple 10.3. Conditioning on (Z, F) we get

H
(
X|(Z, F)

)
=

m

∑
z=1

P[Z = z, F = 0]H(X|Z = z, F = 0)

+
m

∑
z=1

P[Z = z, F = 1]H(X|Z = z, F = 1).

Now H(X|Z = z, F = 0) = H(Z|Z = z, F = 0) = 0 and H(X|Z = z, F =
1) ≤ log2(M − 1) since X then takes at most M − 1 different values.
Hence

H
(
X|(Z, F)

)
≤ log2(M− 1)

m

∑
z=1

P[Z = z, F = 1]

= log2(M− 1)
m

∑
z=1

P[Z = z, Z 6= X]

= log2(M− 1)P[X 6= Z]

45

≤ ε log2(M− 1).

By the Chaining Rule we have

H
(
X|(Z, F)

)
+ H(Z, F) = H(X, Z, F) = H(X, Z) = H(X|Z) + H(Z).

Hence subtracting H(Z) from each side, we have

H(X|Z) = H
(
X|(Z, F)

)
+ H(Z, F)− H(Z)

= H
(
X|(Z, F)

)
+ H(F|Z)

≤ H
(
X|(Z, F)

)
+ H(F)

where the final equality uses H(F|Z) ≤ H(F), as seen on Question 4 of
Problem Sheet 4. Since P[F = 1] ≤ ε and the entropy function H(ε, 1− ε)
is increasing for ε < 1

2 (see the graph on page 19) we get

H(X|Z) ≤ ε log2(M− 1) + H(ε, 1− ε)

as required. �
The final result we need to prove the converse in Shannon’s Noisy

Coding Theorem is Question 4 on Problem Sheet 7: when a memory-
less channel of capacity c is used to send words of n symbols, its capacity
is nc. This should be quite intuitive: since each symbol is sent indepen-
dently, the amount of information about the input we can (at best) learn
from each of the n received symbols is the original capacity c.

Proof of Theorem 7.14(b). Let r > c. Suppose, for a contradiction, that for
all ε > 0, and n sufficiently large, there is a code C(n) ⊆ An with |C| ≥
2rn and a decoding rule d : Bn → C(n) such that when C(n) is used to
communicate on the channel, the decoding error probability is < ε.

Take ε = 1
2(1− c/r) and let C(n) be a code as above. Let X be the sent

codeword, chosen uniformly at random from C(n), and let Y ∈ Bn be the
received word. We have

nc ≥ I(X; Y) by Question 4 on Sheet 7

≥ I
(
X; d(Y)

)
by Data-Processing Inequality

= h(X)− h
(
X|d(Y)

)

≥ log2 M−
(

H(ε, 1− ε) + ε log2(M− 1)
)

by Fano’s Inequality

≥ log2 M− 1− ε log2 M.

Hence

ε ≥ log2 M− nc− 1
log2 M

≥ 1− nc− 1
nr

= 1− c
r
− 1

nr
.

Subtract ε = 1
2(1− c/r) from both sides to get 0 ≥ 1

2(1− c/r) − 1
nr , or

equivalently, 1
nr ≥ 1

2(1 − c/r). This is a contradiction for any n suffi-
ciently large, since 1

nr → 0 as n→ ∞.
�

As a nice example of working with channel probabilities, we prove
Shannon’s Noisy Coding Theorem (b) directly for the lazy typist channel.

46

Example 10.5. Take the lazy typist channel on 2t symbol and use it send
words of length n from {0, 1, . . . , 2t− 1}n. (This is the n-extension of the
channel, as in Question 4 on Sheet 7.) By Question 3 on Sheet 5, the
capacity of the lazy typist channel is log2 t.

To make things more concrete, take ε = 1
10 . Shannon’s Noisy Coding

Theorem (b) then says that if r > log2 t, when n is large, it is impossible
to find a code C ⊆ {0, 1, . . . , 2t− 1}n such that |C| ≥ 2nr, and the error
probability for each codeword is < 1

10 .

Suppose that C is such a code. For each v ∈ {0, 1, . . . , 2t− 1}n let

B(v) =
{

u ∈ {0, 1, . . . , 2t− 1}n : ui = vi or ui = vi − 1 mod 2t for all i
}

.

This is the set of sent words that may be received as v. Let M(v) =
|B(v) ∩ C|. When v is received, the decoder must choose arbitrarily be-
tween the M(v) equally likely codewords in B(v). (Remember that each
codeword is equally likely to be sent.) So the probability of decoding
incorrectly is 1− 1/M(v). Let P be the average probability of incorrect
decoding; by assumption P < 1

10 . We have

P = ∑
v∈{0,1,...,2s−1}n

P[decode wrongly|Y = v]P[Y = v]. (†)

By the usual conditioning argument

P[Y = v] = ∑
u∈C

P[X = u]P[Y = v|X = u]

= ∑
u∈C

P[X = u]

{
1

2n if u ∈ B(v)
0 otherwise

=
1
|C|

M(v)
2n .

Let V be the set of words such that M(v) ≥ 1. (By the previous equation,
these are the words that may be received.) By (†),

P = ∑
v∈V

(
1− 1

M(v)
) 1
|C|

M(v)
2n =

1
|C|2n ∑

v∈V
M(v)− |V|

|C|2n .

Now ∑v∈V M(v) = 2n|C|, since each codeword u ∈ C is counted 2n times,
once for each v it may be received as. Hence

P = 1− |V|
|C|2n .

Since V ⊆ {0, 1, . . . , 2t− 1}n, we have |V| ≤ (2t)n. Therefore 1
10 > P ≥

1− (2t)n/|C|2n = 1− tn/|C|. Hence 9
10 < tn/|C| and so |C| < 10

9 tn. But
by hypothesis 2rn < |C|. Taking logs we get rn < log2

10
9 + n log2 t and

so

r <
log2

10
9

n
+ log2 t.

For large n this contradicts our assumption that r > log2 t.

(C) Ergodic sources and the Asymptotic Equipartition Property (AEP)

11. TYPICAL WORDS FROM MEMORYLESS SOURCES

Question. What is a typical word from a source?

In the final part of the course we make sense of this question and use
the answer to give a new proof of Shannon’s Source Coding Theorem
and, in outline only, our first proof of the constructive part of Shannon’s
Noisy Coding Theorem in full generality. We end by considering some
practical solutions to the problems of source and channel coding.

It is hard to give an example of a ‘typical word’. It is a bit like asking
‘what is a typical pine tree?’: the trees that stand out are all, for one reason
or another, atypical. The best answer is probably: ‘go into a pine wood
and choose one at random — then it’s probably fairly typical’.

For memoryless sources (see Definition 3.1) there is a more precise,
but still probabilistic answer. The (somewhat leading) questions in the
following exercise should give it some motivation.

Exercise 11.1. Let p < 1
2 . A memoryless source emits 0 with probability

1− p and 1 with probability p. Let n ∈N.

(i) What is the most common message of length n? Can one reason-
ably say it is typical?

(ii) How many 1s are there in a typical word of length r?
(iii) What is the probability of each word of length r with the average

number of 0s and 1s? (Suppose that pr ∈N.)
(iv) How is this related to the entropy of the source?
(v) What does Shannon’s Source Coding Theorem have to say about

efficiently coding messages from this source?
(vi) In what sense are words with about pr 1s typical?

A good answer to (vi) is given by the Weak Law of Large Numbers.
Despite its name, it is very powerful and useful! It can be proved using
Chebyshev’s Inequality: see Question 6(b) on Problem Sheet 1.

Proposition 11.2 (Weak Law of Large Numbers). Let X1, . . . , Xr be inde-
pendent real-valued random variables each with expectation µ and variance σ2.
Then

P
[
µ− ε <

X1 + · · ·+ Xr

r
< µ + ε

]
→ 1 as r → ∞.

For instance, if St is the symbol emitted by the source in Exercise 11.1
at time t then P[St = 1] = p and P[St = 0] = 1− p for all t. We have
E[St] = p and Var St = E[X2

t] − E[St]2 = p − p2 = p(1 − p) for all
t. By the Weak Law of Large Numbers, the probability that a random

48

word S1 . . . Sn has significantly more than (or significantly less than) pn
1s tends to 0 as n→ ∞.

Exercise 11.1(iv) suggests that the random variable log2 P[S1 . . . Sn] is
of interest, where S1 . . . Sn is a random word of length n emitted by a
source. Note that a probability appears ‘inside’ the random variable: this
is not so unusual in information theory, but rarely seen in other fields
using probability.

Example 11.3. Take the source from Example 11.1.

(a) The random variable log2 P[S1] takes value log2 p with probabil-
ity p and log2(1− p) with probability 1− p. (Since p < 1

2 , these
values are distinct.)

(b) The random variable log2 P[S1S2S3] takes distinct values

log2(1− p)3, log2 p(1− p)2, log2(1− p)p2, log2 p3

with probabilities (1− p)3, 3p(1− p)2, 3p(1− p)p2, p3, respectively.
Exercise: What is its expectation?

The next exercise generalizes Example 11.3.

Exercise 11.4. Let S1, S2, . . . be a memoryless source and let h = H(S1) =
H(S2) =

(a) Express E
[
log2 P[S1]

]
in terms of h.

(b) What is E
[
log2 P[S1 . . . Sn]

]
in terms of h?

Lemma 11.5. Let S1, S2, . . . be the output of a memoryless source producing
symbols in an alphabet S . Let h = H(S1) be the per-symbol entropy. Given
ε > 0, there exists r ∈N and a subset T (r) of Ar such that

(i) P[S1 . . . Sr ∈ T (r)] > 1− ε;
(ii) 2−r(h+ε) ≤ P[s1 . . . sr] ≤ 2−r(h−ε) for all words s1 . . . sr ∈ T (n).

Since each word s1 . . . sr in the ‘typical set’ T (r) ⊆ S r from Lemma 11.5
has probability at least 2−r(h+ε), there are at most 2r(h+ε) such words.
Therefore we can encode them by an injective encoder using dr(h + ε)e
bits. (We need the ceiling only to make sure this is an integer.)

This is almost exactly what the asymptotic version of Shannon’s Source
Coding Theorem, Theorem 4.7(i), requires! You are asked to prove it us-
ing Lemma 11.5 on Problem Sheet 8.

12. THE ASYMPTOTIC EQUIPARTITION PROPERTY

In this section we take the conclusion of Lemma 11.5 as our main defi-
nition.

49

Definition 12.1. Let S1, S2, . . . be the symbols in an alphabet S output by
a source. We say the source satisfies the Asymptotic Equipartition Property
(AEP) if there exists h ≥ 0 such that for all ε > 0 there exists r ∈ N and a
subset T (r) of Ar such that

(i) P[S1 . . . Sr ∈ T (r)] > 1− ε;
(ii) 2−r(h+ε) ≤ P[S1 . . . Sr = s1 . . . sr] ≤ 2−r(h−ε) for all s1 . . . sr ∈ T (n).

By Lemma 11.5, a memoryless source S1, S2, . . . satisfies the AEP, with
h = H(S1). In the remainder of this section we prove some corollaries of
this result.

Shannon’s Source Coding Theorem and the AEP. As a warm up, we prove
a special case of the constructive part of Shannon’s Source Coding The-
orem, Theorem 4.7(i). See Problem Sheet 8 for the general version: this
special case should be helpful.

Example 12.2. Let S1, S2, . . . be a memoryless source emitting the bits 0
and 1 each with probability 1− p and p. Let

h = H(p, 1− p) = −p log2 p− (1− p) log2(1− p).

Then H(S1) = H(S2) = . . . = h. Fix ε > 0, to be chosen by the end of the
proof. By the AEP, there exists a subset T of {0, 1}n such that

P[S1 . . . Sr ∈ T] > 1− ε

and

2−n(h+ε) ≤ P[S1 . . . Sr = s1 . . . sr] ≤ 2−n(h−ε)

for all s1 . . . sr ∈ T . By the lower bound above,

∑
s1...sr∈T

P[S1 . . . Sr = s1 . . . sr] ≥ |T |2−n(h+ε).

Therefore |T | ≤ 2r(h+ε). We can therefore encode all the typical words
from the source using the binary words of a fixed length ≥ r(h + ε).

To turn this idea into a well-defined injective encoder f (r), let m =
1 + dr(h + ε)e and let u(0), . . . , u(M − 1) be a list of all the words in T .
Note that M ≤ 2m−1, and so the binary form of each j < M has at most
m− 1 bits. We define f (r) as follows:

• if s1 . . . sr ∈ T , with s1 . . . sr = u(j), then

f (r)(s1 . . . sr) = 1j0 . . . jm−2 ∈ {0, 1}m

where j0 . . . jm−2 is the (m− 1)-bit binary form of j.
• if s1 . . . sr 6∈ T , then

f (r)(s1 . . . sr) = 0s1 . . . sr ∈ {0, 1}r+1.

50

Exercise: check that the code C = { f (r)(s1 . . . sr) : s1 . . . sr ∈ {0, 1}r} is
prefix-free.

The length of the codeword f (r)(s1 . . . sr) depends only on whether or
not s1 . . . sr is typical. We have

f
(r)

= P[S1 . . . Sr ∈ T]m + P[S1 . . . Sr 6∈ T](r + 1)

≤ m + ε(r + 1)

≤ 2 + r(h + ε) + ε(r + 1)

and so
f
(r)

r
= h + 2ε +

2 + ε

r
.

By choosing r sufficiently large and ε sufficiently small, we may make the
right-hand side arbitrarily close to h, as required.

Shannon’s Noisy Coding Theorem for the BSC(p) and the AEP. We now use
the AEP to prove the constructive part of Shannon’s Noisy Coding Theo-
rem, Theorem 7.14(a), in the special case of the Binary Symmetric Chan-
nel with error probability p. The proof is quite demanding, so may be
consider non-examinable.

Recall that the input and output alphabets are {0, 1} and that each sent
bit flips, independently, with probability p, as shown by the diagram in
the margin.

0 0

1 1

p

p

1−p

1−p

Let h = H(p, 1− p). By Example 7.13(a), the capacity of the BSC(p) is
1− h. Let r < c be given and, as in the proof for the toy version of the
channel seen in §9, let M = 2d2rne, where n will be chosen by the end
of the proof. As in the proof for the toy version, we choose a code C =
{U(1), . . . , U(M)} ⊆ {0, 1}n by picking each codeword independently
and uniformly at random from {0, 1}n.

Let X ∈ {0, 1}n denote the sent codeword and Y ∈ {0, 1}n denote the
received word. The main idea is to apply the AEP to find the typical set
for the random variable (X, Y). For this we need to know its entropy.

Lemma 12.3. Let X ∈ {0, 1}n be distributed uniformly and let Y ∈ {0, 1}n

be the received word when X is sent through the BSC(p). The pairs (Xi, Yi) are
independent random variables and H(X1, Y1) = . . . = H(Xn, Yn) = 1 + h.

Proof. By the Chaining Rule (Lemma 7.6) we have H(Xi, Yi) = H(Yi|Xi)+
H(Xi). Since Xi is equally likely to be 0 and 1, and Yi = Xi with proba-
bility 1− p, this is H(p, 1− p) + H(1

2 , 1
2) = h + 1, as required. �

Thus (X1, Y1), (X2, Y2), . . . is the sequence of symbols in {(0, 0), (0, 1),
(1, 0), (1, 1)} emitted by a memoryless source of entropy 1 + h. By the

51

AEP, given ε > 0, provided n is sufficiently large, there is a subset T of
{0, 1}2n such that if X and Y are as in the lemma, then

P[(X, Y) ∈ T] > 1− ε

and
2−n(1+h+ε) ≤ P[X = u, Y = v] ≤ 2−n(1+h−ε)

for all (u, v) ∈ T . We use T to define the following decoding rule:

• Suppose that v ∈ {0, 1}n is received. If there exists a unique i
such that (U(i), v) ∈ T then decode v as U(i). Otherwise decode
as U(1).

Since T is a typical set, we expect that most of the time when we send
U(i), we receive a v such that (U(i), v) ∈ T . Therefore decoding should
succeed most of the time. To make this idea precise, we need two further
properties of T .

(a) Since 2−n(1+h+ε) ≤ P[X = u, Y = v] for all (u, v) ∈ T , the same
argument as Example 12.2 shows that |T | ≤ 2n(1+h+ε).

(b) Suppose that X̃ and Ỹ are independently and uniformly distributed
on {0, 1}n, so P[X̃ = u, Ỹ = v] = 1

2n × 1
2n = 1

22n for all (u, v) ∈ Fn
2 .

Hence, by (a),

P[(X̃, Ỹ) ∈ T] = ∑
(u,v)∈T

P[X̃ = u, Ỹ = v]

≤ 2−2n2n(1+h+ε) = 2−n(1−h−ε).

Let pi be the probability that when U(i) is sent it is incorrectly de-
coded. Note this depends on both the choice of code and the behaviour
of the channel. (Unlike the §9 proof, it is not possible to separate the
two probability models entirely, and I should have written pi the lec-
ture, not Pi, which looks like a random variable.) We decode incorrectly
only if (U(i), Y) 6∈ T , or there is some other codeword U(j) such that
(u(j), Y) ∈ T . Therefore

pi ≤ P[(U(i), Y) 6∈ T] + ∑
j 6=i

P[(U(j), Y) ∈ T].

Since U(i) is distributed uniformly at random, it is the same random vari-
able as the X used in the AEP and so

P[(U(i), Y) 6∈ T] = P[(X, Y) 6∈ T] < ε.

For the second summand note that Y is independent of U(j), and that,
since U(i) is distributed uniformly on {0, 1}n, so is Y. (This is the BSC(p)-
version of Question 1 on Sheet 7.) Therefore (X, Y) is the same random
variable as the (X̃, Ỹ) in (b) above, and so

P[(U(j), Y) ∈ T] ≤ 2−n(1−h−ε)

52

for each j 6= i. Since M = 2d2rne ≤ 2
(
2rn + 1) = 2rn+1 + 2 ≤ 2rn+2,

pi < ε + (M− 1)2−n(1−h−ε)

< ε + 2rn+2−n(1−h−ε)

= ε + 2−n(1−h−r−ε)+2.

By choosing n sufficiently large, we have pi < 2ε. Since the codewords
U(1), . . . , U(M) all have the same uniform distribution, pi does not de-
pend on i, and is equal to the mean error probability p = (p1 + · · · +
pM)/M.

The remainder of the proof is as in the proof of Proposition 9.5: there
is a particular code C? of size M such that p < 2ε. Choosing the best half
of the codewords then gives a code of size M/2 = d2rne for which all the
error probabilities are at most 2ε. Apart from the (unimportant) 2ε rather
than ε, this is as required by Theorem 7.14(a).

Source coding with errors permitted. A memoryless source S1, S2, . . . emits
the bits 0 and 1 each with equal probability 1

2 . Thus

P[S1S2S3 = 000] = P[S1S2S3 = 001] = . . . = P[S1S2S3 = 111] = 1
8 .

The per-symbol entropy is H(1
2 , 1

2) = 1, so Shannon’s Noiseless Coding
Theorem (Theorem 4.7(b)) says that the average length of any injective
encoder for words of length r is at least r.

In the remainder of this section we allow non-injective encoders. These
lose information about the source; correspondingly, the source can be
compressed beyond the bound in Shannon’s Noiseless Coding Theorem.

In the proof of Proposition 12.5 outlined below, we need the inequality
1− t ≤ e−t and so (1− 1

M)M ≤ e−1. In fact, when M is large, the two
sides are very close.

Example 12.4. A lottery sells tickets numbered from {1, . . . , T}. On the
day of the draw, a random number is generated in this set: everyone
whose ticket matches wins a prize. Let pM be the probability that no-
one wins when M people buy tickets. Then pM ≤ e−M/T. Moreover,
pαT → e−α as T → ∞ for any α > 0.

Proposition 12.5. Let D < 1
2 be given and let h = H(D, 1−D). Let ε > 0 be

given. Provided n is sufficiently large, there is a binary code C ⊆ {0, 1}n of size
d2n(1−h)e and an encoder f : {0, 1}n → C such that

P
[
d(f (S1 . . . Sn), S1 . . . Sn) ≥ (D + ε)] ≤ ε.

Above d denotes Hamming distance. Thus it is very likely that the
codeword f (S1 . . . Sn) chosen to encode S1 . . . Sn differs from S1 . . . Sn in
at most (D+ ε)n bits. Allowing a probability D of error on each bit allows
us to compress n bits into n(1− h) bits.

53

The result is included in this section because it can be proved using the
AEP: see §10.5 of Cover and Thomas, Elements of information theory, [2]
in the recommended reading. For interest only, a less technical proof is
outlined below.

Outline proof. Let h = H(D). Choose M = d2(1−h)ne [correction: was
right in lecture] codewords U(1), . . . , U(M) uniformly at random from
{0, 1}n. Let x ∈ {0, 1}n. We try to encode x by a nearby codeword.

Define η by h + η = H(D + ε), so η > 0. By Lemma 9.1, the Hamming
ball B(D+ε)n(x) of radius (D + ε)n about x has at least 2(h+η)n/(n + 1)
elements. Therefore the probability that a particular codeword U(i) is
within distance (D + ε)n [p should be D] of x is at least

2(h+η)n/2n(n + 1).

The probability that no codeword is within distance (D + ε)n of x is
therefore (

1− 1
2(1−h−η)n(n + 1)

)M.

Using the notation from the lottery, this probability is at most e−M/T

where T = 2(1−h−η)n(n + 1). Since M ≥ 2(1−h)n, we have

M
T
≥ 2(1−h)n

2(1−h−η)n(n + 1)
=

2ηn

n + 1
→ ∞ as n→ ∞

and so e−M/T → 0 as n→ ∞.
Therefore, provided n is sufficiently large, our random code is very

likely to have at least one codeword that can be used to encode x with at
most (D + ε)n bits in error. An expectation argument, of the kind seen
in §9, then shows that there is a particular code C satisfying the required
conditions. �

Example 12.6. A source emits 120 bits per second, each equally likely to
be 0 and 1. If a noiseless channel can only send 80 bits per second then we
must compress by a factor of 2

3 . By Proposition 12.5, the least possible bit
error probability D, must satisfy 1− H(D, 1− D) = 2

3 , or equivalently,
H(D, 1− D) = 1

3 . Solving numerically we find that D ≈ 0.0615. So this
compression is theoretically possible provided a bit error probability of
about 6.1% is acceptable. Each second 80 bits are sent and decoded to 120
bits; of these about 6.1% or 7.32 bits are likely to be wrong.

Compare this with the very naive encoder that simply forgets the final
40 bits each second. There is nothing better than to guess each forgotten
bit. For each forgotten bit, there is a 1

2 chance that the decoder makes the
correct choice. So the bit error probability is (80× 0 + 40× 1

2)/120 = 1
6 ,

or about 16.7%. Of every 120 bits, about 20 are wrong.

54

13. GENERAL SOURCES AND LEMPEL–ZIV ENCODING

General sources. So far we have only considered memoryless sources. We
end by briefly considering general sources.

Definition 13.1. The entropy of a source S1, S2 . . . is

lim
r→∞

H(S1, . . . , Sr)

r
when this limit exists.

Example 13.2.

(1) The memoryless binary source in Exercise 11.1 which emits 0 with
probability 1− p and 1 with probability p has entropy H(p, 1− p).

(2) Consider the binary source for which P[S1 = 0] = P[S1 = 1] = 1
2

and St = S1 for all t ∈ N. Thus the source emits either 000 . . . or
111 . . . with equal probability. Its entropy is 0.

(3) Consider the binary source which starts by flipping a coin biased
to lands heads with probability p. If the coin lands heads, it emits
111 Otherwise it behaves as the source in (1). You are asked
to show on Problem Sheet 9 that the entropy of this source is (1−
p)H(p, 1− p), and that it is not memoryless.

The following lemma generalizes (1) above. A proof is outlined on
Problem Sheet 9.

Lemma 13.3. The entropy of a memoryless source S1, S2, . . . exists and is H(S1).

Definition 13.4. Let S1, S2, . . . be a source emitting symbols in an alpha-
bet A. The source is stationary if for all α1, . . . , α` ∈ A and distinct times
t1, . . . , t` we have

P[St1 = α1, . . . , St` = α`] = P[St1+r = α1, . . . , St`+r = α`]

for all r ∈N0.

For example, memoryless sources (see Definition 3.1) are stationary
since the symbols are independent and identically distributed. Thus there
is a probability measure p such that P[St = α] = pα for all α ∈ A and all
t ∈N and so the probabilities on either side are both pα1 . . . pα` .

The sources in Example 13.2(2) and (3) are also stationary. Example 13.7
gives a source that may not be stationary.

Definition 13.5. Fix a source S1, S2, . . . emitting symbols in an alphabetA.

(i) The frequency of a word α1 . . . α`, in the first r symbols, denoted
Fα1...α`(r) is the number of times t ∈ {1, . . . , r − ` + 1} such that
St = α1, . . . , St+`−1 = α`.

55

(ii) The source is ergodic if for all words α1 . . . α`,

lim
r→∞

Fα1...α`(r)
r

= P[S1 = α1, . . . , S` = α`].

Note that in the left-hand side of (ii), Fα1...α`(r) is a random variable.
The requirement is that, with probability 1, the limit exists and has the
claimed value.

This is a stronger notion of convergence than the Weak Law of Large
Numbers. Roughly put, ergodic sources are those for the long-term ‘time’
average (left-hand side) is certain to agree with the ‘space’ average (right-
hand side).

The Strong Law of Large Numbers is equivalent to the statement that
memoryless sources are ergodic. In particular, the source in Example 13.2(1)
is ergodic.

Example 13.6. The source in Example 13.2(2) is not ergodic. The fre-
quency F1(r) of the word 1 in the first r bits S1 . . . Sr is either r or 0, with
equal probability. Therefore

F1(r)
r

=

{
1 with probability 1

2

0 with probability 1
2 .

Hence the random variable limr→∞ F1(r)/r is equally likely to be 0 and
1. But the right-hand side in Definition 13.5(ii) is P[S1 = 1] = 1

2 which is
constant.

Example 13.7. A source S1, S2, . . . has alphabet {0, 1}. If St = 0 then
St+1 = 0 with probability 3

4 and otherwise 1; if St = 1 then St+1 is equally
likely to be 0 and 1. These ‘transition probabilities’ can be recorded in a
matrix

T =

(
3
4

1
4

1
2

1
2

)
.

By diagonalizing T one finds that

Tt = 1
3

(
2 + 1

4s 1− 1
4s

2− 2
4s 1 + 2

4s

)
→
(

2
3

1
3

2
3

1
3

)
as t→ ∞.

For instance, labelling rows and columns by {0, 1}, the top-left entry Tt−1
00

is the probability that St = 0, given that S1 = 0. By the limit above, when
t is large, the source emits 0 about 2

3 of the time.

You are asked to show on Problem Sheet 9 that, if the first symbol is 0
with probability 2

3 (as in the limiting case) then the source is stationary.
This is a special case of a general result about Markov sources with a
unique stationary distribution.

56

Let ht be the entropy of the first t bits emitted by the source. By the
Chaining Rule (Lemma 7.6)

ht = H(S1, . . . , St−1, St) = H(S1, . . . , St−1) + H(St|S1, . . . , St−1).

Since St depends on S1, . . . , St−1 only through St−1, this equation implies
that ht = ht−1 + H(St|St−1). We know that when t is large, St−1 has,
very nearly, the probability distribution (2

3 , 1
3). Therefore, by the usual

formula for conditional entropy

H(St|St−1) ≈ 2
3 H(St|St−1 = 0) + 1

3 H(St|St−1 = 1)

= 2
3 H(3

4 , 1
4) +

1
3 H(1

2 , 1
2)

= 4
3 − 1

2 log2 3 + 1
3

= 5
3 − 1

2 log2 3

and so ht ≈ ht−1 + (5
3 − 1

3 log2 3) when t is large. It follows that the
entropy of the source is

lim
t→

ht

t
= 5

3 − 1
2 log2 3 ≈ 0.874.

This should be compared with the entropy of the memoryless source
with the same stationary distribution, namely H(2

3 , 1
3) ≈ 0.918.

More generally, the output of an irreducible aperiodic Markov chain is
stationary and ergodic, and so has a well-defined entropy.

Theorem 13.8. A stationary ergodic source satisfies the Asymptotic Equipar-
tition Property, as stated in Definition 12.1, taking h to be the entropy of the
source.

The proof of this theorem is beyond the scope of the course. You were
asked to show in Question 2 on Sheet 8 that the AEP for memoryless
sources implies Shannon’s Noiseless Coding Theorem: it is routine to
generalize this proof using Theorem 13.8 to prove Shannon’s Noiseless
Coding Theorem for a general stationary ergodic source.

Lempel–Ziv encoding. We end by seeing one practical way to encode a
long binary word. Define a dictionary to be a function from binary words
to N0. The words in the dictionary are the domain of the function and
its values are its range. For instance ∅ 7→ 0, 1011 7→ 2, 000 7→ 3 is a
dictionary with three words.

In Lempel–Ziv encoding we build a dictionary that efficiently repre-
sents the given binary word, and then encode the dictionary. We give an
example and then specify the algorithm formally.

Example 13.9. Take

x = 10110 10100 010 = x1x2 . . . x13.

57

We initialize the dictionary with the empty word ∅, to which we assign
0 ∈ N0, so ∅ 7→ 0. (As a notational aid, values are written in red.) We
then read the word from position 1.

At Step s, reading the word from position t, we take the longest subword
xt . . . xt+`−1 that is in the dictionary. (This could be the empty word when
` = 0.) We then extend the dictionary by

xt . . . xt+`−1xt+` 7→ s.

At the next step we continue from position t+ `+ 1. Doing this we split x
as x = 1 0 11 01 010 00 10. The table below shows the longest subword in
the dictionary and the word used to extend the dictionary for each step.

s From Subword New word

1 1 ∅ 1 7→ 1
2 2 ∅ 0 7→ 2
3 3 1 11 7→ 3
4 5 0 01 7→ 4
5 7 01 010 7→ 5
6 10 0 00 7→ 6
7 12 1 10 7→ 7

The final dictionary determines the word: just concatenate its elements
in value order. To represent the dictionary efficiently, note that each new
word is obtained by appending a bit to a word already in the dictionary.
For example at Step 5, 010 was obtained by appending 0 to 01, which had
value 4. We may therefore replace 010 with (4, 0). We then encode 4 in
binary, as 100. In general, at Step s we append to a word with value in
{0, 1, . . . , s− 1}, so we need dlog2 se bits to distinguish all the values.

s New Word (Value, New Bit) dlog2 se (Binary Value, New Bit) Encoding

1 1 7→ 1 (0, 1) 0 (∅, 1) 1

2 0 7→ 2 (0, 0) 1 (0, 0) 00

3 11 7→ 3 (1, 1) 2 (01, 1) 011
4 01 7→ 4 (2, 1) 2 (10, 1) 101

5 010 7→ 5 (4, 0) 3 (100, 0) 1000
6 00 7→ 6 (2, 0) 3 (010, 0) 0100
7 10 7→ 7 (1, 0) 3 (001, 0) 0010

The final encoding is therefore 100011101100001000010, or

100011101100001000010

as it should be written using just the uncoloured binary alphabet. Note
that without the colour coding, the convention that dlog2 se bits are used
for the value at step s is essential to decode unambiguously. [Corrected
2 April 2020: the binary encoding for the final step was wrong in the
final bit (which I then omitted to put in the final encoding).]

58

Algorithm 13.10 (Lempel–Ziv). The input is a word x1 . . . xr and the out-
put is a binary word.
Initialize the dictionary: define ∅ 7→ 0 and set t = 1. Go to Step 1.
Step s: if t > r then terminate.

• Read the word from position t. Choose ` maximal such that the
dictionary contains xt . . . xt+`−1: suppose that xt . . . xt+`−1 7→ v.
• Append the binary form of v of length dlog2 se to the output word.
• If t + `− 1 = r then terminate. Otherwise append xt+` and add

xt . . . xt+` 7→ s to the dictionary. Go to Step s + 1.

The only extra feature, not seen in Example 13.9 is that if x ends with a
subword in the dictionary, we do not need to extend the dictionary, and
can simply output the binary form of the value of the subword.

All this can be done using the MATHEMATICA notebook LempelZiv.nb

on Moodle. The second column in the second table above is the dictio-
nary output by LempelZivWithDictionary; the third and fifth columns
can be calculated using LempelZivPairs, and LempelZivBinaryPairs. To
get just the output of the Lempel–Ziv algorithm, use LempelZiv.

In any example you are likely to have the patience to do by hand, the
Lempel–Ziv encoding will almost certainly be longer than the original
word.

Example 13.11. Consider the word w(s) of length 2s formed by repeating
01. For example,

w(10) = 0101010101 0101010101

shown split into two blocks of size 10 for readability. Let `s be the length
of the Lempel–Ziv encoding w(s). Even for this highly regular word, it is
not until s = 28, so length 56, that the Lempel–Ziv encoding is shorter.
The table below, found using the functions in the MATHEMATICA note-
book LempelZiv.nb, shows the ratio `s/2s.

s 1 2 5 10 20 27 28 29 30 40 50 60 120

`s/2s 1.5 1.5 1.6 1.2 1.1 1 0.982 1.017 0.983 0.875 0.830 0.783 0.621

For a worked example of decoding, see Problem Sheet 9.
The Lempel–Ziv Algorithm was published in 1977. Later in 1991 it

was proved that, for suitable sources, the algorithm achieves the bound
in Shannon’s Noiseless Coding Theorem, and so is optimal. Very, very
roughly, one might expect this to be true because, by the AEP, a source
of entropy h has a set of about 2hr typical messages of length r, all of
which enter the Lempel–Ziv dictionary; at this point in the algorithm the
dictionary also has size about 2hr, so d2hre + 1 ≈ hr + 1 bits are output
for each subword of length r emitted by the source.

