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Administration:

I Sign-in sheet. Please return to the lecturer after each
lecture.

I Make sure you get the printed notes for the introduction at
the end of this lecture (remind me if I forget).

I Please take a clicker and use it!

I All handouts will be put on Moodle. The first marked problem
sheet will be on Moodle by Wednesday.

I Lectures: Monday 2pm–4pm (McCrea 0-04), Thursday 9am
(BLT2)

I Drop-in times in McCrea LGF025: Tuesday 3.30pm,
Wednesday 11am, Thursday 11.30am.



§1 Introduction

Example 1.1

A friend has chosen a number x between 0 and 15. How many
‘Yes’/‘No’ questions do you need to find x?

(A) ≤ 3 (B) 4 (C) 5 (D) > 5

Exercise 1.2
Is there a questioning strategy that can guarantee to use three or
fewer questions?

(A) No (B) Yes

Can you prove that your answer is correct?
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Binary number s
One simple strategy uses binary. If

x = 2m−1xm−1 + · · ·+ 2x1 + x0.

then we say that x is xm−1 . . . x1x0 in binary, and write, for
example, 13 = 01101 = 1101 = . . .. (You can write 11012 if you
want to emphasise the base 2 of binary.) The binary digits 0 and 1
are called bits.

x binary form x binary form

0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111



Binary Questioning Strategy

I The binary form of 0, 1, . . . , 15 gives an easy four question
strategy: just ask one question about each bit of your friend’s
number in turn.

I It also solves Exercise 1.2: there is no way to learn four bits by
asking three questions!
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4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Q1
Is x0 = 1?

YES

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111



4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Q1
Is x0 = 1?

YES

Q2
Is x1 = 1?

YES

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111



4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Q1
Is x0 = 1?

YES

Q2
Is x1 = 1?

YES

Q3
Is x2 = 1?

NO

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111



4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Q1
Is x0 = 1?

YES

Q2
Is x1 = 1?

YES

Q3
Is x2 = 1?

NO

Q4
Is x3 = 1?

NO

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111



4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
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Exercise on Binary

Exercise 1.3
Say that x ∈ N0 has length m in binary if its binary form is
xm−1 . . . x1x0 with xm−1 = 1. For instance 35 = 1000112 has
length 6.

(a) Which numbers x have length at most m?

(b) How many questions would you need if the game in
Example 1.1 was changed so that x ∈ {0, 1, 2, . . . , 99}?

(A) 6 (B) 7 (C) 8 (D) can’t be sure

(c) Which numbers x have length exactly m?
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Random Messages

We will see in this course that the bit is the fundamental unit of
information. To make this rigorous we need to bring in ideas of
randomness. For example, a number in {0, 1, 2, . . . , 15}, chosen
uniformly at random, has exactly 4 bits of information.

Exercise 1.4
Suppose that your friend’s number is 0 with probability 1

2 , and
each of 1, . . . , 15 with equal probability 1

30 . Suggest a good
questioning strategy. How many questions does it use on average?
What is the corresponding encoder?

The encoder defined by 0 7→ 1, 1 7→ 0000, 2 7→ 00010, 3 7→ 00011,
. . . , 14 7→ 01110, 15 7→ 01111 has the shortest possible expected
length of codewords for the probability distribution 1

2 ,
1

30 , . . . ,
1

30 .
We will prove this in Part A, as a corollary of the optimality of
Huffman codes.
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Example 1.5

The expected length for the encoder 0 7→ 1, 1 7→ 0000,
2 7→ 00010, 3 7→ 00011, . . . , 14 7→ 01110, 15 7→ 01111 is

1

2
× 1 +

1

30
× 4 +

14

30
× 5 =

15 + 4 + 70

30
=

89

30
= 3− 1

30
.

Does this contradict Exercise 1.2?

(A) No (B) Yes

Exercise 1.6
Suppose that multiple numbers are encoded using this encoder by
concatenating the codewords. You receive

10111 10000 11101 10111.

Quiz: the sent number are 0, 15, 1, 0, 0, 0, 13, 0, 0
(A) False (B) True

Why can you be sure?

Exercise 1.7
Suppose that messages A, T , G , C have probabilities 1

8 ,
1
8 ,

1
4 ,

1
2 .

Suggest an efficient binary code u(A), u(T ), u(G ), u(C ).
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Noisy Channel Coding

Suppose that Alice wants to send Bob a single ‘Yes/No’ message.
She can only communicate by sending Bob the bits 0 and 1
through the binary symmetric channel with cross-over probability
p, or BSC(p), that flips each bit with probability p.

0 0

1 1
p

p

1−p

1−p

Exercise 1.8
Why may we, and Alice and Bob, assume that p < 1

2 ?

If Alice encodes her ‘Yes’/‘No’ message by a single bit, then with
probability p, Bob will not receive the intended message.



Repetition Codes

Instead Alice and Bob decide to pad out the single bit with some
redundant bits using the binary repetition code of length 3, with
codewords 000 and 111. The agreed encoder is ‘No’ 7→ 000 and
‘Yes’ 7→ 111. Bob decodes by assuming that the majority bit in a
received word is correct. So
I 000, 001, 010, 100 are decoded as 000 meaning ‘No’;
I 111, 110, 101, 011 are decoded as 111 meaning ‘Yes’.

000

100 001

101

010

110 011

111



Probability Calculations
Let X be Alice’s sent codeword. Let Y be Bob’s received word.

P[Y = 000|X = 000] = (1− p)3

P[Y = 110|X = 000] = p2(1− p).

Informally P[A|B] is ‘the probability of event A, given that event B
has occurred’.

Exercise 1.9
Find P[Y = 111|X = 000]. What is

P[Y ∈ {111, 110, 101, 011}|X = 000]?

(A) 3p2(1− p) (B) 3p2 − 2p3 (C) 3p2 − p3 (D) can’t say

The second probability is P[Bob decodes as 111|Alice sends 000].

(a) Why is this equal to P[Bob decodes wrongly]?

(b) Is this an improvement on Alice sending a single bit 0 or 1 to
Bob?

(c) How does this probability change if instead Alice and Bob use
the binary repetition code of length 5?
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ISG Research Seminar

“We’re All Happily Married Here!”: Intimate Partner Violence as a
Cybersecurity Issue

I Thu, 03 Oct 2019 11:00

I Shilling 0-04

I Julia Slupska (University of Oxford)

All welcome, M.Sc. students are particularly encouraged to attend.
Thursday at 11am is the regular time.

Administration

I Please take Problem Sheet 1

I Please take Part A printed notes pages 11 to 14

I Please take a clicker and use it



Channel Coding

The aim of channel coding is to minimize the (general version) of
P[Bob decodes wrongly]. In the Alice and Bob example with the
‘Yes’/‘No’ message there are only two codewords, and repetition
codes are optimal. In Part B we shall see the much richer theory
when there are many messages and codewords.



The bigger picture
The diagram below shows how source coding and channel coding
combine. Source coding removes redundancy. For example in
Exercise 1.7 you replaced 8 bit ASCII with a much shorter code.
Channel coding adds redundancy, in a controlled way to minimize
the probability of a decoding error. Repetition codes are the
simplest example.

- - -

?

���

source

coding

channel

coding

Alice’s
message

compress
encode/

pad

Bob’s decode
of Alice’s
message

decompress decode

noise
in channel



Source and Channel Combined

Exercise 1.10
In Exercise 1.7 you solved the source coding problem for the
messages A, T , G , C with probabilities 1

8 ,
1
8 ,

1
4 ,

1
2 .

(a) Using the binary repetition code of length 3 as the channel
code, what would you send through the BSC to communicate
CCTGC?

(b) Give an example of a received binary word and how it is
decoded.

(c) How is redundancy removed and added in this process?



Source and Channel Combined

I Mathematica demonstration using ImageNoise.nb to send
black and white pictures through the BSC using repetition
code.

I All Mathematica notebooks will be put on Moodle.



Probability Revision

Definition 1.11

• A probability measure p on a finite set Ω assigns a real
number pω to each ω ∈ Ω so that 0 ≤ pω ≤ 1 for each ω and

∑

ω∈Ω

pω = 1.

We say that pω is the probability of ω.

• A probability space is a finite set Ω equipped with a
probability measure. The elements of Ω are called outcomes.

• An event is a subset of Ω.

• The probability of an event A ⊆ Ω, denoted P[A], is the sum
of the probability of the outcomes in A; that is

P[A] =
∑

ω∈A
pω.



Dice Example

Example 1.12

(1) To model a throw of a single unbiased die, we take

Ω = {1, 2, 3, 4, 5, 6}

and put pω = 1
6 for each outcome ω ∈ Ω. The event that we

throw an even number is A = {2, 4, 6} and as expected,
P[A] = p2 + p4 + p6 = 1

6 + 1
6 + 1

6 = 1
2 .

(2) To model a throw of a pair of dice we could take

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}

and give each element of Ω probability 1
36 . Alternatively, if we

know we only care about the sum of the two dice, we could
take Ω = {2, 3, . . . , 12} with p2 = 1/36, p3 = 2/36, . . . ,
p6 = 5/36, p7 = 6/36, p8 = 5/36, . . . , p12 = 1/36. The
former is natural and more flexible.



Conditional Probability

Definition 1.13
Let Ω be a probability space, and let A, B ⊆ Ω be events. If
P[B] 6= 0 then we define the conditional probability of A given B by

P[A|B] =
P[A ∩ B]

P[B]
.

The events A, B are independent if P[A ∩ B] = P[A]P[B].

Suppose that each element of Ω has equal probability p. Then

P[A|B] =
|A ∩ B|p
|B|p =

|A ∩ B|
|B|

is the proportion of elements of B that also lie in A. This agrees
with the intuitive idea that P[A|B] is the probability that, given B
has occurred, then A has also occurred.

Exercise 1.14
Let A and B be events in a probability space such that P[B] 6= 0.
Show that P[A|B] = P[A] if and only if A and B are independent.



Conditional Probability is Subtle

Exercise 1.15
Let Ω = {HH,HT ,TH,TT} be the probability space for two flips
of a fair coin, so each outcome has probability 1

4 . Let A be the
event that both flips are heads, and let B be the event that at
least one flip is a head. Write A and B as subsets of Ω.

Quiz: What is P[A|B]?

(A) 1/3 (B) 1/2 (C) 2/3 (D) need more information

Example 1.16 (The Monty Hall Problem)

On a game show you are offered the choice of three doors. Behind
one door is a car, and behind the other two are goats. You pick a
door and then the host, who knows where the car is, opens another
door to reveal a goat. You may then either open your original
door, or change to the remaining unopened door. Assuming you
want the car, should you change?

(A) No (B) Yes
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Random Variables and Expectation

Definition 1.17
Let Ω be a probability space. A random variable on Ω is a function
X : Ω→ R, for some set R.

Often R will be the set R of real numbers. But it will be useful in
this course to allow other sets: for instance in Exercise 1.9, X and
Y took values in {000, 001, 010, 100, 011, 101, 110, 111}.
Definition 1.18
Let Ω be a probability space with probability measure p. The
expectation E[X ] of a random variable X : Ω→ R is defined to be

E[X ] =
∑

ω∈Ω

X (ω)pw .

Intuitively, the expectation of X is the average value of X on
elements of Ω, if we choose ω ∈ Ω with probability pω. We have

E[X ] =
∑

ω∈Ω

X (ω)pω =
∑

x∈R

∑
ω

X (ω)=x

xpω =
∑

x∈R
xP[X = x ].



Linearity of Expectation

A critical property of expectation is that it is linear. Note that we
do not assume any independence in this lemma. The proof is left
as an exercise.

Lemma 1.19 (Linearity of expectation)

Let Ω be a probability space. If X1,X2, . . . ,Xk : Ω→ R are
random variables then

E[a1X1 + a2X2 + · · ·+ akXk ] = a1E[X1] + a2E[X2] + · · ·+ akE[Xk ]

for any a1, a2, . . . , ak ∈ R.
Quiz: What is the expectation of a single die?

(A) 3 (B) 3 1
2 (C) 4 (D) depends on the roll

Four dice are rolled. What is the expectation of their sum?

(A) 12 (B) 13 (C) 14 (D) 15
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Variance and Chebyshev’s Inequality

Definition 1.20
Let Ω be a probability space. The variance Var[X ] of a random
variable X : Ω→ R is defined to be

Var[X ] = E
[
(X − E[X ])2

]
.

The variance measures how much X can be expected to depart
from its mean value E[X ]. So it is a measure of the ‘spread’ of X .
This is made precise by Chebyshev’s inequality.

Lemma 1.21
If X is a random variable and a > 0 then

P
[
|X − EX | ≥ a

]
≤ Var[X ]

a2
.

We shall use Chebyshev’s inequality later in the course. A proof is
outlined on the first problem sheet.



Reliable communication
In Exercise 1.9 we saw that

P[Bob decodes as 111|Alice sent 000] ≈ 0.028

and this equals P[Bob decodes wrongly]. By using a longer
repetition code this probability can be made arbitrarily small.

Exercise 1.23
Suppose that Alice’s message is ‘No’ with probability 1

100 and ‘Yes’
with probability 99

100 and that the cross-over probability in the BSC
is 1

10 . Taking p = 1
10 in Question 5 on Problem Sheet 1 you should

find:

P[Bob decodes as ‘No’|Alice’s message is ‘No’] = 0.972

P[Alice’s message is ‘No’|Bob decodes as ‘No’] ≈ 0.260

Bob receives 001. Should he believe that Alice’s message is ‘No’?

(A) No he shouldn’t (B) Yes he should

See the handout and Question 7 (optional) on Problem Sheet 1 for
an analogy with medical testing.
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§2 Prefix-free Binary Codes and Kraft’s Inequality

Question. What properties should a binary code have so that
we can decode it easily? How do these restrict its codewords?

Recall that if A is a set then A` is the set of all `-tuples of
elements of A. For example R3 = {(x , y , z) : x , y , z ∈ R} is
3-dimensional space.

In this course we number positions in tuples from 1 as usual, so z
is the 3rd coordinate in (x , y , z).

Quiz: One of these statements is false. Which one?

(A) {1, 2, 3, 3} is a set of size 3 and it’s equal to {1, 2, 3}.
(B) (1, 1, 1, 1) ∈ {0, 1}4 is a binary form of 8 + 4 + 2 + 1 = 15 and

is the largest number with a binary form using 4 bits.

(C) (1, 2, 3, 3) = (1, 3, 2, 3),

(D) If u = (0, 1, 2, . . . , 25) then ui = i − 1 for i ∈ {0, 1, . . . , 25}.
(A) (B) (C) (D)
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Binary Words and Codes

Definition 2.1
Let A be a set. A word of length ` from A is an element of A`.
We write A? for the set of all words from A. We write `(u) for the
length of the word u. We write ∅ for the empty word.

Definition 2.2
A binary word is a word from {0, 1}. A binary code is a non-empty
finite set of binary words. The words in a code are called
codewords.

We usually write binary words omitting some of the tuple notation.
For example 000, 001, 010, 011, 100, 101, 110, 111 all have length 3
and form a binary code of size 8.

Exercise 2.3
How many binary words are there of length n?
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Prefix-free Codes
In Exercise 1.7 we saw the binary code C = {0, 10, 110, 111}.
When codewords from C are concatenated, one can read the
concatenated word from left to right and decode it by splitting it
as soon as a codeword is seen. For example

I 0101100111 = 0

101100111 unambiguously

Definition 2.4
Let u and w be binary words, of lengths ` and m, respectively. We
say that u is a prefix of w is ` ≤ m and w = u1 . . . u`w`+1 . . .wm.
A binary code C is prefix-free if no codeword in C is a prefix of
another codeword in C .

True or false: a concatenation of codewords from a binary code C
can always be decoded by this left-to-right strategy

I if C is prefix-free.

(A) False (B) True

I only if C is prefix-free.

(A) False (B) True
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Uniquely Decipherable Codes

A code where there is a unique way to decode every concatenation
of codewords is said to be uniquely decipherable. (The decoding
might be more complicated than just reading left-to-right.) Please
do Exercise 2.5 in your own time.

I The optional ‘extras’ for this part (to come in printed notes)
have more on uniquely decipherable codes.

I We shall concentrate on prefix-free codes, which are by far the
most important in practice.



Prefix-free Codes and Binary Trees

It is useful to represent prefix-free binary codes by oriented rooted
binary trees. We read codewords left to right, so we grow the tree
the same way, stepping up for 1 and down for 0.

11

10

01

00

0

10

111

110

000

001

011

1

Exercise 2.6

(a) How could the third code {000, 001, 011, 1} be made more
efficient, while keeping it prefix-free? How can this
improvement be seen from the tree?



Exercise 2.6

(b) What is the code corresponding to the tree below?
Remember: up for 1, down for 0.

(A) {11, 10, 011, 010, 00}
(B) {11, 10, 011, 010, 000}
(C) {11, 10, 011, 010, 001}
(D) something else

(A) (B) (C) (D)

Exercise 2.7
Draw the tree corresponding to the prefix-free code in Exercise 1.4
with codewords {1, 0000, 00010, 00011, . . . , 01111}. What is the
corresponding questioning strategy for the guessing game?

Hint: you really only need one question!
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Kraft’s Inequality

Exercise 2.8
For each sequence decide if it is the lengths of the codewords in a
prefix-free binary code: (i) 1, 3, 3, 3; (ii) 1, 3, 3, 2; (iii) 1, 2, 2, 3;
(iv) 3, 2, 2, 2; (v) 1, 3, 3, 4, 4, 4, 5, 5.

(i) (A) No (B) Yes

(ii) (A) No (B) Yes

(iii) (A) No (B) Yes

(iv) (A) No (B) Yes

(v) (A) No (B) Yes
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Quiz: One of these statements is false: which one?

(A) ‘P if Q’ means P ⇐ Q;
(B) ‘P only if Q’ means P ⇒ Q;
(C) ‘P if and only if Q’ means P ⇐⇒ Q
(D) ‘P if Q’ means P ⇒ Q;

(A) (B) (C) (D)
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Proposition 2.9 (Kraft’s Inequality)

Let `1, `2, . . . , `s ∈ N. There is a prefix-free binary code whose
codewords have lengths `1, `2, . . . , `s if and only if

2−`1 + 2−`2 + · · ·+ 2−`s ≤ 1.



Example 2.10: Prefix-free lengths 1, 3, 3, 4, 4, 4, 5, 5
We construct ‘greedily’, choosing lowest (smallest) codeword each
time. Red vertices show the forbidden prefixes of each length.

0

(1) Choose 0:

now 00, 01 forbidden

(2) Nothing to choose: now
000, 001, 010, 011 forbidden

(3) Choose 100, 101: now 0000, 0001,
. . ., 0110, 0111, 1000, 1001, 1010,
1011 forbidden

(4) Choose 1100, 1101, 1110: now all
but two words of length 5 are
forbidden prefixes

(5) Choose 11110, 11111
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Kraft’s Inequality (Reminder of Exercise and Statement)

Exercise 2.8
For each sequence decide if it is the lengths of the codewords in a
prefix-free binary code: (i) 1, 3, 3, 3; (ii) 1, 3, 3, 2; (iii) 1, 2, 2, 3;
(iv) 3, 2, 2, 2; (v) 1, 3, 3, 4, 4, 4, 5, 5.

(i) (A) No (B) Yes 7/8

(ii) (A) No (B) Yes 1

(iii) (A) No (B) Yes 9/8

(iv) (A) No (B) Yes 7/8

(v) (A) No (B) Yes 1

Proposition 2.9 (Kraft’s Inequality)

Let `1, `2, . . . , `s ∈ N. There is a prefix-free binary code whose
codewords have lengths `1, `2, . . . , `s if and only if

2−`1 + 2−`2 + · · ·+ 2−`s ≤ 1.



§3 Sources and Entropy

Question. What is an efficient way to code messages when
some are much more frequent than others?

To answer this question we must set up some definitions.

Definition 3.1
An alphabet is a finite non-empty set of symbols. A source is a
random process producing a sequence U1,U2, . . . of symbols from
an alphabet. A source is memoryless if the Ui are independent and
identically distributed.



Memoryless Property

Example 3.2

(1) A coin that lands heads with probability p, independently of
previous flips, is a memoryless source producing symbols from
the alphabet {H,T}. We have P[Ut = H] = p for all t.

(2) A binary source emits 0, 0, 0, . . . or 1, 1, 1, . . . with equal
probability 1

2 . Like the previous example with p = 1
2 , we have

P[Ut = 0] = P[Ut = 1] = 1
2 for all t. But since U1 and U2 are

not independent, the source is not memoryless.

(3) A source produces random meaningful English messages in
lower case with all punctuation except spaces deleted. The
alphabet is the Roman alphabet together with space. After
receiving ‘the source is not memoryles’ you can easily
guess the next character. Therefore . . .



Source Coding for a Memoryless Source

Example 3.3

A memoryless source produces symbols from the alphabet
{1, 2, 3, 4} such that P[Ut = i ] = pi for each i ∈ {1, 2, 3, 4}, where
(p1, p2, p3, p4) = ( 1

2 ,
1
4 ,

1
8 ,

1
8 ). We encode symbols using the

prefix-free binary code {0, 10, 110, 111} by

1 7→ 0, 2 7→ 10, 3 7→ 110, 4 7→ 111

The expected length of a codeword is then 1
2 1 + 1

4 2 + 1
8 3 + 1

8 3 = 7
4 .



Feedback on Sheet 2

(2) You draw two cards from a deck of 52 cards. As usual it has 4
suits each of 13 cards. The first card is not replaced before
drawing the second. What is the probability of drawing two
cards of the same suit?

After drawing the first card, there are 12 remaining cards of its suit
and 51 cards in the deck. The probability is therefore 12

51 = 4
17 .

Common error: A very common error was to write down
13
52 × 12

51 without much explanation. This is the probability
that both cards are spades. But the question asks for the
probability that the second card has the same suit as the
first: it could be any suit.

Question 4 is like Exercise 3.4(iii). See feedback please on
Question 5(e).
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first: it could be any suit.

Question 4 is like Exercise 3.4(iii). See feedback please on
Question 5(e).



You Can Discover Entropy!

Exercise 3.4
For each of the following alphabets and probability measures find a
binary encoder using a prefix-free code. Try to minimize the
expected length of the codeword. [Hint: Kraft’s Inequality tells you
what lengths are possible; (iii) is related to Exercise 2.8(v).]

(i) {1, 2, 3, 4}: ( 1
4 ,

1
4 ,

1
4 ,

1
4 );

(ii) {1, 2, 3}: ( 1
2 ,

1
4 ,

1
4 );

(iii) {1, 2, 3, 4, 5, 6, 7, 8}: ( 1
2 ,

1
23 ,

1
23 ,

1
24 ,

1
24 ,

1
24 ,

1
25 ,

1
25 );

(iv) {1, 2, 3, 4, 5}: ( 1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ).

Exercise 3.5
With the setup of Exercise 3.4, suppose that the alphabet is
{1, . . . , s} and that pi = 1/2ci for each i . Show that there is a
prefix-free binary code with codewords u(1), . . . , u(s) such that
u(i) has length ci for each i . What is the expected codeword
length? Write this expectation just using p1, . . . , ps .
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1
24 ,

1
24 ,

1
25 ,

1
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1
5 ,

1
5 ,

1
5 ,

1
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Entropy

Definition 3.6 (Entropy of probability measure)

Let px for x ∈ Ω be a probability measure on a set Ω. The entropy
of p is

H(p) = −
∑

ω∈Ω

pω log2 pω.

To deal with the case when px = 0, we use the convention that
0 log2 0 = 0. This is consistent with the graph of −x log2 x . In
Exercise 3.5 you might have discovered the equivalent form
H(p) =

∑
x∈Ω pω log2

1
pω

.

Exercise 3.7

(a) Suppose that pi = 1
s for i ∈ {1, . . . , s}. What is H(p)?

(b) Show that in each case in Example 3.4, the expected length of
the code is at least H(p), and that equality holds for (i), (ii)
and (iii).



Shannon Codes

By Exercise 3.5, when all the probabilities in a probability measure
p are powers of 2 there is a prefix-free binary code with expected
length h(p). In general, we cannot do quite so well, but using
almost the same idea, we can still get a good code.

Recall that if x ∈ R then dxe is the least natural number n such
that x ≤ n. The function x 7→ dxe is called the ceiling function.
For example

d3 1
4e = dπe = d4e = 4.

Proposition 3.8 (Shannon Code)

Let p be a probability measure on {1, . . . , s}.
(i) There is a prefix-free binary code with codewords

u(1), . . . , u(s) such that u(i) has length dlog2
1
pi
e.

(ii) When u(i) is used to encode i for each i ∈ {1, . . . , s}, the
expected codeword length is less than 1 + H(p).



Gibbs’ Inequality
Motivated by Exercise 3.7, we now show that the expected length
of a prefix-free binary code for a probability measure p is always at
least H(p). Thus Shannon Codes have expected length within 1 of
the best possible. We need the following fundamental inequality.

Lemma 3.9 (Gibbs’ Inequality)

Let p and q be probability measures on the set {1, . . . , s}. Then

−
s∑

i=1

pi log2 pi ≤ −
s∑

i=1

pi log2 qi

where the right-hand side is interpreted as +∞ if qi = 0 for some
pi 6= 0.

Corollary 3.10

Suppose that a prefix-free binary code with codewords of lengths
`1, . . . , `s is used to encode symbols from {1, . . . , s}. If symbol i
has probability pi then the expected codeword length ¯̀ is at
least H(p).
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`1, . . . , `s is used to encode symbols from {1, . . . , s}. If symbol i
has probability pi then the expected codeword length ¯̀ is at
least H(p).



Summary
Proposition 3.8 (Shannon Code)

Let p be a probability measure on {1, . . . , s}.
(i) There is a prefix-free binary code with codewords

u(1), . . . , u(s) such that u(i) has length dlog2
1
pi
e.

(ii) When u(i) is used to encode i for each i ∈ {1, . . . , s}, the
expected codeword length is less than 1 + H(p).

Corollary 3.10

Suppose that a prefix-free binary code with codewords of lengths
`1, . . . , `s is used to encode symbols from {1, . . . , s}. If symbol i
has probability pi then the expected codeword length ¯̀ is at
least H(p).

Summary. If symbols come from an alphabet with probability
measure p then the expected length of a prefix-free binary
code is at least H(p). A Shannon code has expected length
less than H(p) + 1.



§4 Entropy and the Noiseless Coding Theorem

Definition 4.1 (Entropy of random variable)

Let X be a random variable taking values in a set X . The entropy
of X is

H(X ) = −
∑

x∈X
P[X = x ] log2 P[X = x ].

Equivalently, H(X ) = H(p) where the probability measure p on X
is defined by pω = P[X = X ] and H(p) is as defined in
Definition 3.6.

The intuitive idea of entropy is that it is the amount of information,
measured in bits, that we learn by observing a random variable.



Entropy Examples

Example 4.2

(1) Let X and Y be independent tosses of a fair coin. Then
H(X ) = H(Y ) = 1 and H

(
(X ,Y )

)
= 2.

(2) Let U be a toss of a coin biased to land heads with probability
p. Then H(U) = −p log p − (1− p) log(1− p) as shown in
the graph below.

p

−p log2 p− (1− p) log2(1− p)

0

1
2

1
2

1

1

Prove that, as suggested by the graph, the entropy is 0 when
p = 0 and when p = 1 and is maximized at 1 when p = 1

2 . Is
it intuitive that the graph is symmetric about 1

2 ?



Joint Entropy
We define the joint entropy of random variables X and Y taking
values in sets X and Y by

H(X ,Y ) = −
∑

x∈X

∑

y∈Y
P[X = x ,Y = y ] log2 P[X = x ,Y = y ].

Equivalently, H(X ,Y ) is the entropy of the random variable
(X ,Y ) taking values in X × Y.

Exercise 4.3
Let X and Y be two independent flips of a coin biased to land
heads with probability p. What is the joint distribution of X and
Y ? Express H(X ), H(Y ), H(X ,Y ) and H(X ,X ) in terms of
h = −p log2 p − (1− p) log2(1− p).

Lemma 4.4
If X and Y are independent random variables then

H(X ,Y ) = H(X ) + H(Y ).
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Feedback on Sheet 2, Correction to Sheet 3
I In Question 2(iii), probability measures on the alphabet
{1, . . . , s} were specified. Thus in (i), ( 1

2 ,
1
4 ,

1
8 ,

1
8 ) has s = 4.

In (iii) the probability measure is ( 1
2m , . . . ,

1
2m ). Since the sum

of probabilities is 1, the size of the alphabet is 2m. The
Shannon code is all binary words of length m.

I Question 4(b) and (c): will do today.
I Style: please use words and/or implication signs =⇒ , ⇐⇒

to show the logic of your argument. See feedback on Question
4 for an example where this is helpful.

I Please use technical terms accurately. They have precise
mathematical definitions that help us to communicate clearly.
For instance, a codeword is an element of a code. Do not
write codes if you mean codewords.

I Correction to Question 3(a) on Sheet 3: the expected length is

1
5

(
`
(
u(a)

)
+ `
(
u(b)

)
+ `
(
u(c)

)
+ `
(
u(d)

)
+ `
(
u(e)

))

not 1
5

(
`
(
u(a)

)
+ `
(
u(a)

)
+ `
(
u(b)

)
+ `
(
u(c)

)
+ `
(
u(d)

))
.



Example 4.5

A memoryless source produces symbols from the alphabet {a, b, c}
so that P[Ut = a] = 1

2 , P[Ut = b] = 2
5 , P[Ut = c] = 1

10 for all
times t. We have

H(U1) = 1
2 log2 2 + 2

5 log2
5
2 + 1

10 log2 10 = 1
5 + 1

2 log2 5 ≈ 1.361.

The Shannon code for the probability distribution ( 1
2 ,

2
5 ,

1
10 ) has

codewords of lengths dlog2 2e = 1, dlog2
3
2e = 2, dlog2 10e = 4.

With one choice of codewords,

a 7→ 0, b 7→ 10, c 7→ 1111.

The expected length is 1
2 1 + 2

5 2 + 1
10 4 = 17

10 . As expected by
Proposition 3.8 (upper bound) and Corollary 3.10 (lower bound),

H(U1) ≤ 17
10 < H(U1) + 1.

Since 1.7−H(U1) ≈ 0.339, for every symbol encoded, the Shannon
code is worse by 0.339 bits compared to the entropy bound.



Example 4.5 continued

Suppose we now encode pairs of symbols. By a similar argument
to Exercise 4.3, the probability distribution is:

a b c

a 1
4

1
5

1
20

b 1
5

4
25

1
25

c 1
20

1
25

1
100

The Shannon code has codewords of lengths dlog2 4e, dlog2 5e,
dlog2 20e, dlog2 5e, dlog2

25
4 e, dlog2 25e dlog2 20e, dlog2 25e,

dlog2 100e, namely 2, 3, 5, 3, 3, 5, 5, 5, 7. Expected length:

1
4 2 + 1

5 3 + 1
20 5 + 1

5 3 + 4
25 3 + 1

25 5 + 1
20 5 + 1

25 5 + 1
100 7 = 315

100 .

By Lemma 4.4, the entropy of a pair of symbols is
2H(U1) ≈ 2.722. Since 3.15− 2H(U1) ≈ 0.428, 0.428/2 = 0.214
bits are wasted per symbol. This improves on 0.339 earlier
encoding symbols one at a time.



Example 4.5 concluded
The table below shows what happens when we encode symbols r
at a time: ¯̀(r) is the expected length of the Shannon code and the
final column shows

ε(r) =
¯̀(r)

r
− H(U1),

the number of wasted bits per symbol.

r ¯̀(r) rH(U1) ¯̀(r) − rH(U1) ε(r)

1 1.700 1.361 0.339 0.339
2 3.150 2.722 0.428 0.214
3 4.475 4.083 0.392 0.131
4 5.800 5.444 0.356 0.089
5 7.156 6.805 0.351 0.070
6 8.528 8.1658 0.362 0.060
7 9.900 9.5267 0.373 0.053
8 11.268 10.889 0.380 0.048
9 12.634 12.249 0.386 0.043

10 14.000 13.610 0.390 0.039



Preliminaries for Shannon’s Noiseless Coding Theorem

Given a source U1,U2, . . . producing symbols from an alphabet A,
a binary code C (r) and an encoder f (r) : Ar → C (r), let f̄ (r) be the
expected length of a codeword encoding (U1, . . . ,Ur ). In symbols

f̄ (r) =
∑

(u1,...,ur )∈Ar

`
(
f (r)(u1, . . . , ur )

)
P
[
(U1, . . . ,Ur ) = (u1, . . . , ur )

]
.

When r = 1, we encode symbols one at a time and write f rather
than f (1).

For instance in Example 4.5, we had A = {a, b, c} and saw
prefix-free encoders f (r) for the r -tuples of symbols from A. When
r = 1 we encoded symbols one at a time with f (a) = 0, f (b) = 10,
f (c) = 1111; the expected length was
f̄ = f̄ (1) = 1

2 1 + 2
5 2 + 1

10 4 = 1.7. The second column in the table

shows the values of f̄ (r); for instance f̄ (10) = 14.000.
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Shannon’s Noiseless Coding Theorem

Theorem 4.6 (Shannon’s Noiseless Coding Theorem,
Memoryless Case)

A memoryless source produces symbols U1,U2, . . . from an
alphabet A such that each symbol has positive probability. Let
h = H(U1).

(i) There exists a prefix-free binary code C and an injective
encoder f : A → C such that f̄ < h + 1.

(ii) For any prefix-free injective encoder g , we have ḡ ≥ h.



Theorem 4.7 (Shannon’s Noiseless Coding Theorem,
Asymptotic Memoryless Case)

A memoryless source produces symbols U1,U2, . . . from an
alphabet A such that each symbol has positive probability. Let
h = H(U1).

(i) For every ε > 0 there exists r ∈ N, a prefix-free binary code
C (r) and an injective encoder f (r) : Ar → C (r) such that

f̄ (r)

r
< h + ε.

(ii) For any r and any prefix-free injective encoder g (r),

ḡ (r)

r
≥ h.



§5 Huffman codes

Returning to encoding symbol by symbol, we end by defining
Huffman codes. We prove in Corollary 5.9 that they have the
shortest possible expected length of prefix-free codes. Huffman
codes are widely used because they are efficient to construct: they
are used in JPEG image compression, MP3 audio compression and
ZIP file compression.



Huffman Sets

The following definition is non-standard, but very useful.

Definition 5.1
A Huffman set for a probability measure (p1, . . . , ps) is a set of
pairs

(
i , u) where, in each pair, i ∈ {1, . . . , s} and u is a binary

word. The weight of a Huffman set is the sum of the pi for those i
in a pair in the set.

The input and output to each step of the Huffman algorithm is a
collection of Huffman sets. We shall see that (i , v) appears in a
Huffman set if and only if the codeword v(i) encoding i ends with
v . We say that v is a suffix of v(i).

For example, {(1,∅)} and {(2, 001), (3, 101)} are Huffman sets
having weights p1 and p2 + p3. From the second Huffman set we
know that the codeword v(3) encoding 3 has 101 as a suffix. For
instance, v(3) might be 101 or 0101 or 1101, and so on.



Huffman Algorithm

Algorithm 5.2 (Huffman)

The input is a probability measure (p1, . . . , ps) with s ≥ 2.

I Begin. Take the s Huffman sets: {(1,∅)}, . . . , {(s,∅)}.
I Step. Let X and Y be Huffman sets of the least two weights.

Let

Z =
{

(i , 0v) : (i , v) ∈ X
}
∪
{

(j , 1w) : (j ,w) ∈ Y
}
.

Replace X and Y with Z . [Note 1w was mistyped as 0w ,
please correct in printed notes!]

I End. End when there is only one Huffman set. Its pairs are(
1, v(1)

)
, . . . ,

(
s, v(s)

)
where v(i) is the codeword encoding i .



Example of Huffman Algorithm

Example 5.3

Let (p1, p2, p3, p4, p5) = ( 1
8 ,

1
8 ,

1
6 ,

1
4 ,

1
3 ). The table shows the full

Huffman algorithm. Note that after step (1) there are two Huffman
sets of the second least weight 1

4 . We chose
{

(1, 0), (2, 1)
}

(rather
than

{
(4,∅)}); each of its suffixes 0 and 1 then had 0 prepended.

Begin
{

(1,∅)
}
,
{

(2,∅)
}
,
{

(3,∅)
}
,
{

(4,∅)
}
,
{

(5,∅)
}

(1)
{

(1, 0), (2, 1)
}
,
{

(3,∅)
}
,
{

(4,∅)
}
,
{

(5,∅)
}

(2)
{

(1, 00), (2, 01), (3, 1)
}
,
{

(4,∅)
}
,
{

(5,∅)
}

(3)
{

(1, 00), (2, 01), (3, 1)
}
,
{

(4, 0), (5, 1)
}

(4)
{

(1, 000), (2, 001), (3, 01), (4, 10), (5, 11)
}

End 1 7→ 000, 2 7→ 001, 3 7→ 01, 4 7→ 10, 5 7→ 11



Example 5.3 [continued]
It is convenient to perform the algorithm by constructing an
oriented rooted binary tree, starting with s leaves, and finishing at
the root. We follow the same convention from §2 that we step up
for 1 and down for 0 (and now horizontally for no change).

Huffman sets are shown in ellipses with the weight to the right,
denoting the pair (2,∅) by ∅2 and the pair (1, 00) by 001, and so
on, to save space.

∅1
1
8

∅2
1
8

∅3
1
6

∅4
1
4

∅5
1
3

01

12

1
4

∅3
1
6

∅4
1
4

∅5
1
3

001

012

13

5
12

∅4
1
4

∅5
1
3

001

012

13

5
12

04

15

7
12

0001

0012

013

104

115

1



Choices in the Huffman Algorithm

Exercise 5.4
Use the tree method to construct the Huffman code for the
probability distribution (p1, p2, p3, p4, p5) = ( 1

8 ,
1
8 ,

1
6 ,

1
4 ,

1
3 ) in

Example 5.3 choosing at step (2) the Huffman sets
{

(3,∅)
}

and{
(4,∅)

}
. Is there a more efficient code?

∅1
1
8

∅2
1
8

∅3
1
6

∅4
1
4

∅5
1
3

01

12

1
4

∅3
1
6

∅4
1
4

∅5
1
3

01

12

1
4

03

14

5
12

∅5
1
3

001

012

15

7
12

03

14

5
12

0001

0012

015

103

114

1



Choices in the Huffman Algorithm

Exercise 5.4
Use the tree method to construct the Huffman code for the
probability distribution (p1, p2, p3, p4, p5) = ( 1

8 ,
1
8 ,

1
6 ,

1
4 ,

1
3 ) in

Example 5.3 choosing at step (2) the Huffman sets
{

(3,∅)
}

and{
(4,∅)

}
. Is there a more efficient code?

Question 5 on Sheet 3 gives a bigger example where choices in the
Huffman algorithm lead to codes having different codeword lengths
and different maximum length. By Corollary 5.9, these choices do
not change the expected codeword length.



Another Interpretation of the Huffman Tree

∅1
1
8

∅2
1
8

∅3
1
6

∅4
1
4

∅5
1
3

01

12

1
4

∅3
1
6

∅4
1
4

∅5
1
3

01

12

1
4

03

14

5
12

∅5
1
3

001

012

15

7
12

03

14

5
12

0001

0012

015

103

114

1

Optional exercise. Check that reading the tree right-to-left,
interpreting steps up (which were steps down from left-to-right) as
0 and steps down (which were steps up from left-to-right) as 1 it
becomes the oriented rooted binary tree for the Huffman code.

Convincingly explained, this gives a different proof of Lemma 5.5.



Results on Huffman Codes

Lemma 5.5
Huffman codes are prefix-free

Definition 5.6
We say that the binary code v(1), . . . , v(s) is optimal for the
probability measure (p1, . . . , ps) if its prefix-free, and no other
prefix-free code with s codewords has a smaller expected length.

We require the following lemma. Part (a) should be intuitive: it
simply says that in an optimal code less probable symbols get
longer codewords.

Lemma 5.7
In an optimal code for the probability measure p1 ≤ p2 ≤ . . . ≤ ps
where the codewords v(1), v(2), . . . , v(s) have lengths `1,`2,. . . ,`s ,
(a) `1 ≥ `2 ≥ . . . ≥ `s ;

(b) `1 = `2 and two of the codewords of this length differ only in
their final positions.
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Huffman Codes are Optimal

Lemma 5.7
In an optimal code for the probability measure p1 ≤ p2 ≤ . . . ≤ ps
where the codewords v(1), v(2), . . . , v(s) have lengths `1,`2,. . . ,`s ,
(a) `1 ≥ `2 ≥ . . . ≥ `s ;

(b) `1 = `2 and two of the codewords of this length differ only in
their final positions.

Proposition 5.8

Suppose that the probability measure p1, p2, p3, . . . , ps has an
optimal code with expected length L and that the probability
measure p1 + p2, p3, . . . , ps has an optimal prefix-free code with
expected length M. Then

L ≥ M + p1 + p2.

Corollary 5.9

Huffman codes are optimal.



Part (B): Channel coding

§7 Noisy channels

Question. How quickly can we communicate reliably through
a noisy channel?

Definition 7.1
Let A and B be alphabets. A discrete memoryless channel sends a
symbol α ∈ A to β ∈ B with a fixed probability pαβ.

Here ‘memoryless’ is the property that each transmission through
the channel is independent of those before.

In the introduction we saw the binary symmetric channel, in which
A = B = {0, 1} and each bit flips independent with probability p.

0 0

1 1
p

p

1−p

1−p



Further Examples of Channels
Denote by X the input symbol and Y the output symbol. Thus

P[Y = β|X = α] = pαβ

for all α ∈ A and β ∈ B.

Example 7.2

(1) In the binary erasure channel with erasure probability p,
A = {0, 1} and B = {0, 1, ?}. Each sent bit is received
correctly with probability 1− p, and otherwise erased by the
channel: we model this by supposing that the special symbol
? is received. (Thus the receiver knows a bit was sent, but not
what it is.)

The matrix of channel probabilities is

0
1

(
1− p p 0

0 p 1− p

)



Example 7.2 continued
(2) The lazy typist channel with s symbols has
A = B = {0, 1, . . . , s − 1}. The transition probabilities are
specified by

P[Y = x |X = x ] = 1
2 , P[Y = x + 1 mod s|X = x ] = 1

2 .

Exercise: find the matrix of channel probabilities when s = 4.

Observe that in each case the matrix with entries pαβ is stochastic,
i.e. its rows all sum to 1.

Exercise 7.3
Take s = 4 in the lazy typist channel, so the input and output
alphabets are {0, 1, 2, 3}.
(a) Find a way to encode the four messages A, T, G, C so that the

receiver can decode with zero probability of error.

(b) Specify the decoding rule as a function from words in the
output symbols {0, 1, 2, 3} to {A, T, G, C}.

(c) For each message sent, how many symbols are required? For
a perfect typist, how many symbols are required per message?
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Conditional Entropy

Definition 7.4
Let X and Y be random variables taking values in finite sets A
and B, respectively. The conditional entropy of X given that
Y = β is defined by

H(X |Y = β) = −
∑

α∈A
P[X = α|Y = β] log2P[X = α|Y = β].

The conditional entropy of X given Y is defined by

H(X |Y ) =
∑

β∈B
P[Y = β]H(K |Y = y).



Conditional Entropy Exercise

H(X |Y = β) = −
∑

α∈A
P[X = α|Y = β] log2P[X = α|Y = β]

H(X |Y ) =
∑

β∈B
P[Y = β]H(X |Y = β).

Exercise 7.5
Fix s ∈ N. Take the lazy typist channel with input and output
alphabets A = B = {0, 1, . . . , s − 1}. As usual, let X be the input
symbol and let Y be the output symbol. Suppose that X is
uniformly distributed on {0, 1, . . . , s − 1}, so P[X = x ] = 1

s for
each x . Find

H(X ),H(Y ),H(X |Y = 0),H(X |Y ),H(X ,Y ).

Now suppose that s = 4 and X is 0 with probability p and 1 with
probability 1− p. Find

(a) P[Y = 1|X = 0],H(Y |X = 0),H(Y |X ),P[Y = 1],H(Y ).

(b) Find P[X = 0|Y = 1],H(X |Y = 1),H(X |Y ).



Conditional Entropy Exercise

H(X |Y = β) = −
∑

α∈A
P[X = α|Y = β] log2P[X = α|Y = β]

H(X |Y ) =
∑

β∈B
P[Y = β]H(X |Y = β).

Here is a summary of what we found in the second case s = 4 and
P[X = 0] = p, P[X = 1] = 1− p. For (a)

I P[Y = 1|X = 0] = 1
2 and P[Y = 0|X = 0] = 1

2

I H(Y |X = 0) = H(12 ,
1
2) = 1

I H(Y |X = 1) = H(12 ,
1
2) = 1

I H(Y |X ) = pH(Y |X = 0) + (1− p)H(Y |X = 1) = 1

I P[Y = 1] = P[Y = 1|X = 0]P[X = 0] + P[Y = 1|X = 1]P[x = 1].
Note use of conditioning argument. Hence

P[Y = 1] = 1
2p + 1

2(1− p) = 1
2 .

I P[Y = 0] = 1
2p and P[Y = 2] = 1

2(1− p)

I H(Y ) = H(12p,
1
2 ,

1
2(1− p)

)
= 1 + 1

2H(p, 1− p).



Conditional Entropy Exercise

H(X |Y = β) = −
∑

α∈A
P[X = α|Y = β] log2P[X = α|Y = β]

H(X |Y ) =
∑

β∈B
P[Y = β]H(X |Y = β).

Here is a summary of what we found in the second case s = 4 and
P[X = 0] = p, P[X = 1] = 1− p. For (b)

I P[X = 0|Y = 1] =
P[Y = 1|X = 0]P[X = 0]

P[Y = 1]
=

1
2p
1
2

= p.

I P[X = 1|Y = 1] = 1− p. (Complementary event.)

I P[X = 0|Y = 0] = 1; note this is not P[X = 0].

I P[X = 1|Y = 2] = 1; note this is not P[X = 1].

I H(X |Y = 1) = H(p, 1− p) and

H(X |Y = 0) = H(X |Y = 2) = 0.

I H(X |Y ) = P[Y = 1]H(X |Y = 1) = 1
2H(p, 1− p).



Conditional Entropy Exercise

H(X |Y = β) = −
∑

α∈A
P[X = α|Y = β] log2P[X = α|Y = β]

H(X |Y ) =
∑

β∈B
P[Y = β]H(X |Y = β).

Cheat Sheet!
I P[Y = y |X = x ] is a channel probability: it depends only on

the channel matrix.
I P[X = x |Y = y ] must be computed using conditional

probability and depends both on the channel matrix and the
distribution of X .



Chaining Rule

Lemma 7.6 (Chaining Rule)

Let X and Y be random variables. Then

H(X |Y ) + H(Y ) = H(X ,Y ).

If you are doing MT361/461/5461 you will have seen a proof in
this course. Otherwise please do Question 5 on Sheet 4. (Each
step is quite small: there will of course be a model answer.)



Chaining Rule

Lemma 7.6 (Chaining Rule)

Let X and Y be random variables. Then

H(X |Y ) + H(Y ) = H(X ,Y ).

In Example 7.5 we saw that when s = 4 and P[X = 0] = p,
P[X = 1] = 1− p we have

H(Y ) = H
(
1
2p,

1
2 ,

1
2(1− p)

)
= 1 + 1

2H(p, 1− p)

H(X |Y ) = 1
2H(p, 1− p)

Hence H(X ,Y ) = H(X |Y ) + H(Y ) = 1 + H(p, 1− p).

Two symmetries are worth noting:
I Compute H(X ,Y ) using the Chaining Rule the other way

round, using

H(X ) = H(p, 1− p)

H(Y |X ) = 1

I How much information does learning Y give about X? How
much information does learning X give about Y ?



Mutual Information

Definition 7.7
The mutual information of random variables X and Y is

I (X ;Y ) = H(X )− H(X |Y ).

Since H(X |Y ) is the uncertainty in X after we have learned Y , we
have the following interpretation.

I (X ;Y ) is the amount of information that Y tells us about X .

In Question 4 on Sheet 4 you are asked to show that
H(X ) ≥ H(X |Y ) with equality if and only if X and Y are
independent. Hence I (X ;Y ) ≥ 0, with equality if and only if X
and Y are independent.

Exercise 7.8
Since entropies are positive, I (X ;Y ) ≤ H(X ). When does
I (X ;Y ) = H(X ) hold?



Mutual Information

Definition 7.7
The mutual information of random variables X and Y is

I (X ;Y ) = H(X )− H(X |Y ).

Since H(X |Y ) is the uncertainty in X after we have learned Y , we
have the following interpretation.

I (X ;Y ) is the amount of information that Y tells us about X .

Example 7.9

Let X be the roll of a fair die and let Y be the answer to the
question ‘Did you roll 1 or 2?’. Then

H(X |Y ) = 1
3 log2 2 + 2

3 log2 4 = 5
3

and so I (X ;Y ) = H(X )− H(X |Y ) = log2 6− 5
3 .



Other Formulae for Mutual Information
By the chaining rule H(X |Y ) + H(Y ) = H(X ,Y ). Therefore the
mutual information can be written in the more symmetric form

I (X ;Y ) = H(X ) + H(Y )− H(X ,Y ).

Exercise 7.10
Deduce that I (X ;Y ) = H(Y )− H(Y |X ) and hence that
I (X ;Y ) = I (Y ;X ).

It is perhaps a little surprising that the mutual information is
symmetric in X and Y . Exercise: check this for Example 7.9. This
fact necessary to justify calculating with conditional entropy and
mutual information using Venn diagrams.

For noisy channels, the probabilities P[Y = β|X = α] = pαβ are
given by the channel. In contrast, P[X = α|Y = β] has to be
calculated using conditional probability (or Bayes’ Law). We saw
this in Exercise 7.5,

So it will often be useful to use I (X ;Y ) = H(Y )− H(Y |X ).
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Mutual Information for a Noisy Channel

Example 7.11

Let X and Y be the input and output symbols in the lazy typist
channel.

(a) By Exercise 7.5, if all s input symbols are equiprobable then
I (X ;Y ) = log2 s − 1.

(b) Let s be even. Suppose that

pα =

{
2
s if α is even

0 if α is odd.
.

Then Y is uniformly distributed so H(Y ) = log2 s and
I (X ;Y ) = H(Y )− H(Y |X ) = log2 s − 1.

(c) Suppose that s = 4 and p0 = p1 = 1
2 . Then Y has probability

distribution (14 ,
1
2 ,

1
4 , 0) and H(Y ) = 3

2 . We have
I (X ;Y ) = 3

2 − 1 = 1
2 . The maximum value of I (X ;Y ) is 1; by

(b) the maximum is attained for p = (14 ,
1
4 ,

1
4 ,

1
4) and

p = 1
4), (12 , 0,

1
2 , 0). Exercise: find another probability measure

on X that maximizes I (X ;Y ).



Capacity

As usual let X be the input symbol and let Y be the output symbol

Definition 7.12
The capacity of a channel is maxp I (X ;Y ) where the maximum is
taken over all probability measures p on the input symbol X .

Example 7.13

(a) Let p ≤ 1/2. The capacity of the Binary Symmetric Channel
with error probability p is 1− H(p, 1− p).

(b) The capacity of the Binary Erasure Channel with erasure
probability p is 1− p. You are asked to show this on Problem
Sheet 5. Exercise: draw a graph comparing (a) and (b).

(c) We saw in Example 7.11 that for the Noisy Typist Channel
with s = 4, the maximum of I (X ;Y ) is 1. In general the
maximum is log2 s − 1; the proof is almost the same,
replacing 4 with s.



Theorem 7.14 (Shannon’s Noisy Coding Theorem for Discrete
Memoryless Channels)

Fix a discrete memoryless channel with input alphabet A and
output alphabet B of capacity c .

(a) Let ε > 0 be given. For every r < c there exists n ∈ N and a
code C ⊆ An such that |C | ≥ 2rn and the error probability
when C is used to send codewords through the channel is less
than ε.

(b) If r > c then, when n is large, it is impossible to find a code
as in (a).



Theorem 7.14 (Shannon’s Noisy Coding Theorem for Discrete
Memoryless Channels)

Fix a discrete memoryless channel with input alphabet A and
output alphabet B of capacity c .

(a) Let ε > 0 be given. For every r < c there exists n ∈ N and a
code C ⊆ An such that |C | ≥ 2rn and the error probability
when C is used to send codewords through the channel is less
than ε.

(b) If r > c then, when n is large, it is impossible to find a code
as in (a).

I In fact we will have |C | ≈ 2rn: the inequality is necessary only
because 2rn may not be an integer.

I The ‘error probability’ in (a) for a codeword u ∈ C is the
probability that when u is sent through the channel, and v is
received, v is not decoded as u. The claim in (a) is that, by
choosing the code and decoding rule suitably, we can make all
these probabilities < ε.



Theorem 7.14 (Shannon’s Noisy Coding Theorem for Discrete
Memoryless Channels)

Fix a discrete memoryless channel with input alphabet A and
output alphabet B of capacity c .

(a) Let ε > 0 be given. For every r < c there exists n ∈ N and a
code C ⊆ An such that |C | ≥ 2rn and the error probability
when C is used to send codewords through the channel is less
than ε.

(b) If r > c then, when n is large, it is impossible to find a code
as in (a).

Example 7.15

Take the lazy typist channel on {0, 1, 2, 3}. The capacity of the
channel is 1 by Example 7.11. In Example 7.3 we used the encoder

A 7→ 00, T 7→ 02, G 7→ 20, C 7→ 22.

and decoder 00, 01, 10, 11 7→ A, and so on. We will generalize this
example to find a suitable code C and decoding rule proving that
(a) in Shannon’s Noisy Coding Theorem holds. In this special case
we can even take r = c and n does not need to be large.



§8 Nearest neighbour decoding

Question. What decoding rule minimizes the probability of
decoding error?

Definition 8.1
Let A be an alphabet. Let u, v ∈ An be words of length n. The
Hamming distance between u and v , denoted d(u, v), is the
number of positions in which u and v are different.

In mathematical notation, d(u, v) =
∣∣{i ∈ {1, 2, . . . , n} : ui 6= vi

}∣∣.
We will often abbreviate ‘Hamming distance’ to ‘distance’.

Example 8.2

Working with binary words of length 4, we have d(0011, 1101) = 3
because the words 0011 and 1101 differ in their first three
positions, and are the same in their final position. Working with
words over the alphabet {a, b, . . . , z}, we have d(tale, take) = 1
and d(tale, tilt) = 2.



Properties of Hamming Distance

Theorem 8.3
Let A be an alphabet and let u, v ,w ∈ An.

(a) d(u, v) = 0 if and only if u = v ;

(b) d(u, v) = d(v , u);

(c) d(u,w) ≤ d(u, v) + d(v ,w).

Part (c) is called the triangle inequality. As an exercise, find all
English words v such that

d(warm, v) = d(cold, v) = 2.

Check that the triangle inequality holds when u, v , w are warm,
wall, cold, respectively.

If you have seen metric spaces then you will probably have noticed
that Theorem 8.3 says that (An, d) is a metric space.
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Error Probabilities for the Binary Symmetric Channel
In Exercise 1.9 Alice sent Bob a codeword X ∈ {000, 111} across
the Binary Symmetric Channel with error probability p, and Bob
received Y ∈ {0, 1}3. We saw that P[Y = 111|X = 000] = p3,
P[Y = 110|X = 000] = p2(1− p), and so on.



Error Probabilities for the Binary Symmetric Channel
In Exercise 1.9 Alice sent Bob a codeword X ∈ {000, 111} across
the Binary Symmetric Channel with error probability p, and Bob
received Y ∈ {0, 1}3. We saw that P[Y = 111|X = 000] = p3,
P[Y = 110|X = 000] = p2(1− p), and so on.

Generally the power of p in P[Y = v |X = u] is the number of bits
flipped by the channel. This is the Hamming distance d(u, v). It is
also the number of edges between u and v in the graph seen in §1.
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Error Probabilities for the Binary Symmetric Channel
In Exercise 1.9 Alice sent Bob a codeword X ∈ {000, 111} across
the Binary Symmetric Channel with error probability p, and Bob
received Y ∈ {0, 1}3. We saw that P[Y = 111|X = 000] = p3,
P[Y = 110|X = 000] = p2(1− p), and so on.

Lemma 8.4
Suppose that u ∈ {0, 1}n is sent through the BSC(p). The
probability that v ∈ {0, 1}n is received is pd(u,v)(1− p)n−d(u,v).

Theorem 8.5
Suppose that we use a binary code C of length n to send messages
through the BSC(p) with p < 1/2, and that each codeword in C is
equally likely to be sent. Let X be the sent codeword and Y the
received word. For each u ∈ C ,

P[X = u|Y = v ] = pd(u,v)(1− p)n−d(u,v)c(v).

where c(v) does not depend on u. Hence P[X = u|Y = v ] is
maximized by choosing u to be the nearest codeword to v .



Maximum Likelihood Decoding

In Theorem 8.5 we decode to maximize the likelihood that we are
correct, so we choose X to maximize P[X = u|Y = v ]. Here

I Y = v is the event we observe:

I X = u is our inference.

The assumption that every codeword is equally likely to be sent
was vital to Theorem 8.5.

For instance, in Question 5 on Sheet 1, we saw that if 000 has
probability 1

10 and 111 has probability 9
10 then,

P[X = 000|Y = 000]

P[X = 111|Y = 000]
=

27

77
≈ 0.351.

When 000 is received, it is about twice as likely 111 was sent than
000. Using maximum likelihood decoding it is never correct to
decode as 000, and the channel is useless.
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Nearest Neighbour Decoding

Definition 8.6 (Nearest neighbour decoding)

Let C ⊆ An be a code. Suppose that a codeword is sent through
the channel and we receive the word v . To decide v using nearest
neighbour decoding look at all the codewords of C and pick the
one that is nearest, in Hamming distance to v , choosing arbitrarily
if there are several equally close.

Exercise 8.7
Take the code C = {00000, 11100, 00111, 11011} from Question 4
on Sheet 5.

(a) Using C on the Binary Symmetric Channel the alphabet is
{0, 1}. Decode the received words 00000, 01111, 01010.

(b) Using C on the Binary Erasure Channel the alphabet is
{0, ?, 1}. Here, as usual, the codewords are in {0, 1}5, so the
erasure symbol ? appears only in received words. Decode the
received words above and 0000?, 000??, 00???.



Connection with Source Coding
After source coding by a good code, such as a Huffman code, we
could expect most binary words to occur roughly equally often. We
saw at the end of §6 that encoding the first chapter of Persuasion,
by the optimal Huffman code gives the sequence

001111000 110101 110111 0101 111 101101 011 0000 . . .

corresponding to S 7→ 001111000, u 7→ 110101, c 7→ 110111,
h 7→ 0101, 7→ 111, and so on.

Quiz: suppose there are no errors in the channel, so Bob receives

00111100011010111011101011111011010110000.

I Q: How does Bob know how to decode?

A: The code is not secret!

I Q: Why is there a unique way to decode?

A: The Huffman code is prefix free.
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Equally Likely Codewords
The graphs below show the probability of seeing each binary word
of length 5 in the source coding of the first chapter of Persuasion
by

(1) The 8-bit ASCII code;

(2) The optimal Huffman character on characters above;

(3) The optimal Huffman code on pairs of characters.
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Hamming Balls

Definition 8.8
Let A be an alphabet and let u ∈ An. The Hamming ball of radius
r about u is the set

Br (u) = {v ∈ An : d(u, v) ≤ r}.

We saw earlier that when A = {0, 1} and n = 3, the words in
B1(000) = {000, 100, 010, 001} decode to 000 using nearest
neighbour decoding with the repetition code {000, 111}.

The repetition code can correct 1 error
in the Binary Symmetric Channel
because the Hamming balls of radius 1
about the codewords are disjoint.

See Question 4 on Sheet 5 for a similar
example.
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{0, 1}4 with Hamming Distance
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{
v ∈ {0, 1}4 : v1 = 0

}
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1111



C = {0000, 1110, 0111} ⊆ {0, 1}4
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1111



B1(1110) ⊆ {0, 1}4

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B1(0111) ⊆ {0, 1}4

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B1(1110) ∪ B1(0111) ⊆ {0, 1}4

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B0(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B1(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B2(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B3(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B4(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Sizes of Hamming Balls

Let 0 denote the all-zeros word 0 . . . 0. We just saw the Hamming
balls with centre 0 = 0000 in {0, 1}4.

r 0 1 2 3 4
∣∣Br (0)

∣∣ 1 5 11 15 16∣∣Br (0)
∣∣−
∣∣Br−1(0)

∣∣ 1 4 6 4 1

Lemma 8.9
Let n ∈ N.

(a)
∣∣{v ∈ {0, 1}n : d(u, v) = s}

∣∣ =
(n
s

)
.

(b) |Br (0)| =
∑r

s=0

(n
s

)
;

The size of a Hamming ball does not depend on its centre.
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B0(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B1(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B2(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B3(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



{0, 1}4\B3(1010) = {0101}

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Feedback for Problem Sheet 4
By definition, p is a probability measure on {1, . . . , s} if pi ≥ 0 for
each i and

∑s
i=1 pi = 1. This is all you needed to check in (4)(a).

(2) Alice must guess Bob’s secret number X by asking yes/no
questions. She knows that X is distributed on {0, 1, . . . , 2r}
according to the probability measure (12 ,

1
2r+1 , . . . ,

1
2r+1 ). Thus

P[X = 0] = 1
2 and P[X = x ] = 1

2r+1 if x ∈ {1, . . . , 2r}.
(a) Find H(X ).

(b) Find, with proof, an optimal prefix-free code for this measure.
[Hint: you could give a Huffman code, or use Corollary 3.10,
or use Theorem 4.6(ii).]

(c) What is the corresponding questioning strategy for Alice?

(d) Let A be the answer to Alice’s first question. Find
H(X |A = ‘yes’), H(X |A = ‘no’) and H(X |A).

(e) Comment on your answers in (d). Is it a surprise to you that
the conditional entropy, given a particular answer by Bob, may
be higher than H(X )?



(3) In the binary channel shown below, when 0 is sent, it flips to 1
with probability 1

2 , and when 1 is sent, 1 is always received.

0 0

1 1

1
2

1

1
2

Suppose that P[X = 0] = q and P[X = 1] = 1− q.

(a) Write down the matrix of channel probabilities, as in
Example 7.2.

(b) Show that P[Y = 0] = 1
2q and P[Y = 1] = 1− 1

2q. Hence
write down a formula for H(Y ).

(c) (i) Find P[Y = 0|X = 0], P[Y = 1|X = 0] and hence find
H(Y |X = 0).

(ii) Find P[Y = 0|X = 1],P[Y = 1|X = 1] and hence find
H(Y |X = 1).

(iii) Find H(Y |X ) in terms of q.



§9 Shannon’s Noisy Coding Theorem for the BSC

To prove Shannon’s Noisy Coding Theorem for the Binary
Symmetric Channel we need some good bounds on the sizes of
Hamming balls.

See the optional question on Sheet 7 for some motivation for why
the entropy function now appears.

Proposition 9.1

Let n ∈ N and let 0 ≤ r ≤ n/2. Let h = H( r
n , 1− r

n ). Then

1

n + 1
2hn ≤

(
n

r

)
≤ |Br (0)| ≤ 2hn.



Reminder of Linearity of Expectation

Exercise 9.2

(a) Let X , Y be independent rolls of a fair die. Let Z = X . Find
E[X ], E[X + Y ], E[X + Z ], E[X + Y + Z ]. [Hint: the hard
way to compute E[X + Y ] is to use its probability distribution
on {2, . . . , 12}, namely ( 1

36 ,
2
36 , . . . ,

6
36 , . . . ,

2
36 ,

1
36). The easy

way is to use linearity of expectation.]

(b) Let F be the flip of a coin biased to lands heads with
probability p and let

X =

{
1 if F = heads

0 if F = tails.

Then

E[X ] = 1× P[F = heads] + 0× P[F = tails] = p.

Thus the expectation of an ‘indicator’ random variable such
as X is the probability of the event defining it. We use this to
find E[gi (v)] in (2) in the proof below.



Exercise 9.2 [continued]

(c) Suppose that 4 boys and 8 girls sit in a circle, choosing seats
at random. On average, how many girls have a boy to their
right? Outline solution. Number chairs from 0 to 11. Define

Xi =

{
1 if chair i has a girl and chair i + 1 (mod 12) as a boy

0 otherwise.
.

Show, using the idea in (b) that E[Xi ] = 8
12 × 4

11 and hence

that the expected number of GB pairs is 12× 8
12 × 4

11 = 32
11 .

I how many GG pairs are there?

A: 56
11

I how many BG pairs are there?

A: 32
11

I how many BB pairs are there?

A: 12
11
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The Toy BSC(p, n)

Definition 9.3
Given 0 < p < 1/2 and n ∈ N such that pn ∈ N, the Toy
BSC(p, n) is the channel with input and output alphabets {0, 1}n
such that when u ∈ {0, 1}n is sent, exactly pn of the positions of u
flip.

I This is a good approximation to what happens when a word
of length n is sent using the BSC(p).

I More precisely, given ε > 0, by Chebychev’s Inequality (or the
Central Limit Theorem), the chance that more than (p + ε)n
errors, or fewer than (p − ε)n positions are flipped tends to 0
as n→∞.

The following lemma is proved on Question 5 of Problem Sheet 6.

Lemma 9.4
Let cn be the capacity of the Toy BSC(p, n). We have

cn
n
→ 1− H(p, 1− p) as n→∞



Shannon’s Noisy Coding Theorem(a) for Toy BSC(p, n)
Since n is part of the specification of the channel, the statement
changes slightly from Theorem 7.14(a).

Proposition 9.5

Let h = H(p, 1− p). Let r < 1− h. Let ε > 0 be given. Provided
n is sufficiently large, there exists a binary code C of size ≥ 2rn

such that when C is used to communicate on the Toy BSC(p, n)
using nearest neighbour decoding, the error probability is < ε.

Shannon’s great insight was that a code chosen at random is likely
to work. For technical reasons it is necessary to choose at least
twice as many codewords as are eventually required.

Set M = 2d2rne [Correction: not d2rn+1e] and let
U(1), . . . ,U(M) be codewords, chosen independently and
uniformly at random from {0, 1}n.



Shannon’s Noisy Coding Theorem(a) for Toy BSC(p, n)
Since n is part of the specification of the channel, the statement
changes slightly from Theorem 7.14(a).

Proposition 9.5

Let h = H(p, 1− p). Let r < 1− h. Let ε > 0 be given. Provided
n is sufficiently large, there exists a binary code C of size ≥ 2rn

such that when C is used to communicate on the Toy BSC(p, n)
using nearest neighbour decoding, the error probability is < ε.

Set M = 2d2rne [Correction: not d2rn+1e] and let
U(1), . . . ,U(M) be codewords, chosen independently and
uniformly at random from {0, 1}n.

I We write Pch for probabilities in the channel, for example
Pch[Y = y |X = x ] is the probability that Y is received given
that X is sent.

I We write Pcode for probabilities depending on the random
choice of code: for instance, P[U(1) = u] = 1

2n for all
u ∈ {0, 1}n.



Shannon’s Noisy Coding Theorem(a) for Toy BSC(p, n)
Since n is part of the specification of the channel, the statement
changes slightly from Theorem 7.14(a).

Proposition 9.5

Let h = H(p, 1− p). Let r < 1− h. Let ε > 0 be given. Provided
n is sufficiently large, there exists a binary code C of size ≥ 2rn

such that when C is used to communicate on the Toy BSC(p, n)
using nearest neighbour decoding, the error probability is < ε.

Set M = 2d2rne [Correction: not d2rn+1e] and let
U(1), . . . ,U(M) be codewords, chosen independently and
uniformly at random from {0, 1}n.

Lemma 9.6
If X : Ω→ R is a random variable then there is an outcome ω ∈ Ω
such that X (ω) ≤ E[X ]. �



Recap of Step 1 and Step 2
I We defined Pi to be the probability that when

X = U(i) ∈ {0, 1}n is sent through the Toy BSC(p, n), the
received word Y ∈ {0, 1}n is not decoded as U(i), using
nearest neighbour decoding.

I For v ∈ {0, 1}n we defined

gi (v) =
∣∣{j : j 6= i ,U(j) ∈ Bpn(v)

∣∣.
I If no codeword U(j) is in Bpn(v) then, under nearest neighbour

decoding, X is always decoded correctly as U(i).
I Otherwise we assume that nearest neighbour decoding never

works.
I Therefore

Pi ≤
∑

v∈{0,1}n

P[Y = v |X = U(i)]gi (v).

I In Step (2) we compute the expectation of Pi in the
probability space of the random code.
I We use that if S and T are independent random variables then

E[ST ] = E[S ]E[T ].
I Correction: η = 1− r − h, not 1− r + h.



Notes on Proof

This proof will take a lot of thinking about.

I Question 1 on Problem Sheet 7 asks you to fill in the details
in the argument at the start of Step 2. This should clarify the
role played by the two different probability spaces.

I Question 2 then asks you to adapt the proof to the Toy
Binary Erasure Channel, in which exactly pn bits are erased.



§10 Converse in Shannon’s Noisy Coding Theorem

The proof depends on two inequalities, both of interests in their
own right.

I The Data-Processing Inequality states that if X , Y are
random variables, taking values in sets X and Y, and
d : Y → Z is a function, then I (X ;Y ) ≥ I

(
X ; d(Y )

)
. In

words: processing Y by the function d cannot increase the
amount of information Y has about X .

I Fano’s Inequality states that if X and Y are random variables
taking values in a set of size M, and P[X = Y ] ≥ 1− ε then
H(X |Y ) ≤ H(ε, 1− ε) + ε log2(M − 1).



Data-Processing Inequality

Lemma 10.1
Let X , Y and Z be random variables. Then

H
(
X |(Y ,Z )

)
≤ H(X |Z ).

[Typo in printed notes: H
(
X ; (Y ,Z )

)
should be H

(
X |(Y ,Z )

)

and similarly H(X ;Z ) should be H(|Z ).]

Lemma 10.2 (Data-Processing Inequality)

If X , Y are random variables, taking values in sets X and Y
respectively, and d : Y → Z is a function, then

I (X ;Y ) ≥ I
(
X ; d(Y )

)
.



Motivation for Fano’s Inequality

Example 10.3

Alice and Bob may go to the cinema, theatre or stay at home,
each with equal probability. With probability 1− p where we
imagine p is small, their decisions X and Z agree. In the ‘error’
case they differ. A nice way to find the joint entropy (X ,Z ) is to
condition on the event that X 6= Z . For this we introduce the
‘indicator’ random variable, as in Example 9.2(b),

F =

{
1 if X 6= Z

0 if X = Z .



Example 10.3 [continued]

Since F is determined by (X ,Z ) we have

H(X ,Z ) = H(X ,Z ,F ) = H(X ,Z |F ) + H(F )

using the Chaining Rule (Lemma 7.6) for the second equality. Now
H(F ) = H(p, 1− p),

H(X ,Z |F = 0) = H(X ,X ) = H(X ) = log2 3

and H(X ,Z |F = 1) = log2 6 = 1 + log2 3 since there are 6 equally
likely pairs of destinations when X 6= Z . Therefore
H(X ,Y |F ) = (1− p) log2 3 + p(1 + log2 3) = 1− p and

H(X ,Z ) = p + log2 3 + H(p, 1− p).



Fano’s Inequality
To prove Fano’s Inequality we need that if X is a random variable
taking m different values then H(X ) ≤ log2m. By Question 6 on
Problem Sheet 3, this follows easily from Gibbs’ Inequality.

Lemma 10.4 (Fano’s Inequality)

Let X and Z be random variables taking values in a set of size M.
Let ε < 1

2 . If P[X = Z ] ≥ 1− ε then

H(X |Z ) ≤ H(ε, 1− ε) + ε log2(M − 1).

The final result we need to prove the converse in Shannon’s Noisy
Coding Theorem is Question 4 on Problem Sheet 7: when a
memoryless channel of capacity c is used to send words of n
symbols, its capacity is nc .

This should be quite intuitive: since the channel transmits each
symbol independently, the amount of information about the input
we can (at best) learn from each of the n received symbols is the
original capacity c .
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Proof of Shannon’s Noisy Coding Theorem (b)

The final result we need to prove the converse in Shannon’s Noisy
Coding Theorem is Question 3 on Problem Sheet 7: when a
memoryless channel of capacity c is used to send words of n
symbols, its capacity is nc .

Theorem 7.14 (Shannon’s Noisy Coding Theorem for Discrete
Memoryless Channels)

Fix a discrete memoryless channel with input alphabet A and
output alphabet B of capacity c .

(a) Let ε > 0 be given. For every r < c there exists n ∈ N and a
code C ⊆ An such that |C | ≥ 2rn and the error probability
when C is used to send codewords through the channel is less
than ε.

(b) If r > c then, when n is large, it is impossible to find a code
as in (a).



Example 7.15

Take the lazy typist channel on 2t symbol and use it send words of
length n from {0, 1, . . . , 2t − 1}n. (This is the n-extension of the
channel, as in Question 4 on Sheet 7.) By Question 3 on Sheet 5,
the capacity of the lazy typist channel is log2 t.

All arrows have probability 1
2 . As in Shannon’s Noisy Coding

Theorem, all codewords have equal probability.

1
3 0 0 1

6

B(0) = {0, 3} B(0) ∩ C = {0}

1
3 1 1 1

3

B(1) = {0, 1} B(1) ∩ C = {0, 1}

1
3 2 2 1

3

B(2) = {1, 2} B(2) ∩ C = {1, 2}

3 3 1
6

B(2) = {2, 3} B(3) ∩ C = {3}
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Example 7.15 [continued]
To make things more concrete, take ε = 1

10 . Shannon’s Noisy
Coding Theorem (b) then says that if r > log2 t, when n is large, it
is impossible to find a code C ⊆ {0, 1, . . . , 2t − 1}n such that
|C | ≥ 2nr , and the error probability for each codeword is < 1

10 .

Suppose that C is such a code. For each v ∈ {0, 1, . . . , 2t − 1}n let

B(v) =
{
u ∈ {0, 1, . . . , 2t−1}n : ui = vi or ui = vi − 1 mod 2t for all i

}
.

This is the set of sent words that may be received as v . Let
M(v) = |B(v) ∩ C |. When v is received, the decoder must choose
arbitrarily between the M(v) equally likely codewords in B(v).
(Remember that each codeword is equally likely to be sent.) So
the probability of decoding incorrectly is 1− 1/M(v). Let P be the
average probability of incorrect decoding; by assumption P < 1

10 .
We have

P =
∑

v∈{0,1,...,2s−1}n
P[decode wrongly|Y = v ]P[Y = v ]. (†)

By the usual conditioning argument

P[Y = v ] =
∑

u∈C
P[X = u]P[Y = v |X = u]

=
∑

u∈C
P[X = u]

{
1
2n if u ∈ B(v)

0 otherwise

=
1

|C |
M(v)

2n
.

Let V be the set of words such that M(v) ≥ 1. (By the previous
equation, these are the words that may be received.) By (†),

P =
∑

v∈V

(
1− 1

M(v)

) 1

|C |
M(v)

2n
=

1

|C |2n
∑

v∈V
M(v)− |V |

|C |2n .

Now
∑

v∈V M(v) = 2n|C |, since each codeword u ∈ C is counted
2n times, once for each v it may be received as. Hence

P = 1− |V |
|C |2n .

Since V ⊆ {0, 1, . . . , 2t − 1}n, we have |V | ≤ (2t)n. Therefore
1
10 > P ≥ 1− (2t)n/|C |2n = 1− tn/|C |. Hence 9

10 < tn/|C | and
so |C | < 10

9 t
n. But by hypothesis 2rn < |C |. Taking logs we get

rn < log2
10
9 + n log2 t and so

r <
log2

10
9

n
+ log2 t.

For large n this contradicts our assumption that r > log2 t.



Part (C): Ergodic sources and the Asymptotic Equipartition
Property

§11 Typical words from memoryless sources

Question. What is a typical word from a source?

In the final part of the course we make sense of this question and
use the answer to give a new proof of Shannon’s Source Coding
Theorem and, in outline only, our first proof of the constructive
part of Shannon’s Noisy Coding Theorem in full generality. We end
by considering some practical solutions to the problems of source
and channel coding.

It is hard to give an example of a ‘typical word’. It is a bit like
asking ‘what is a typical pine tree?’: the trees that stand out are
all, for one reason or another, atypical. The best answer is
probably: ‘go into a pine wood and choose one at random — then
it’s probably fairly typical’.
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Binomial memoryless source

Exercise 11.1
Let p < 1

2 . A memoryless source emits 0 with probability 1− p and
1 with probability p. Let n ∈ N.

(i) What is the most common message of length n? Can one
reasonably say it is typical?

(ii) How many 1s are there in a typical word of length r?

(iii) What is the probability of each word of length r with the
average number of 0s and 1s? (Suppose that pr ∈ N.)

(iv) How is this related to the entropy of the source?

(v) What does Shannon’s Source Coding Theorem have to say
about efficiently coding messages from this source?

(vi) In what sense are words with about pr 1s typical?



Weak Law of Large Numbers

A good answer to (vi) is given by the Weak Law of Large
Numbers. Despite its name, it is very powerful and useful! We
shall prove it using Chebyshev’s Inequality: see Question 6(b) on
Problem Sheet 1.

Proposition 11.2 (Weak Law of Large Numbers)

Let X1, . . . ,Xr be independent real-valued random variables each
with expectation µ and variance σ2. Then

P
[
µ− ε < X1 + · · ·+ Xr

r
< µ+ ε

]
→ 1 as r →∞.



Logs of Probabilities

Exercise 11.1(iv) suggests that the random variable
log2 P[S1 . . . Sn] is of interest, where S1 . . . Sn is a random word of
length n emitted by a source. Note that a probability appears
‘inside’ the random variable: this is not so unusual in information
theory, but rarely seen in other fields using probability.

Example 11.3

Take the source from Example 11.1.

(a) The random variable log2 P[S1] takes value log2 p with
probability p and log2(1− p) with probability 1− p. (Since
p < 1

2 , these values are distinct.)

(b) The random variable log2 P[S1S2S3] takes distinct values

log2(1− p)3, log2 p(1− p)2, log2(1− p)p2, log2 p
3

with probabilities (1− p)3, 3p(1− p)2, 3p(1− p)p2, p3,
respectively. Exercise: What is its expectation?



Logs of Probabilities: General (Memoryless) Case

Exercise 11.4
Let S1,S2, . . . be a memoryless source and let

h = H(S1) = H(S2) = . . . .

(a) Express E
[
logP[S1]

]
in terms of h.

(b) What is E
[
logP[S1 . . . Sn]

]
in terms of h?

Lemma 11.5
Let S1,S2, . . . be the output of a memoryless source producing
symbols in an alphabet S. Let h = H(S1) be the per-symbol
entropy. Given ε > 0, there exists r ∈ N and a subset T (r) of Ar

such that

(i) P[S1 . . . Sr ∈ T (r)] > 1− ε;
(ii) 2−r(h+ε) ≤ P[S1 . . . Sr = s1 . . . sr ] ≤ 2−r(h−ε) for all words

s1 . . . sr ∈ T (r).
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§12 The Asymptotic Equipartition Property

Definition 12.1
Let S1, S2, . . . be the symbols in an alphabet S output by a source.
We say the source satisfies the Asymptotic Equipartition Property
(AEP) if there exists h ≥ 0 such that for all ε > 0 there exists
r ∈ N and a subset T (r) of Ar such that

(i) P[S1 . . . Sr ∈ T (r)] > 1− ε;
(ii) 2−r(h+ε) ≤ P[S1 . . . Sr = s1 . . . sr ] ≤ 2−r(h−ε) for all

s1 . . . sr ∈ T (r).

By Lemma 11.5, a memoryless source S1,S2, . . . satisfies the AEP,
with h = H(S1). In the remainder of this section we prove some
corollaries of this result.

As a warm up, we prove a special case of the constructive part of
Shannon’s Source Coding Theorem. (See Problem Sheet 8 for the
general version: this special case should be helpful.)



Shannon’s Source Coding Theorem and the AEP

Example 12.2

Let S1,S2, . . . be a memoryless source emitting the bits 0 and 1
each with probability 1− p and p. Let

h = H(p, 1− p) = −p log2 p − (1− p) log2(1− p).

Then H(S1) = H(S2) = . . . = h. Fix ε > 0, to be chosen by the
end of the proof. By the AEP, there exists a subset T of {0, 1}n
such that P[S1 . . . Sr ∈ T ] ≥ 1− ε and

2−n(h+ε) ≤ P[S1 . . . Sr = s1 . . . sr ] ≤ 2−n(h−ε)

for all s1 . . . sr ∈ T . By the lower bound above,

∑

s1...sr∈T
P[S1 . . . Sr = s1 . . . sr ] ≥ |T |2−n(h+ε).

Therefore |T | ≤ 2r(h+ε). We can encode all the typical words from
the source using the binary words of a fixed length ≥ r(h + ε).



Example 12.2: Injective Encoder

To turn this idea into a well-defined injective encoder f (r), let
m = 1 + dr(h + ε)e and let u(0), . . . , u(M − 1) be a list of all the
words in T . Note that M ≤ 2m−1, and so the binary form of each
j < M has at most m − 1 bits. We define f (r) as follows:

I if s1 . . . sr ∈ T , with s1 . . . sr = u(j), then

f (r)(s1 . . . sr ) = 1j0 . . . jm−1 ∈ {0, 1}m

where j0 . . . jm−1 is the m-bit binary form of j .

I if s1 . . . sr 6∈ T , then

f (r)(s1 . . . sr ) = 0s1 . . . sr ∈ {0, 1}r+1.

Exercise: check that the code

C = {f (r)(s1 . . . sr ) : s1 . . . sr ∈ {0, 1}r}

is prefix-free.



Example 12.2: Expected Length for the Code

The length of the codeword f (r)(s1 . . . sr ) depends only on whether
or not s1 . . . sr is typical. We have

f
(r)

= P[S1 . . . Sr ∈ T ]m + P[S1 . . . Sr 6∈ T ](r + 1)

≤ m + ε(r + 1)

≤ 2 + r(h + ε) + ε(r + 1)

and so
f
(r)

r
= h + 2ε+

2 + ε

r
.

By choosing r sufficiently large and ε sufficiently small, we may
make the right-hand side arbitrarily close to h, as required.



Shannon’s Noisy Coding Theorem for the BSC(p) and the
AEP

We now use the AEP to prove Shannon’s Noisy Coding Theorem
(Theorem 7.4) in the special case of the Binary Symmetric
Channel with error probability p. Recall that the input and output
alphabets are {0, 1} and that each sent bit flips, independently,
with probability p.

0 0

1 1

p

p

1−p

1−p

Let h = H(p, 1− p). By Example 7.13(a), the capacity of this
channel is 1− H(p, 1− p). Let r < c be given and, as in the proof
for the toy version of the channel seen in §9, let M = 2d2rn, where
n will be chosen by the end of the proof.



Shannon’s Noisy Coding Theorem for BSC(p)

As in the proof for the toy version, we choose a code
C = {U(1), . . . ,U(M)} ⊆ {0, 1}n by picking each codeword
independently and uniformly at random from {0, 1}n.

As usual, let X ∈ {0, 1}n denote the sent codeword and
Y ∈ {0, 1}n denote the received word. The main idea is to apply
the AEP to find the typical set for the random variable (X ,Y ). For
this we need to know its entropy.

Lemma 12.3
Let X ∈ {0, 1}n be distributed uniformly and let Y ∈ {0, 1}n be
the received word when X is sent through the BSC(p). The pairs
(Xi ,Yi ) are independent random variables and

H(X1,Y1) = . . . = H(Xn,Yn) = 1 + h.



Application of the AEP

Thus (X1,Y1), (X2,Y2), . . . is the sequence of symbols in {(0, 0),
(0, 1), (1, 0), (1, 1)} emitted by a memoryless source of entropy
1 + h. By the AEP, given ε > 0, provided n is sufficiently large,
there is a subset T of {0, 1}2n such that if X and Y are as in the
lemma, then

P[(X ,Y ) ∈ T ] ≥ 1− ε
and

2−n(1+h+ε) ≤ P[X = u,Y = v ] ≤ 2−n(1+h−ε)

for all (u, v) ∈ T . We use T to define the following decoding rule:

I Suppose that v ∈ {0, 1}n is received. If there exists a unique i
such that (U(i), v) ∈ T then decode v as i . Otherwise decode
as U(1).



Using the Typical Set to Decode

Since T is a typical set, we expect that most of the time when we
send U(i), we receive a v such that (U(i), v) ∈ T . Therefore
decoding should succeed most of the time. To make this idea
precise, we need two further properties of T .

(a) Since 2−n(1+h+ε) ≤ P[X = u,Y = v ] for all (u, v) ∈ T , the
same argument as Example 12.2 shows that |T | ≤ 2n(1+h+ε).

(b) Suppose that X̃ and Ỹ are independently and uniformly
distributed on {0, 1}n, so P[X̃ = u, Ỹ = v ] = 1

2n × 1
2n = 1

22n

for all (u, v) ∈ Fn
2. Hence, by (a),

P[(X̃ , Ỹ ) ∈ T ] =
∑

(u,v)∈T
P[X̃ = u, Ỹ = v ]

≤ 2−2n2n(1+h+ε) = 2−n(1−h−ε).



Bound on Error Probability
Let Pi be the probability that when U(i) is sent it is incorrectly
decoded. If this happens then either (U(i),Y ) 6∈ T , or there is
some other codeword U(j) such that (u(j),Y ) ∈ T . Therefore

Pi ≤ P[(U(i),Y ) 6∈ T ] +
∑

j 6=i

P[(U(j),Y ) ∈ T ].

I Since U(i) is distributed uniformly at random, it is the same
random variable as the X used in the AEP and so

P[(U(i),Y ) 6∈ T ] = P[(X ,Y ) 6∈ T ] < ε.

(Note here that we are using both random models: channel
and code.)

I For the second summand note that Y is independent of U(j),
and that, since U(i) is distributed uniformly on {0, 1}n, so is
Y . (This is the BSC(p)-version of Question 1 on Sheet 7.)
Therefore (X ,Y ) is the same random variable as the (X̃ , Ỹ )
in (b) and so P[(U(j),Y ) ∈ T ] ≤ 2−n(1−h−ε) for each j .



End of proof

Since M = 2d2rne ≤ 2
(
2rn + 1) = 2rn+1 + 2 ≤ 2rn+2 we have

Ecode[Pi ] < ε+ (M − 1)2−n(1−h−ε)

< ε+ 2rn+2−n(1−h−ε)

= ε+ 2−n(1−h−r−ε)+2.

Since r < 1− h, by choosing ε sufficiently small, we have
1− h − r − ε > 0. Therefore by choosing r sufficiently large, we
have E[Pi ] < 2ε for all i .

The remainder of the proof is as in the proof of Proposition 9.5:
there is a particular code C ? of size M such that the average error
probability P is at most 2ε. Choosing the best half of the
codewords then gives a code of size M/2 = d2rne for which all the
error probabilities are at most 2ε.



Source Coding with Errors

A memoryless source emits the bits 0 and 1 each with equal
probability 1

2 . Thus

P[S1S2S3 = 000] = P[S1S2S3 = 001] = . . . = P[S1S2S3 = 111] = 1
8 .

The per-symbol entropy is H(12 ,
1
2) = 1, so Shannon’s Noiseless

Coding Theorem (Theorem 4.7(b)) says that the average length of
any injective encoder for words of length r is at least r .

In this section we allow non-injective encoders. These lose some
information about the source; correspondingly, the source can be
compressed beyond the bound in Shannon’s Noiseless Coding
Theorem.



Useful Inequality

In the proof of Proposition 12.5 outlined in the printed notes, we
need the inequality 1− t ≤ e−t and so (1− 1

M )M ≤ e−1. In fact,
when M is large, the two sides are very close.

Example 12.4

A lottery sells tickets numbered from {1, . . . ,T}. On the day of
the draw, a random number is generated in this set: everyone
whose ticket matches wins a prize. Let pM be the probability that
no-one wins when M people buy tickets. Then pM ≤ e−M/T .
Moreover, pαT → e−α as T →∞ for any α > 0.

Exercise. Let W be the number of winning tickets. What is E[W ]?

Answer: each ticket has probability 1/T of winning, so by linearity
of expectation, E[W ] =

∑M
i=1 1/T = M/T .
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Compression

Proposition 12.5

Let D < 1
2 be given and let h = H(D, 1− D). Let ε > 0 be given.

Provided n is sufficiently large, there is a binary code C ⊆ {0, 1}n
of size 2n(1−h) and an encoder f : {0, 1}n → C such that

P
[
d(f (S1 . . . Sn),S1 . . . Sn) ≥ (D + ε)] ≤ ε.

Above d denotes Hamming distance. Thus it is very likely that the
codeword e(S1 . . . Sn) chosen to encode S1 . . . Sn differs from
S1 . . . Sn in at most (D + ε)n bits. Allowing a probability D of
error on each bit allows us to compress n bits into n(1− h) bits.



Example of Compression

Example 12.6

A source emits 120 bits per second, each equally likely to be 0 and
1. If a noiseless channel can only send 80 bits per second then we
must compress by a factor of 2

3 .

I Therefore D, the least possible bit error probability, must
satisfy 1− H(D, 1− D) = 2

3 , or equivalently,
H(D, 1− D) = 1

3 . Solving numerically we find that
D ≈ 0.0615. So this compression is feasible provided a bit
error probability of about 6.1% is acceptable.

I Compare this with the very naive encoder that simply forgets
the final 40 bits each second. For each forgotten bit, there is
a 1

2 chance that the decoder makes the correct choice. So the
average bit error probability is (80× 0 + 40× 1

2)/120 = 1
6 , or

about 16.7%.
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Equality and Diversity Survey
The Mathematics and ISG Equality and Diversity Committee wants
to hear from you!

All students in the Mathematics Department and ISG are warmly
encouraged to complete this survey. Go to:
I https://rhul.onlinesurveys.ac.uk/athena-swan-student-survey-

mathematics-2019
I tinyurl.com/vof7lso
I use QR code below, or read your email for the link

The survey is linked to the Athena SWAN scheme. Its purpose is
to promote gender equality in higher education for staff and
students. Your responses will inform our Athena SWAN actions.



§13 General sources and Lempel–Ziv encoding
So far we have only considered memoryless sources. We end by
briefly considering general sources.

Definition 13.1
The entropy of a source S1, S2 . . . is

lim
r→∞

H(S1, . . . ,Sr )

r

when this limit exists.

Example 13.2

(1) The memoryless binary source in Exercise 11.1 which emits 0
with probability 1− p and 1 with probability p has entropy
H(p, 1− p).

(2) Consider the binary source for which
P[S1 = 0] = P[S1 = 1] = 1

2 and St = S1 for all t ∈ N. Thus
the source emits either 000 . . . or 111 . . . with equal
probability. Its entropy is 0.



§13 General sources and Lempel–Ziv encoding
So far we have only considered memoryless sources. We end by
briefly considering general sources.

Definition 13.1
The entropy of a source S1, S2 . . . is

lim
r→∞

H(S1, . . . ,Sr )

r

when this limit exists.

Example 13.2

(3) Consider the binary source which starts by flipping a coin
biased to lands heads with probability p. If the coin lands
heads, it emits 111 . . .. Otherwise it behaves as the source in
(1). You are asked to show on Problem Sheet 9 that the
entropy of this source is (1− p)H(p, 1− p), and that it is not
memoryless.



§13 General sources and Lempel–Ziv encoding
So far we have only considered memoryless sources. We end by
briefly considering general sources.

Definition 13.1
The entropy of a source S1, S2 . . . is

lim
r→∞

H(S1, . . . ,Sr )

r

when this limit exists.

The following lemma generalizes Example 13.2(1). A proof is
outlined on Problem Sheet 9.

Lemma 13.3
The entropy of a memoryless source S1,S2, . . . exists and is H(S1).



Stationary Sources

Definition 13.4
Let S1,S2, . . . be a source emitting symbols in an alphabet A. The
source is stationary if for all α1, . . . , α` ∈ A and distinct times
t1, . . . , t` we have

P[St1 = α1, . . . ,St` = α`] = P[St1+r = α1, . . . ,St`+r = α`]

for all r ∈ N0.

For example, memoryless sources (see Definition 3.1) are stationary
since the symbols are independent and identically distributed.

The sources in Example 13.2(2) and (3) are also stationary.
Example 13.7 gives a source that may not be stationary.
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Ergodic Sources

Definition 13.5
Fix a source S1, S2, . . . emitting symbols in an alphabet A.

(i) The frequency of a word α1 . . . α`, in the first r symbols,
denoted Fα1...α`

(r) is the number of times
t ∈ {1, . . . , r − `+ 1} such that St = α1, . . . , St+`−1 = α`.

(ii) The source is ergodic if for all words α1 . . . α`,

lim
r→∞

Fα1...α`
(r)

r
= P[S1 = α1, . . . ,S` = α`].

Example 13.6

The source in Example 13.2(2) is not ergodic. The frequency F1(r)
of the word 1 in the first r bits S1 . . . Sr is either r or 0, with equal
probability. Therefore

F1(r)

r
=

{
1 with probability 1

2

0 with probability 1
2 .
.



Example 13.7

A source S1,S2, . . . has alphabet {0, 1}. If St = 0 then St+1 = 0
with probability 3

4 and otherwise 1; if St = 1 then St+1 is equally
likely to be 0 and 1. These ‘transition probabilities’ can be
recorded in a matrix

T =

(
3
4

1
4

1
2

1
2

)
.

By diagonalizing T one finds that [typo in printed notes t not s]

T t = 1
3

(
2 + 1

4t 1− 1
4t

2− 2
4t 1 + 2

4t

)
→
(

2
3

1
3

2
3

1
3

)
as t →∞.

Let ht be the entropy of the first t bits emitted by the source. By
the Chaining Rule (Lemma 7.6)

ht = H(S1, . . . ,St−1,St) = H(S1, . . . ,St−1) + H(St |S1, . . . ,St−1).

Since St depends on S1, . . . ,St−1 only through St−1, this equation
implies that ht = ht−1 + H(St |St−1).



AEP for Stationary Ergodic Sources

Theorem 13.8
A stationary ergodic source satisfies the Asymptotic Equipartition
Property, as stated in Definition 12.1, taking h to be the entropy
of the source.

The proof of this theorem is beyond the scope of the course. You
were asked to show in Question 2 on Sheet 8 that the AEP for
memoryless sources implies Shannon’s Noiseless Coding Theorem:
it is routine to generalize this proof using Theorem 13.8 to prove
Shannon’s Noiseless Coding Theorem for a general stationary
ergodic source.



Correction: Lossy Coding

For a memoryless source emitting 0 with probability 1− p and 1
with probability p, and any D < p one can encode with bitwise
error probability D using r(H(p)− H(D)) bits to encode every r
bits emitted by source.

In the lecture I argued that by Shannon’s Noiseless Coding
Theorem one could encode using rH(p) bits, with no error, and
then encode the codewords with bitwise error probability D
compressing by a further 1− H(D), to get rH(p)(1− H(D)).

I This is a weaker result than the one above.

I Problem: bit errors change the codewords, so the error
probability for the original source may be worse than D.



Lempel–Ziv Encoding: Example 13.9
Take

x = 10110 10100 010 = x1x2 . . . x13.

We initialize the dictionary with the empty word ∅, to which we
assign 0 ∈ N0, so ∅ 7→ 0. (As a notational aid, values are written
in red.) We then read the word from position 1.

At Step s, reading the word from position t, we take the longest
subword xt . . . xt+`−1 that is in the dictionary. (This could be the
empty word when ` = 0.) We then extend the dictionary by
xt . . . xt+`−1xt+` 7→ s and continue from position t + `+ 1.

s From Subword New word

1 1 ∅ 1 7→ 1
2 2 ∅ 0 7→ 2
3 3 1 11 7→ 3
4 5 0 01 7→ 4
5 7 01 010 7→ 5
6 10 0 00 7→ 6
7 12 1 10 7→ 7



Example 13.9: Efficient Encoding of Dictionary

The final dictionary determines the word: just concatenate its
elements in value order. To represent the dictionary efficiently,
note that each new word is obtained by appending a bit to a word
already in the dictionary.

For example at Step 5, 010 was obtained by appending 0 to 01,
which had value 4. We may therefore replace 010 with (4, 0). We
then encode 4 in binary, as 100.

In general, at Step s we append to a word with value in
{0, 1, . . . , s − 1}, so we need dlog2 se bits to distinguish all the
values.



Example 13.9: Efficient Encoding of Dictionary

s New Word (Value, New Bit) dlog2 se (Binary Value, New Bit) Encoding

1 1 7→ 1 (0, 1) 0 (∅, 1) 1

2 0 7→ 2 (0, 0) 1 (0, 0) 00

3 11 7→ 3 (1, 1) 2 (01, 1) 011
4 01 7→ 4 (2, 1) 2 (10, 1) 101

5 010 7→ 5 (4, 0) 3 (100, 0) 1000
6 00 7→ 6 (2, 0) 3 (010, 0) 0100
7 10 7→ 7 (1, 0) 3 (001, 0) 0011

The final encoding is therefore 100011101100001000010, or

100011101100001000010
as it should be written using just the uncoloured binary alphabet.
Note that without the colour coding, the convention that dlog2 se
bits are used for the value at step s is essential to decode
unambiguously. [Corrected 2 April 2020: the binary encoding
for the final step was wrong in the final bit (which I then
omitted to put in the final encoding).]
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Algorithm 13.9: Lempel–Ziv

The input is a word x1 . . . xr and the output is a binary word.

Initialize the dictionary: define ∅ 7→ 0 and set t = 1. Go to Step 1.

Step s: if t > r then terminate.

I Read the word from position t. Choose ` maximal such that
the dictionary contains xt . . . xt+`−1: suppose that
xt . . . xt+`−1 7→ v .

I Append the binary form of v of length dlog2 se to the output
word.

I If t + `− 1 = r then terminate. Otherwise append xt+` and
add xt . . . xt+` 7→ s to the dictionary. Go to Step s + 1.

The only extra feature is that if x ends with a subword in the
dictionary, we do not need to extend the dictionary, and we simply
output the binary form of the value of the subword.

All this can be done using the Mathematica notebook
LempelZiv.nb on Moodle.
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The only extra feature is that if x ends with a subword in the
dictionary, we do not need to extend the dictionary, and we simply
output the binary form of the value of the subword.

All this can be done using the Mathematica notebook
LempelZiv.nb on Moodle.



Lempel–Ziv on a Highly Structured Word
In any example you are likely to have the patience to do by hand,
the Lempel–Ziv encoding will almost certainly be longer than the
original word.

Example 13.11

Consider the word w (s) of length 2s formed by repeating 01. For
example,

w (10) = 0101010101 0101010101

shown split into two blocks of size 10 for readability. Let `s be the
length of the Lempel–Ziv encoding w (s). Even for this highly
regular word, it is not until s = 28, so length 56, that the
Lempel–Ziv encoding is shorter. The table below, shows the ratio
`s/2s.

s 1 2 5 10 20 27 28 29 30 40 50 60 120

`s/2s 1.5 1.5 1.6 1.2 1.1 1 0.982 1.017 0.983 0.875 0.830 0.783 0.621



Lempel–Ziv Theory and Practice

For a worked example of decoding, see Problem Sheet 9.

The Lempel–Ziv Algorithm was published in 1977. Later in 1991 it
was proved that, for suitable sources, the algorithm achieves the
bound in Shannon’s Noiseless Coding Theorem, and so is optimal.
Very, very roughly, one might expect this to be true because, by
the AEP, a source of entropy h has a set of about 2hr typical
messages of length r , all of which enter the Lempel–Ziv dictionary;
at this point in the algorithm the dictionary also has size about
2hr , so d2hre+ 1 ≈ hr + 1 bits are output for each subword of
length r emitted by the source.

So the Lempel–Ziv Algorithm is a practical solution to the problem
of source coding.


