
MT5462 ADVANCED CIPHER SYSTEMS

MARK WILDON

These notes cover the part of the syllabus for MT5462 that is not part of
the undergraduate course. Further installments will be issued as they
are ready. All handouts and problem sheets will be put on the MT362
Moodle page, marked M.Sc.

I would very much appreciate being told of any corrections or possible
improvements to these notes.

You are warmly encouraged to ask questions in lectures, and to talk to
me after lectures and in my office hours. I am also happy to answer ques-
tions about the lectures or problem sheets by email. My email address is
mark.wildon@rhul.ac.uk.

Lectures: Monday 4pm (MFLEC), Friday 11am (MC219), Friday 4pm
(MC219).

Extra lecture for M.Sc. students: Thursday 1pm (MC336).

Office hours in McCrea 240: Tuesday 3.30pm, Wednesday 10am, Thurs-
day noon or by appointment.

Relevant seminar: The Information Security Group Seminar is at 11am
Thursdays. To subscribe to the mailing list go to: www.lists.rhul.ac.

uk/mailman/listinfo/isg-research-seminar.

Date: First term 2018/19.

2

OVERVIEW

Lecture 1 We start with a secret sharing scheme related to Reed–Solomon codes.
We then look at boolean functions, the Berlekamp–Massey algorithm and
the Discrete Fourier Transform, and see how these mathematical ideas
have been applied to stream ciphers and block ciphers.

1. REVISION OF FIELDS AND POLYNOMIALS

Essentially every modern cipher makes use of the finite field F2. Many
use other finite fields as well: for example, a fundamental building block
in AES (Advanced Encryption Standard) is the inversion map x 7→ x−1

on the non-zero elements of the finite field F28 with 256 elements.

This section should give enough background for the course. It will
also be useful for MT5461 Theory of Error Correcting Codes, next term.
Proofs in this section are non-examinable.

Fields. Informally, a field is a set in which one can add, subtract and mul-
tiply any two elements, and also divide by non-zero elements. Examples
of infinite fields are the rational numbers Q and the real numbers R. If p
is a prime, then the set Fp = {0, 1, . . . , p− 1}, with addition and multi-
plication defined modulo p is a finite field: see Theorem 1.2.

The formal definition is below. You do not need to memorise this.

Definition 1.1. A field is a set of elements F with two operations, + (ad-
dition) and × (multiplication), and two special elements 0, 1 ∈ F such
that 0 6= 1 and

(1) a + b = b + a for all a, b ∈ F;
(2) 0 + a = a + 0 = a for all a ∈ F;
(3) for all a ∈ F there exists b ∈ F such that a + b = 0;
(4) a + (b + c) = (a + b) + c for all a, b, c ∈ F;

(5) a× b = b× a for all a, b ∈ F;
(6) 1× a = a× 1 = a for all a ∈ F;
(7) for all non-zero a ∈ F there exists b ∈ F such that a× b = 1;
(8) a× (b× c) = (a× b)× c for all a, b, c ∈ F;

(9) a× (b + c) = a× b + a× c for all a, b, c ∈ F.
If F is finite, then we define its order to be its number of elements.

If you are familiar with basic group theory, it will be helpful to note
that (1)–(4) say that F is an abelian group under addition, and that (5)–(8)
say that (F\{0},×) is an abelian group under multiplication. The final
axiom (9) is the distributive law relating addition and multiplication.

3

It is usual to write −a for the element b in (4); we call −a the additive
inverse of a. We write a−1 for the element b in (8); we call a−1 the multi-
plicative inverse of a. We usually write ab rather than a× b.

Exercise: Show, from the field axioms, that if x ∈ F, then x has a unique
additive inverse, and that if x 6= 0 then x has a unique multiplicative
inverse. Show also that if F is a field then a× 0 = 0 for all a ∈ F.

Exercise: Show from the field axioms that if F is a field and a, b ∈ F are
such that ab = 0, then either a = 0 or b = 0.

We will use the second exercise above many times.

Theorem 1.2. Let p be a prime. The set Fp = {0, 1, . . . , p− 1} with addition
and multiplication defined modulo p is a finite field of order p.

There is a unique (up to a suitable notion of isomorphism) finite field
of any given prime-power order. The smallest field not of prime order is
the finite field of order 4.

Example 1.3. The addition and multiplication tables for the finite field
F4 = {0, 1, α, 1 + α} of order 4 are shown below.

+ 0 1 α 1 + α

0 0 1 α 1 + α

1 1 0 1 + α α

α α 1 + α 0 1
1 + α 1 + α α 1 0

× 1 α 1 + α

1 1 α 1 + α

α α 1 + α 1
1 + α 1 + α 1 α

Probably the most important thing to realise is that F4 is not the integers
modulo 4. Indeed, in Z4 = {0, 1, 2, 3} we have 2× 2 = 0, but if a ∈ F4
and a 6= 0 then a× a 6= 0, as can be seen from the multiplication table.
(Alternatively this follows from the second exercise above.)

4

Polynomials. Let F be a field. Let F[x] denote the set of all polynomials

f (x) = a0 + a1x + a2x2 + · · ·+ amxm

where m ∈N0 and a0, a1, a2, . . . , am ∈ F.

Definition 1.4. If f (x) = a0 + a1x + a2 + · · ·+ amxm where am 6= 0, then
we say that m is the degree of the polynomial f , and write deg f = m. The
degree of the zero polynomial is, by convention, −1.

It is often useful that the constant term in a polynomial f is f (0).

A polynomial is a non-zero constant if and only if it has degree 0. The
degree of the zero polynomial is not entirely standardized: you might
also see it defined to be −∞, or left undefined.

Polynomials are added and multiplied in the natural way.

Lemma 1.5 (Division algorithm). Let F be a field, let g(x) ∈ F[x] be a non-
zero polynomial and let f (x) ∈ F[x]. There exist polynomials s(x), r(x) ∈ F[x]
such that

f (x) = s(x)g(x) + r(x)

and either r(x) = 0 or deg r(x) < deg g(x).

We say that s(x) is the quotient and r(x) is the remainder when f (x) is
divided by g(x). Lemma 1.5 will not be proved in lectures. The impor-
tant thing is that you can find the quotient and remainder in practice. In
MATHEMATICA use PolynomialQuotientRemainder.

Exercise 1.6. Let g(x) = x3 + x + 1 ∈ F2[x], let f (x) = x5 + x2 + x ∈
F2[x]. Find the quotient and remainder when f (x) is divided by g(x).

For Shamir’s secret sharing scheme we shall need the following prop-
erties of polynomials.

Lemma 1.7. Let F be a field.

(i) If f (x) ∈ F[x] has a ∈ F as a root, i.e. f (a) = 0, then there is a
polynomial g(x) ∈ F[x] such that f (x) = (x− a)g(x).

(ii) If f (x) ∈ F[x] has degree m ∈ N0 then f (x) has at most m distinct
roots in F.

(iii) Suppose that f , g ∈ F[x] are non-zero polynomials such that deg f ,
deg g < t. If there exist distinct c1, . . . , ct ∈ F such that f (ci) = g(ci)
for each i ∈ {1, . . . , t} then f = g.

5

Part (iii) is the critical result. It says, for instance, that a linear poly-
nomial is determined by any two of its values. When F is the real num-
bers R this should be intuitive—there is a unique line through any two
distinct points. Similarly a quadratic is determined by any three of its
values, and so on.

Conversely, given t values, there is a polynomial of degree at most
t taking these values at any t distinct specified points. This has a nice
constructive proof.

Lecture 2Lemma 1.8 (Polynomial interpolation). Let F be a field. Let

c1, c2, . . . , ct ∈ F

be distinct and let y1, y2, . . . , yt ∈ F. The unique polynomial f (x) ∈ F[x],
either zero or of degree < t, such that f (ci) = yi for all i is

f (x) =
t

∑
i=1

yi
∏j 6=i(x− cj)

∏j 6=i(ci − cj)
.

Multivariable polynomials. Polynomials in multiple variables are often use-
ful for describing cryptographic primitives. For example, f (x1, x2, x3) =
x1x2 + x1x3 + x2x3 is a multivariable polynomial in the three variables
x1,x2,x3,x4 and coefficients in F2.

Exercise 1.9. Let a1, a2, a3 ∈ F2. Show that, as defined above,

f (a1, a2, a3) =

{
0 if at most one of the ai is 1
1 if at least two of the ai are 1.

2. SHAMIR’S SECRET SHARING SCHEME

Motivation. Some flavour of secret sharing is given by the following in-
formal example.

Example 2.1. Ten people want to know their mean salary. But none is
willing to reveal her salary si to the others, or to a ‘Trusted Third Party’.
Instead Person 1 chooses a large number M. She remembers M, and
whispers M + s1 to Person 2. Then Person 2 whispers M + s1 + s2 to
Person 3, and so on, until finally Person 10 whispers M + s1 + s2 + · · ·+
s10 to Person 1. Person 1 then subtracts M and can tell everyone the mean
(s1 + s2 + · · ·+ s10)/10.

Exercise 2.2. Show that if Person j hears N from Person j− 1 then s1 +
· · ·+ sj−1 can consistently be any number between 0 and N.

6

Provided M is chosen much larger than any conceivable salary, this ex-
ercise shows that the scheme does not leak any unintended information.

Exercise 2.3. In the two person version of the scheme, Person 1 can de-
duce Person 2’s salary from M + s1 + s2 by subtracting M + s1. Is this a
defect in the scheme?

Shamir’s secret sharing scheme. In Shamir’s scheme the secret is an element
of a finite field Fp. It will be shared across n people so that any t of them,
working together, can deduce the secret, but any t− 1 of them can learn
nothing. To set up the scheme requires a Trusted Third Party, who we
will call Trevor.

In a typical application, you are Trevor, and the n people are n un-
trusted cloud computers, labelled 1 up to n.

Definition 2.4. Let p be a prime and let s ∈ Fp. Let n ∈ N, t ∈ N be
such that t ≤ n < p. Let c1, . . . , cn ∈ Fp be distinct non-zero elements.
In the Shamir scheme with n people and threshold t, to share the secret
s ∈ Fp, Trevor chooses at random a1, . . . , at−1 ∈ Fp and constructs the
polynomial

f (x) = s + a1x + · · ·+ at−1xt−1

with constant term s. Trevor then issues the share f (ci) to Person i.

As often the case in cryptography and coding theory, it is important to
be clear about what is private and what is public information.

In the Shamir scheme the parameters n, t and p are public, as are the
evaluation points c1, . . . , cn and the identities of Persons 1 up to n. Only
Trevor knows f (x), and, at the time it is issued, the share f (ci) is known
only to Person i and Trevor.

Example 2.5. Suppose that n = 5 and t = 3. Take p = 7 and ci = i for
each i ∈ {1, 2, 3, 4, 5}. We suppose that s = 5. Trevor chooses a1, a2 ∈ F7
at random, getting a1 = 6 and a2 = 1. Therefore f (x) = 5 + 6x + x2 and
the share of Person i is f (ci), for each i ∈ {1, 2, 3, 4, 5}, so(

f (1), f (2), f (3), f (4), f (5)
)
= (5, 0, 4, 3, 4).

The following exercise shows the main idea needed to prove Theo-
rem 2.7 below.

Exercise 2.6. Suppose that Person 1, with share f (1) = 5, and Person 2,
with share f (2) = 0, cooperate in an attempt to discover s. Show that for
each z ∈ F7 there exists a unique polynomial fz(x) such that deg f ≤ 2
and f (0) = z, fz(1) = 5 and fz(2) = 0. For example f2(x) = 3x2 + 2

7

and f3(x) = 2x + 3. Since Trevor chose the coefficients of f at random,
Persons 1 and 2 can learn nothing about s.

Lecture 3Theorem 2.7. In a Shamir scheme with n people, threshold t and secret s, any t
people can determine s but any t− 1 people can learn nothing about s.

The proof shows that any t people can determine the polynomial f .
So as well as learning s, they can also learn the shares of all the other
participants.

Exercise 2.8. Suppose Trevor shares s ∈ Fp across n computers using the
Shamir scheme with threshold t. He chooses the first t computers. They
are instructed to exchange their shares; then each computes s and sends
it to Trevor. Unfortunately Malcolm has compromised computer 1. Show
that Malcolm can both learn s and trick Trevor into thinking his secret is
any chosen s′ ∈ Fp.

The remainder of this section is non-examinable and included for in-
terest only.

Example 2.9. The root key for DNSSEC, part of web of trust that guaran-
tees an IP connection really is to the claimed end-point, and not to Mal-
colm doing a Man-in-the-Middle attack, is protected by a secret sharing
scheme with n = 7 and t = 5: search for ‘Schneier DNSSEC’.

The search above will take you to Bruce Schneier’s blog. It is highly
recommended for background on practical cryptography.

Exercise 2.10. Take the Shamir scheme with threshold t and evaluation
points 1, . . . , n ∈ Fp where p > n. Trevor has shared two large numbers
r and s across n cloud computers, using polynomials f and g so that the
shares are

(
f (1), . . . , f (n)

)
and

(
g(1), . . . , g(n)

)
.

(a) How can Trevor secret share r + s mod p?
(b) Assuming that n ≥ 2t, how can Trevor secret share rs mod p?

Note that all the computation has to be done on the cloud!

Remark 2.11. The Reed–Solomon code associated to the parameters p, n,
t and the field elements c1, c2, . . . , cn is the length n code over Fp with
codewords all possible n-tuples

{
(

f (c1), f (c2), . . . , f (cn)
)

: f ∈ Fp[x], deg f ≤ t− 1}.
It will be studied in MT5461. By Theorem 2.7, each codeword is deter-
mined by any t of its positions. Thus two codewords agreeing in n− t+ 1
positions are equal: this shows the Reed–Solomon code has minimum
distance at least n− t + 1.

8

We have worked over a finite field of prime size in this section. Reed–
Solomon codes and the Shamir secret sharing scheme generalize in the
obvious way to arbitrary finite fields. For example, the Reed–Solomon
codes used on compact discs are defined using the finite field F28 .

3. INTRODUCTION TO BOOLEAN FUNCTIONS

Lecture 4 Definition and cryptographic motivation. Recall that F2 = {0, 1} is the finite
field of size 2. We refer to its elements as bits.

Definition 3.1. Let n ∈ N. An n-variable boolean function is a function
Fn

2 → F2.

A boolean function f : Fn
2 → F2 can be defined by its truth table, which

records for each x ∈ Fn
2 its image f (x). For example, the Boolean func-

tions F2
2 → F2 of addition and multiplication are defined by the truth

tables below.

x y x + y

0 0 0
0 1 1
1 0 1
1 1 0

x y xy

0 0 0
0 1 0
1 0 0
1 1 1

It is sometimes useful to think of 0 as false (written F) and 1 as true (writ-
ten T). Then multiplication corresponds to logical ‘and’.

A typical modern cipher is defined by using boolean functions to de-
fine functions Fn

2 → Fn
2 , and then composing them in a number of ‘rounds’.

We give two motivating examples below. To avoid eye-strain we write
(1, 0, 1, 1, 1, 0, 0, 1) ∈ F8

2 as 1011 1001 and so on.

Example 3.2.

(1) As usual + : Fn
2 × Fn

2 → Fn
2 denotes vector space addition. For

instance, if n = 8, then 1010 1010 + 0000 1111 = 1010 0101 and
1000 0001 + 1000 0001 = 0000 0000: note each sum can be com-
puted bit-by-bit from the truth table for addition above.

Each round of the widely used block cipher AES is of the form
(x, k) 7→ G(x) + k where x ∈ F256

2 is the input to the round (de-
rived ultimately from the plaintext) and k ∈ F128

2 is derived from
the key; the definition of G : F128

2 → F128
2 will be seen in Part C.

(2) In the block cipher FEAL, a critical ‘mixing’ function is modular
addition in Z/28Z, denoted �. To define � we identify F8

2 with

9

Z/28Z by writing numbers in their binary form, as on the pre-
liminary problem sheet. For instance,

10101010 � 00001111 = 10111001

10000001 � 10000001 = 00000010

corresponding to 170+ 15 = 185 mod 256 and 129+ 129 = 2 mod
256. Modular addition is a convenient operation because it is fast
on a computer; unfortunately because of the way it is combined
with the other functions in each round, FEAL is now famous only
for the many ways in which it can be attacked.

Exercise 3.3. Motivated by FEAL, define f : F4
2 → F2 by f (x1, x0, y1, y0) =

z1 where x1x0 � y1y0 = z1z0 mod 4. For instance, since 3 + 1 = 0 mod 4
we have 11 � 01 = 00 and so f (1, 1, 0, 1) = 0.

(a) Is f a Boolean function?
(b) Check that f is also defined by f (x1, x0, y1, y0) = x1 + y1 + x0y0.
(c) What is the connection with the arithmetic algorithm you learned

at school? x y x =⇒ y

F F
F T
T F
T T

Lecture 5

Exercise 3.4. Complete the truth table for logical implication, writing F
for 0 (false) and T for 1 (true).

Exercise 1.9 and Exercise 3.3 show that Boolean functions can be ex-
pressed in many different ways, not always obviously the same. In the
remainder of this section we study ‘normal forms’ for boolean functions.
Applications to cryptography will follow.

Lemma 3.5. There are 22n
boolean function in n variables.

Algebraic normal form. In F2 we have 02 = 0 and 12 = 1. Therefore the
Boolean functions f (x1) = x2

1 and f (x1) = x1 are equal. Hence multi-
variable polynomials do not need squares or higher powers of the vari-
ables. Similarly, since 2x1 = 0, the only coefficients needed are the bits 0
and 1. For instance, x1 + x1x2

2x3
3 + x2

1 + x2x3 is the same Boolean function
as x2x3 + x1x2x3.

Exercise 3.6. Find a simple form for the product of f (x1, x2, x3) = x1x2x3
and maj(x1, x2, x3) = x1x2 + x2x3 + x3x1. (Here x2 = 1 + x2 is the bit-flip
of x2, as defined on the Preliminary Problem Sheet.)

We define a boolean monomial to be a product of the form xi1 . . . xir
where i1 < . . . < ir. Given I ⊆ {1, . . . , n}, let

xI = ∏
i∈I

xi.

10

By definition (or convention if you prefer), x∅ = 1.

For example, x{2,3} = x2x3. It is one of the three monomial summands
of maj(x1, x2, x3).

Example 3.7. The Toffoli gate is important in quantum computation. It
takes 3 input qubits and returns 3 output qubits. Its classical analogue
(which only returns one bit) is the 3 variable Boolean function defined in
words by ‘if x1 and x2 are both true then negate x3, else return x3’. We
will find its algebraic normal form, first direct from this definition, and
then from its truth-table.

Theorem 3.8. Let f : Fn
2 → Fn

2 be an n-variable Boolean function. There exist
unique coefficients cI ∈ {0, 1}, one for each I ⊆ {1, . . . , n}, such that

f = ∑
I⊆{1,...,n}

cI xI .

This expression for f is called the algebraic normal form of f .

It is possible to give an explicit formula for the coefficients cI in the
algebraic normal form. It can be guessed by looking at some small exam-
ples.

Example 3.9. Let f : F3
2 → F2 be a 3-variable Boolean function

(a) Show that the coefficient c∅ of x∅ = 1 in f is f (0, 0, 0).
(b) Show that the coefficient c{3} of x{3} = x3 in f is f (0, 0, 0) +

f (0, 0, 1).
(c) Show that the coefficient c{1,2} of x{1,2} = x1x2 in f is f (0, 0, 0) +

f (1, 0, 0) + f (0, 1, 0) + f (1, 1, 0).

For example, let f (x1, x2, x3) = x1x2 + x3 be the Toffoli function seen in
Example 3.7. Then, by (c), f (0, 0, 0) + f (1, 0, 0) + f (0, 1, 0) + f (1, 1, 0) =
0 + 0 + 0 + 1 = 1 is the coefficient of x1x2.

Exercise 3.10. What do you think is the formula for the coefficient c{2,3}?
Does it work for the Toffoli function? How about if f (x1, x2, x3) = x1x2x3?

Lecture 6 Proposition 3.11. Let f : Fn
2 → F2 be an n-variable Boolean function and

suppose that f has algebraic normal form

f = ∑
I⊆{1,...,n}

cI xI .

Then
cI = ∑ f (z1, . . . , zn)

where the sum is over all z1, . . . , zn ∈ {0, 1} such that {j : zj = 1} ⊆ I.

11

Disjunctive normal form. For the remaining normal forms it is best to think
of 0 ∈ F2 as false and 1 ∈ F2 as true. Then the bitflip x corresponds to
logical negation: 0↔ 1 or T ↔ F.

Following the usual convention, we write∧ for ‘logical and’ (also called
conjunction) and ∨ for ‘logical or’ (also called disjunction). In algebraic
normal form, x ∧ y = xy and x ∨ y = x + y + xy. Note that x ∨ y is true if
both x and y are true.

Definition 3.12. Fix n ∈N. Given J ⊆ {1, . . . , n} let

f J(x1, . . . , xn) = z1 ∧ · · · ∧ zn

where

zj =

{
xj if j ∈ J
xj if j 6∈ J.

A n-variable Boolean function of the form
∨

J∈B f J , where B is a collection
of subsets of {1, . . . , n}, is said to be in disjunctive normal form.

By definition, or convention if you prefer, the empty disjunction is
false; thus

∨
J∈∅ f∅ = 0.

For example (x1 ∧ x2) ∨ (x1 ∧ x2) ∨ (x1 ∧ x2) is in disjunctive normal
form. The collection B in the definition is

{
{1}, {2}, {1, 2}

}
. What is this

function in words?

Example 3.13.

(a) The majority vote function maj(x1, x2, x3) is true if and only if at
two of x1, x2, x3 are true. Therefore maj(x1, x2, x3) = (x1 ∧ x2) ∨
(x2 ∧ x3) ∨ (x1 ∧ x3). This is not in disjunctive normal form, but it
is now only a short step to get

maj(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

= f{1,2} ∨ f{1,3} ∨ f{2,3} ∨ f{1,2,3}

(b) We saw in Example 3.7 that the truth table for the Toffoli function
f (x1, x2, x3) = x1x2 + x3 is

x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1

x1 x2 x3 f

1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

12

So f (x1, x2, x3) is true if and only the set of true variables is one of
{3}, {2, 3}, {1, 3} or {1, 2}. Correspondingly, working down the
truth table, as in the proof of Theorem 3.8, we get

f (x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3).

= f{3} ∨ f{2,3} ∨ f{1,3} ∨ f{1,2}.

(c) Let 1 be the constant Boolean function on 2 variables. We will use
the same truth table trick to express 1 in disjunctive normal form.

Theorem 3.14. Let f : Fn
2 → F2 be an n-variable Boolean function. There

exists a unique collection B of subsets of {1, . . . , n} such that

f =
∨
J∈B

f J .

Conjunctive normal form. Given a Boolean formula f expressed using ∨
and ∧, one obtains f by swapping ∨ and ∧ and negating every variable.
For example, x1 ∨ x2 becomes x1 ∧ x2 which equals x1 ∨ x2.

Conjunctive normal form is obtained from disjunctive normal form by
this duality.

Definition 3.15. Fix n ∈ N. Given J ⊆ {1, . . . , n}, let gJ = z1 ∨ · · · ∨ zn
where, as in Definition 3.12,

zj =

{
xj if j ∈ J
xj if j 6∈ J.

.

A Boolean function of the form
∨

J∈B gJ , where B is a collection of subsets
of {1, . . . , n}, is said to be in conjunctive normal form.

Given f : Fn
2 → F2 one can write f in conjunctive normal form by

writing f in disjunctive normal form and then negating it, using that if
J ⊆ {1, . . . , n} then f J = gJ′ where J′ = {k ∈ {1, . . . , n} : k 6∈ J}.

Example 3.16. The majority vote function maj on 3-variables is false if
and only if at least two of the variables are false. Hence maj(x1, x2, x3) =
f∅ ∨ f{1} ∨ f{2} ∨ f{3} in disjunctive normal form and so

maj(x1, x2, x3) =
(

f∅ ∨ f{1} ∨ f{2} ∨ f{3}
)

= f∅ ∧ f{1} ∧ f{2} ∧ f{3}
= g{1,2,3} ∧ g{2,3} ∧ g{1,3} ∧ g{1,2}

= (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

in conjunctive normal form. In words this says: maj(x1, x2, x3) is true if
and only if at most one of x1, x2, x3 is false.

13

4. BERLEKAMP–MASSEY ALGORITHM

Lecture 7The Berlekamp–Massey Algorithm finds an LFSR of minimal width
generating a given keystream. It is a faster algorithm than the linear al-
gebra method seen in Question 3 [sorry, not Question 1] of Sheet 5.

Such an LFSR always exists, since given (k0, k1, . . . , kn−1) ∈ F`
2 we can

simply take any LFSR of width n and the entire keystream as the key. But
there may be an LFSR of smaller width that works.

Preliminaries. Recall from Definition 5.1(iii) that the keystream of the LFSR
of width ` with taps T ⊆ {0, . . . , `− 1} generated by (k0, . . . , k`−1) ∈ F`

2
is defined by ks = ∑t∈T ks−`+t for s ≥ `. In the Berlekamp–Massey algo-
rithm, it is more convenient to use the backward taps, defined by

T̃ = {`− t : t ∈ T}.
Note that T̃ ⊆ {1, . . . , `}. With this notation,

(†) ks = ∑
t̃∈T̃

ks−t̃ for each s ≥ `.

We also need the symmetric difference of sets X and Y defined by

T 4U = {s ∈ T ∪U : s 6∈ S ∩ T}.
Equivalently, T 4U is the elements lying in exactly one of T and U. The
following lemma shows how symmetric differences arise when we com-
bine LFSRs.

Lemma 4.1. Let T, U ⊆ N0. Let f and g be the feedback functions for LFSRs
with taps T and U, respectively, each of width at most `. Then

f
(
(x0, x1, . . . , x`−1)

)
+ g
(
(x0, x1, . . . , x`−1)

)
= ∑

s∈T4U
xs

[Corrected typo x ∈ T] is the feedback function for an LFSR with taps T 4U
and backtaps T̃ 4 Ũ.

Berlekamp–Massey step. We fix throughout a sequence of bits k0, k1, k2,

At step n of the Berlekamp–Massey algorithm we have two LFSRs:
• An LFSR Fm of width `m with taps Tm, generating

k0, k1, . . . km−1, km . . . ;

• An LFSR Fn of width `n with taps Tn, where n > m, generating

k0, k1, . . . , km−1, km, . . . , kn−1.

Thus Fm is correct for the first m positions, and then wrong, since it gener-
ates km rather than km. If Fn generates k0, . . . , km−1, km, . . . , kn−1, kn, then
the algorithm returns Fn; this is case (a). The next proposition is used to
deal with case (b), when Fn is wrong after the first n positions.

14

Proposition 4.2. With the notation above, suppose that the LFSR Fn generates
(k0, k1, . . . , kn−1, kn). Let U = {t̃ + n−m : t̃ ∈ T̃m}. Setting

T̃n+1 = T̃n 4 (U ∪ {n−m})
defines an LFSR Fn+1 generating (k0, k1, . . . , kn−1, kn).

Proof. By (†)

kn = ∑
t̃∈T̃n

kn−t̃, ks = ∑
t̃∈T̃n

ks−t̃ if s < n.

Moreover, by our assumptions on Fm, and again by (†),

km = ∑
t̃∈T̃m

km−t̃, ks = ∑
t̃∈T̃m

ks−t̃ if s < m.

Since T̃n+1 = T̃n 4 (U ∪ {n − m}), where U = {t̃ + n − m : t̃ ∈ T̃m},
Lemma 4.1 implies that

∑
t̃∈T̃n+1

kn−t̃ = ∑
t̃∈T̃n

kn−t̃ + ∑
t̃∈T̃m

kn−(t̃+(n−m)) + kn−(n−m)

= ∑
t̃∈T̃n

kn−t̃ + ∑
t̃∈T̃m

km−t̃ + km

= kn + km + km

= kn + 1

= kn.

Similarly if s < n then,

∑
t̃∈T̃n+1

ks−t̃ = ∑
t̃∈T̃n

ks−t̃ + ∑
t̃∈T̃m

ks−(t̃+(n−m)) + ks−(n−m)

= ∑
t̃∈T̃n

ks−t̃ + ∑
t̃∈T̃m

ks−(n−m)−t̃ + ks−(n−m)

= ks + ks−n−m + ks−(n−m)

= ks.

Hence, by (†), Fn+1 generates (k0, k1, . . . , kn−1, kn). �

Lecture 8 Example 4.3. Take the keystream k0k1 . . . k9 of length 10 shown below:

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0).
0 1 2 3 4 5 6 7 8 9

The LFSR F6 of width 3 and backtaps {1, 3} generates the keystream

(1, 1, 1, 0, 1, 0, 0, 1, 1, 1).
0 1 2 3 4 5 6 7 8 9

The LFSR F7 of width 4 and backtaps {1, 4} generates the keystream

(1, 1, 1, 0, 1, 0, 1, 1, 0, 0).
0 1 2 3 4 5 6 7 8 9

15

Note that F7 is wrong in position 7. Using Proposition 4.6, we take U =

{t̃ + 7− 6 : t̃ ∈ T̃6} = {2, 4} and

T̃8 = T̃7 4 (U ∪ {7− 6}) = {1, 4} 4 ({2, 4} ∪ {1}) = {2}.

We obtain the LFSR F8 with backtaps {2} generating

(1, 1, 1, 0, 1, 0, 1, 0, 1, 0).
0 1 2 3 4 5 6 7 8 9

Although the only backtap in {2} is 2, we still have to take the width of
F8 to be 4 (or more), to get the first 8 positions correct.

Exercise 4.4. Observe that F8 is correct for the first 8 positions, up to k7 =
0, then wrong. Apply Proposition 4.2 taking n = 8, m = 6, and F8 and
F6 as in Example 4.3. You should get the LFSR F9 with backtaps {3, 5}
generating

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0).
0 1 2 3 4 5 6 7 8 9

Since 5 is a backtap of F9 we have to take its width to be 5 (or more).

We could also have used F7 (wrong in position 7) as the ‘deliberately
wrong’ LFSR in Exercise 4.4. Doing this we get instead the LFSR with
backtaps {1, 5}, which generates (1, 1, 1, 0, 1, 0, 1, 0, 0, 1), also correct to 9
positions. We choose F6 to follow the algorithm specified below.

Berlekamp–Massey algorithm. Let c be least such that kc 6= 0. The algo-
rithm defines LFSRs Fc, Fc+1, . . . so that each Fn has width `n and backtaps
T̃n and generates the first n positions of the keystream: k0, . . . , kn−1.

• [Initialization] Set T̃c = ∅, `c = 0, T̃c+1 = ∅ and `c+1 = c + 1.
[Corrected from `c+1 = c.] Set m = c.

• [Step] We have an LFSR Fn with backtaps T̃n of width `n generat-
ing k0, . . . , kn−1 and an LFSR Fm generating k0, . . . , km−1, km.

(a) If Fn generates k0, . . . , kn−1, kn then set T̃n+1 = T̃n, `n+1 = `n,
and so Fn+1 = Fn. Keep m as it is.

(b) If Fn generates k0, . . . , kn−1, kn, let U = {t̃ + n−m : t̃ ∈ T̃m}
and let T̃n+1 = T̃n 4 (U ∪ {n−m}) as in Proposition 4.2. Set

`n+1 = max(`n, n + 1− `n).

If `n+1 > `n, update m to n, otherwise keep m as it is.

Thus m is updated if and only if the width increases in step (b).

Note that we need max T̃n+1 ≤ `n+1 for the LFSR Fn+1 to be well-defined.
We prove this as part of Theorem 4.8.

16

Example 4.5. We apply the Berlekamp–Massey algorithm to the keystream
(1, 1, 1, 0, 1, 0, 1, 0, 0, 0) from Example 4.3. After initialization we have
T0 = ∅, `0 = 0, T1 = {1}, `1 = 1. Case (a) applies in each step n for
n ∈ {2, 4, 5, 9}. The table below shows the steps when case (b) applies.

n T̃n `n m T̃m n−m U T̃n+1 `n+1

1 ∅ 1 0 ∅ 1 ∅ {1} 1
3 {1} 1 0 ∅ 3 ∅ {1, 3} 3
6 {1, 3} 3 3 {1} 3 {4} {1, 4} 4
7 {1, 4} 4 6 {1, 3} 1 {2, 4} {2} 4
8 {2} 4 6 {1, 3} 2 {3, 5} {3, 5} 5

Exercise. Run the algorithm starting with step 1, in which you should
define T̃2 = {1}, and finishing with step 6, in which you should define
T̃7 = {1, 4}. Example 4.3 and Exercise 4.4 then do steps 7 and 8.

Berlekamp–Massey theorem. To prove that the LFSRs defined by running
the Berlekamp–Massey algorithm have minimal possible width we need
the following proposition.

Proposition 4.6. Let n ≥ `. If an LFSR F of width ` generates the keystream
(k0, k1, . . . , kn−1, b) of length n + 1 then any LFSR F′ generating the keystream
(k0, k1, . . . , kn−1, b) has width `′ where `′ ≥ n + 1− `.

Proof. Suppose, for a contradiction that `′ ≤ n − `. Let T̃ be the set of
backtaps of F and let T̃′ be the set of taps of F′. By (†) for F′ we have

(†′) ks = ∑
t̃′∈T̃′

ks−t̃′ for `′ ≤ s < n.

By (†) for F in the case s = n we have

b = ∑
t̃∈T̃

kn−t̃.

Observe that n − t̃ < n and, by our assumption, n − t̃ ≥ n − ` ≥ `′.
Therefore (†′) holds for each summand kn−t̃. Substituting we get

b = ∑
t̃∈T̃

∑
t̃′∈T̃′

kn−t̃−t̃′ = ∑
t̃′∈T′

∑
t̃∈T

k
(n−t̃′)−t̃ = ∑

t̃′∈T̃′
kn−t̃′ = b

where we swapped the order of summation, then used (†), then (†′), then
the assumption that the F′ keystream ends with b. Hence b = b, a contra-
diction. �

Recall that step n of the Berlekamp–Massey algorithm returns an LFSR
Fn+1 with backtaps T̃n+1 and width `n+1 generating k0, . . . , kn−1, kn.

Lecture 9

17

Lemma 4.7. With the notation above, if t̃ ∈ T̃n+1 then t̃ ≤ `n+1, and so Fn+1
is well-defined.

Proof. Since T̃c = T̃c+1 = ∅, the lemma holds for c and c + 1. We work by
induction, supposing the lemma holds in the cases of m and n.

If, in step n, case (a) applies then `n+1 = `n and T̃n+1 = T̃n and by
induction we have t̃ ≤ `n for all t̃ ∈ T̃n, as required. Suppose case (b)
applies. By definition of m,

`m < `m+1 = . . . = `n.

The algorithm tells us to take `m+1 = max(`m, m + 1− `m); since `m+1 >
`m we have `m+1 = m + 1− `m. Therefore n + 1− `n = n + 1−

(
m + 1−

`m) = n−m + `m and

(?) `n+1 = max(`n, `m + n−m).

By the lemma for m we have

s̃ + n−m ≤ `m + (n−m)

for all s̃ ∈ T̃m. Since

T̃n+1 = T̃n 4 ({s̃ + n−m : s̃ ∈ Tm} ∪ {n−m})

it now follows from the lemma for n that t̃ ≤ max(`n, n−m + `m) for all
s̃ ∈ T̃n+1. By (?), t̃ ≤ `n+1, as required. �

Theorem 4.8. With the notation above, `n+1 is the least width of any LFSR
generating k0 . . . kn−1kn.

Proof. By assumption the keystream begins k0 = k1 = . . . = kc−1 = 0 and
kc+1 = 1. The empty LFSR Fc generating k0 . . . kc−1 = 0 . . . 0 has width
0, clearly the minimum possible. An LFSR generating k0 . . . kc−1kc =
0 . . . 01 must begin with a non-zero key, so has width at least c + 1. Since
`c+1 = c + 1, the LFSR Fc+1 has minimum possible width.

Suppose an LFSR of width ` generates k0k1 . . . kn. Then F generates
k0k1 . . . kn−1. By induction, Fn has minimum width `n. Therefore ` ≥ `n.
If `n+1 = `n we have ` ≥ `n+1, as required. Therefore we may suppose
that `n+1 > `n. Hence case (b) applies, so Fn generates k0k1 . . . kn, and
`n+1 = n + 1− `n. By Proposition 4.6, ` ≥ n + 1− `n. Therefore ` ≥
`n+1. �

5. THE DISCRETE FOURIER TRANSFORM

Given x ∈ F2 we define (−1)x by regarding x as an ordinary integer.
Thus (−1)0 = 1 and (−1)1 = −1. Given f : Fn

2 → F2 we define (−1) f :
Fn

2 → {−1, 1} by (−1) f (x) = (−1) f (x).

18

Definition 5.1. Let f , g : Fn
2 → F be Boolean functions. We define the

correlation between f and g by

corr(f , g) =
1
2n ∑

x∈Fn
2

(−1) f (x)(−1)g(x).

The connection with the correlation statistic used in the main course to
compare sequence of bits (see Definition 6.5 and the following results) is
shown by the exercise below.

Lemma 5.2. Let f , g : Fn
2 → F be Boolean functions. Let

csame =
∣∣{x ∈ Fn

2 : f (x) = g(x)}
∣∣

cdiff =
∣∣{x ∈ Fn

2 : f (x) 6= g(x)}
∣∣.

Then corr(f , g) = (csame − cdiff)/2n.

Thus the correlation takes values between 1 (perfect agreement) and
−1 (always different); as before, 0 can be interpreted as no correlation.

Exercise 5.3. Let X ∈ Fn
2 be a random variable distributed uniformly at

random, so P[X = x] = 1/2n for each x ∈ Fn
2 . Show that

corr(f , g) = P[f (X) = g(X)]− P[f (X) 6= g(X)]

and

P[f (X) = g(X)] = 1
2(1 + corr(f , g)),

P[f (X) 6= g(X)] = 1
2(1− corr(f , g)).

For example, corr(f , g) = 1 if and only if f and g are the same function,
corr(f , g) = 1

2 if and only if P[f (X) = g(X)] = 3
4 and corr(f , g) = 0 if

and only if P[f (X) = g(X)] = P[f (X) 6= g(X)] = 1
2 .

We have seen in the main course (see Exercise 7.1 and Example 7.2)
that linear functions are often weak cryptographically. So are functions
that are highly correlated with linear functions. For consistency with the
main course, we number positions from 0 below.

Given T ⊆ {0, . . . , n− 1}, define LT : Fn
2 → F2 by

LT(x) = ∑
t∈T

xt.

We think of LT as ‘tapping’ (like an LFSR) the positions in T. For example,
L{t}(x0, . . . , xn−1) = xt returns the entry in position t and L∅(x) = 0 is
the zero function.

Lecture 10 Exercise 5.4. Let f : Fn
2 → F2 be a Boolean function. Show that corr(f , L∅) =

0 if and only if P[f (X) = 0] = P[f (X) = 1] = 1
2 .

19

Lemma 5.5. The linear functions Fn
2 → F are precisely the LT : Fn

2 → F2 for
T ⊆ {0, . . . , n− 1}. If S, T ⊆ {0, . . . , n− 1} then

corr(LS, LT) =

{
1 if S = T
0 otherwise.

Example 5.6. Let maj : F3
2 → F2 be the majority vote function defined by

maj
(
(x0, x1, x2)

)
= 1 if and only if at least two of x0, x1, x2 are true. Then

corr(maj, LT) =


1
2 if T = {0}, {1}, {2}
− 1

2 if T = {0, 1, 2}[Corrected from {1,2,3}]
0 otherwise.

Moreover

(−1)maj = 1
2(−1)L{0} + 1

2(−1)L{1} + 1
2(−1)L{2} − 1

2(−1)L{0,1,2} .

To generalize the previous example, we define an inner product on the
vector space of functions Fn

2 → R by

〈θ, φ〉 = 1
2n ∑

x∈2n
θ(x)φ(x).

Exercise: check that, as required for an inner product, 〈θ, θ〉 ≥ 0 and that
〈θ, θ〉 = 0 if and only if θ(x) = 0 for all x ∈ Fn

2 .

Lemma 5.7. Let f , g : Fn
2 → F2 be Boolean functions. Then

〈(−1) f , (−1)g〉 = corr(f , g).

Theorem 5.8 (Discrete Fourier Transform).
Lecture 11(a) The functions (−1)LT for T ⊆ {0, . . . , n− 1} [Corrected from {1, . . . , n}]

are an orthonormal basis for the vector space of functions Fn
2 → R.

(b) Let θ : Fn
2 → R. Then

θ = ∑
T⊆{0,...,n−1}

〈θ, (−1)LT 〉(−1)LT .

(c) Let f : Fn
2 → F2 be a Boolean function. Then

(−1) f = ∑
T⊆{0,...,n−1}

corr(f , LT)(−1)LT .

We call (c) the ‘Discrete Fourier Inversion Theorem’. The function S 7→
corr(f , LS) = 〈(−1) f , (−1)LS〉 is the Discrete Fourier Transform of f .

20

6. LINEAR CRYPTANALYSIS

In the previous section we considered Boolean functions Fn
2 → F2.

Typically cryptographic functions return multiple bits, not just one. So
we must choose which output bits to tap.

Recall that ◦ denotes composition of functions: thus if F : Fm
2 → Fn

2
and G : Fn

2 → F
p
2 then G ◦ F : Fm

2 → F
p
2 is the function defined by

(G ◦ F)(x) = G
(

F(x)
)
.

Example 6.1. Let S : F4
2 → F4

2 be the S-box in the Q-block cipher (see
Example 8.4 in the main notes), defined by

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

(a) Suppose we look at position 0 of the output by considering L{0} ◦
S : F4

2 → F2. We have

(L{0} ◦ S)
(
(x0, x1, x2, x3)

)
= x2 = L{2}

(
(x0, x1, x2, x3)

)
.

Hence L{0} ◦ S = L{2}. By Lemma 5.5,

corr(L{0} ◦ S, LT) =

{
1 if T = {2}
0 otherwise.

.

(b) Instead if we look at position 2, the relevant Boolean function is
L{2} ◦S, for which (L{2} ◦S)

(
(x0, x1, x2, x3)

)
= x0 + x1x2. Exercise:

show that

corr(L{2} ◦ S, LT) =


1
2 if T = {0}, {0, 1}, {0, 2}
− 1

2 if T = {0, 1, 2}
0 otherwise

.

(This generalizes the correlations computed in Example 7.3 in the
main course.)

In linear cryptanalysis one uses a high correlation to get information
about certain bits of the key. We shall see this work in an example.

Example 6.2. For k ∈ F12
2 let ek : F8

2 → F8
2 be the Q-block cipher, as

defined in Example 8.5. Recall that we write elements of F8
2 as pairs (v, w)

with (v, w) ∈ F4
2. By definition, ek

(
(v, w)

)
= (v′, w′) where

v′ = w + S
(
v + S(w + k(1)) + k(2)).

Recall that k(1) = (k0, k1, k2, k3) and k(2) = (k4, k5, k6, k7).

Example 6.1 suggests looking at corr(L{0} ◦ ek, L{2}). (See the optional
question on Problem Sheet 9 for the theoretical justification for this.) We
have (L{0} ◦ ek)

(
(v, w)

)
= L{0}

(
(v′, w′)

)
= v′0 and L{2}

(
(v, w)

)
= v2.

Exercise: using that k(1)0 = k0, k(1)1 = k1, k(1)2 = k2 and k(2)2 = k6, check that

v′0 = v2 + (w1 + k1)(w2 + k2) + k0 + k6.

21

By definition

corr(L{0} ◦ ek, L{2}) =
1
28 ∑

(v,w)∈F8
2

(−1)v2+(w1+k1)(w2+k2)+k0+k6(−1)v2

=
1
28 (−1)k0+k6 ∑

(v,w)∈F8
2

(−1)(w1+k1)(w2+k2)

= (−1)k0+k6
1
22 ∑

w1,w2∈F2

(−1)(w1+k1)(w2+k2)

where the third line follows because the summand for (v, w) is the same
for all 26 pairs with the same w1 and w2. In ∑w1,w2∈F2

(−1)(w1+k1)(w2+k2),
the values of k1 and k2 are irrelevant. For instance, if both are 0 we aver-
age (−1)w1w2 over all four (w1, w2) ∈ F2

2 to get 1
2 ; if both are 1 we average

(−1)(w1+1)(w2+1), seeing the same summands in a different order, and
still getting 1

2 . Hence 1
22 ∑w1,w2∈F2

(−1)(w1+k1)(w2+k2) = 1
2 and

corr(L{0} ◦ ek, L{2}) =
1
2(−1)k0+k6

We can estimate this correlation from a collection of plaintext/ciphertext
pairs (v, w), (v′, w′) by computing (−1)v′0+v2 for each pair. The mean
should be close to 1

2(−1)k0+k6 , and the sign then tells us k0 + k6.

Using our collection of plaintext/ciphertext pairs we can also estimate

corr(L{0} ◦ ek, L{2,5}) =
1
2(−1)k0+k6+k1

corr(L{0} ◦ ek, L{2,6}) =
1
2(−1)k0+k6+k2

and so learn k1 and k2 as well as k0 + k6. (You are asked to show this on
Problem Sheet 9.) There are similar high correlations of 1

2 for output bit 1.
Using these one learns k2 and k3 as well as k1 + k7.

Exercise 6.3. Given k0 + k6, k1 + k7, k1, k2, k3, how many possibilities are
there for the key in the Q-block cipher?

This exercise shows that linear cryptanalysis gives a sub-exhaustive
attack on the Q-block cipher. It is more powerful than the differential
attack seen in the main course.

The attack by differential cryptanalysis required chosen plaintexts. The
attack by linear cryptanalysis works with any observed collection of plain-
text/ciphertext pairs. It is therefore more widely applicable, as well as
more powerful.

22

Extra: correlations for the m-quadratic stream cipher. In Example 7.5 of the
main course we used the LFSR F of width 5 with taps {0, 2} and the
LFSR F′ of width 6 and taps {0, 1, 3, 4} to define a keystream u0u1u2 . . .
by

us = ksk′s + ks−1k′s−1 + · · ·+ ks−(m−1)k
′
s−(m−1)

for each s ≥ m− 1. If s < m− 1 we set us = 0. To compute the correlation
between us and a bit ks of the keystream for F, it is helpful to use this
probabilistic interpretation of correlation.

Lemma 6.4. Let f , g : Fn
2 → F2 be Boolean functions. Let X be a random

variable uniformly distributed on Fn
2 .

corr(f , g) = E[(−1) f (X)+g(X)].

Proof. By definition the expected value is ∑x∈Fn
2

P[X = x](−1) f (x)+g(x).
Since P[X = x] = 1

2n for each x ∈ Fn
2 , this agrees with Definition 5.1. �

Write elements of F2m
2 as pairs (x, y). The relevant Boolean functions

in this case are f : F2m
2 → F2, defined by

f
(
(x, y)

)
= x0y0 + · · ·+ xm−1ym−1

and the linear function L{m−1}(x, y) = xm−1. Let (X, Y) ∈ F2m
2 be a

random variable distributed uniformly at random. By the lemma,

corr(f , L(m−1)) = E[(−1) f (X,Y)+L{m−1}(X,Y)]

= E[(−1)X0Y0+X1Y1+···+Xm−1Ym−1+Xm−1]

= E[(−1)X0Y0]E[(−1)X1Y1] . . . E[(−1)Xm−1Ym−1+Xm−1]

where the final line follows because X0 is independent of X1, and so on.
Since P[X0Y0 = 0] = 3

4 and P[X0Y0] =
1
4 , we have E[(−1)X0Y0] = 1

2 . A
similar argument shows that E[(−1)Xm−1Ym−1+Xm−1]] = 1

2 . Therefore the
correlation is 1

2m , as claimed.

Extra: linear cryptanalysis of DES. In M. Matui, The first experimental crypt-
analysis of the Data Encryption Standard, CRYPTO 1994: Advances in Cryp-
tology CRYPTO ’94, pages 1–11, Springer 1994, Matsui gives an attack on
DES using linear cryptoanalysis on 243 plaintext/ciphertext pairs (and
then some further, less expensive work). Since the keylength is 56, this
attack is subexhaustive. It is still close to the best known attack on DES.

