
MT5462 CRYPTOGRAPHY I (M.SC. ADD-ON)

MARK WILDON

These notes cover the part of the syllabus for MT5462 that is not part of
the undergraduate course. Further installments will be issued as they
are ready. All handouts and problem sheets will be put on the MT362
Moodle page, marked M.Sc.

I would very much appreciate being told of any corrections or possible
improvements.

You are warmly encouraged to ask questions in the plenary, group work
and Q&A sessions. Sessions marked ‘face-to-face’ will also be streamed
online.

• Tuesday 11am, Plenary MSc session (face-to-face), ALT2.
• Tuesday 1pm, Plenary problem solving (face-to-face) BLT1,
• Wednesday 12 noon, Group work (face-to-face), MFOX-SEM
• Friday 10am, Q&A session (online)
• Friday 3pm, Group work (online)

Office hour in McCrea LGF 0-25 or online: Thursday 2pm. The MS
Teams link is https://tinyurl.com/y38jovro. It is also on the Moodle
page.

Relevant seminar: The Information Security Group Seminar is at 11am
Thursdays. To subscribe to the mailing list go to: www.lists.rhul.ac.

uk/mailman/listinfo/isg-research-seminar.

Date: First term 2020/21.

2

OVERVIEW

We start with a secret sharing scheme related to Reed–Solomon codes.
We then look at boolean functions, the Berlekamp–Massey algorithm and
the Discrete Fourier Transform, and see how these mathematical ideas
have been applied to stream ciphers and block ciphers.

1. REVISION OF FIELDS AND POLYNOMIALS

Every modern cipher makes use of the finite field F2. Many use other
finite fields as well: for example, a fundamental building block in AES
(Advanced Encryption Standard) is the inversion map x 7→ x−1 on the
non-zero elements of the finite field F28 with 256 elements.

This section should give enough background for the course. It will also
be useful for MT5461 Theory of Error Correcting Codes.

Fields. Informally, a field is a set in which one can add, subtract and mul-
tiply any two elements, and also divide by non-zero elements. Examples
of infinite fields are the rational numbers Q and the real numbers R. If p
is a prime, then the set Fp = {0, 1, . . . , p− 1}, with addition and multi-
plication defined modulo p is a finite field: see Theorem 1.2.

The formal definition is below. You do not need to memorise this.

Definition 1.1. A field is a set of elements F with two operations, + (ad-
dition) and × (multiplication), and two special elements 0, 1 ∈ F such
that 0 6= 1 and

(1) a + b = b + a for all a, b ∈ F;
(2) 0 + a = a + 0 = a for all a ∈ F;
(3) for all a ∈ F there exists b ∈ F such that a + b = 0;
(4) a + (b + c) = (a + b) + c for all a, b, c ∈ F;

(5) a× b = b× a for all a, b ∈ F;
(6) 1× a = a× 1 = a for all a ∈ F;
(7) for all non-zero a ∈ F there exists b ∈ F such that a× b = 1;
(8) a× (b× c) = (a× b)× c for all a, b, c ∈ F;

(9) a× (b + c) = a× b + a× c for all a, b, c ∈ F.

If you are familiar with basic group theory, it will be helpful to note
that (1)–(4) say that F is an abelian group under addition, and that (5)–(8)
say that (F\{0},×) is an abelian group under multiplication. The final
axiom (9) is the distributive law relating addition and multiplication.

3

It is usual to write −a for the element b in (4); we call −a the additive
inverse of a. We write a−1 for the element b in (8); we call a−1 the multi-
plicative inverse of a. We usually write ab rather than a× b.

Exercise 1.2.

(a) Show, from the field axioms, that if x ∈ F, then x has a unique
additive inverse, and that if x 6= 0 then x has a unique multiplica-
tive inverse. Show also that if F is a field then a × 0 = 0 for all
a ∈ F.

(b) Show from the field axioms that if F is a field and a, b ∈ F are
such that ab = 0, then either a = 0 or b = 0.

We will use (b) above many times.

Theorem 1.3. Let p be a prime. The set Fp = {0, 1, . . . , p− 1} with addition
and multiplication defined modulo p is a finite field of size p.

There is a unique (up to a suitable notion of isomorphism) finite field
of any given prime-power size. The smallest field not of prime size is the
finite field of size 4.

Example 1.4. The addition and multiplication tables for the finite field
F4 = {0, 1, α, 1 + α} of size 4 are shown below.

+ 0 1 α 1 + α

0 0 1 α 1 + α

1 1 0 1 + α α

α α 1 + α 0 1
1 + α 1 + α α 1 0

× 1 α 1 + α

1 1 α 1 + α

α α 1 + α 1
1 + α 1 + α 1 α

Probably the most important thing to realise is that F4 is not the integers
modulo 4. Indeed, in Z4 = {0, 1, 2, 3} we have 2× 2 = 0, but if a ∈ F4
and a 6= 0 then a× a 6= 0, as can be seen from the multiplication table.
(Alternatively this follows from Exercise 1.2(b).)

Polynomials. Let F be a field. Let F[z] denote the set of all polynomials

f (z) = a0 + a1z + a2z2 + · · ·+ amzm

where m ∈N0 and a0, a1, a2, . . . , am ∈ F.

Definition 1.5. If f (z) = a0 + a1z + a2 + · · ·+ amzm where am 6= 0, then
we say that m is the degree of the polynomial f , and write deg f = m. The
degree of the zero polynomial is, by convention, −1. We say that a0 is the
constant term and am is the leading term.

4

It is often useful that the constant term in a polynomial f is f (0).

A polynomial is a non-zero constant if and only if it has degree 0. The
degree of the zero polynomial is not entirely standardized: you might
also see it defined to be −∞, or left undefined.

Polynomials are added and multiplied in the natural way.

Lemma 1.6 (Division of polynomials). Let F be a field, let g(z) ∈ F[z] be a
non-zero polynomial and let f (z) ∈ F[z]. There exist polynomials q(z), r(z) ∈
F[z] such that

f (z) = q(z)g(z) + r(z)
and deg r(z) < deg g(z).

We say that q(z) is the quotient and r(z) is the remainder when f (z) is
divided by g(z). Note that r(z) may be zero, in which case its degree is
−1. The important thing is that you can find the quotient and remainder
in practice. In MATHEMATICA use PolynomialQuotientRemainder, with
Modulus -> p for the finite field Fp of prime size.

Exercise 1.7. Let g(z) = z3 + z + 1 ∈ F2[z], let f (z) = z5 + z2 + z ∈ F2[z].
Find the quotient and remainder when f (z) is divided by g(z), and when
g(z) is divided by f (z).

For Shamir’s secret sharing scheme we shall need the following prop-
erties of polynomials.

Lemma 1.8. Let F be a field.
(i) If f (z) ∈ F[z] has a ∈ F as a root, i.e. f (a) = 0, then there is a

polynomial q(z) ∈ F[z] such that f (z) = (z− a)q(z).

(ii) If f (z) ∈ F[z] has degree m ∈ N0 then f (z) has at most m distinct
roots in F.

(iii) Suppose that f (z), g(z) ∈ F[z] are non-zero polynomials such that
deg f , deg g < t. If there exist distinct c1, . . . , ct ∈ F such that
f (ci) = g(ci) for each i ∈ {1, . . . , t} then f (z) = g(z).

Part (iii) is the critical result. It says, for instance, that a linear polyno-
mial is determined by two points on its graph: when F is the real num-
bers R this should be intuitive — there is a unique line through any two
distinct points. Similarly a quadratic is determined by any three points
on its graph, and so on.

Conversely, given t values in a field F, there is a polynomial in F[z]
of degree at most t taking these values at any t distinct specified points.
This has a nice constructive proof.

5

Lemma 1.9 (Polynomial interpolation). Let F be a field. Let

c1, c2, . . . , ct ∈ F

be distinct and let y1, y2, . . . , yt ∈ F. The unique polynomial f (z) ∈ F[z],
either zero or of degree < t, such that f (ci) = yi for all i is

f (z) =
t

∑
i=1

yi
∏j 6=i(z− cj)

∏j 6=i(ci − cj)
.

Later we shall use polynomials in multiple variables with coefficients
in F2 to describe cryptographic primitives.

2. SHAMIR’S SECRET SHARING SCHEME

Motivation. Some flavour of secret sharing is given by the following in-
formal example. As a standing convention, we write secret information
in red. This is entirely optional for you and not standard.

Example 2.1. Ten people want to know their mean salary. But none is
willing to reveal her salary si to the others, or to a ‘Trusted Third Party’.
Instead Person 1 chooses a large number M. She remembers M, and
whispers M + s1 to Person 2. Then Person 2 whispers M + s1 + s2 to
Person 3, and so on, until Person 10 whispers M + s1 + s2 + · · ·+ s9 +
s10 to Person 1. Person 1 then subtracts M and tells everyone the mean
(s1 + s2 + · · ·+ s10)/10.

Exercise 2.2. Why it is reasonable to colour code the whisper from Per-
son 2 as M + s1 + s2, with M + s1 all in red?

Exercise 2.3. Show that if Person j hears N from Person j − 1 then
s1 + · · ·+ sj−1 can consistently be any number between 0 and N.

Provided M is chosen much larger than any conceivable salary, this ex-
ercise shows that the scheme does not leak any unintended information.

Exercise 2.4. Person 1 can deduce the total of the salaries of all the other
people from M + s1 + · · ·+ sn by subtracting M + s1. In particular, if n =
2, she can learn Person 2’s salary. Is this a defect in the scheme?

6

Shamir’s secret sharing scheme. In Shamir’s scheme the secret is an element
of a finite field Fp. It will be shared across n people so that any t of them,
working together, can deduce the secret, but any t − 1 of them, even if
they work together, can learn nothing. To set up the scheme requires a
Trusted Third Party, who we will call Trevor.

In a typical application, you are Trevor, and the n people are n un-
trusted cloud computers, labelled 1 up to n.

Definition 2.5. Let p be a prime and let s ∈ Fp. Let n ∈ N, t ∈ N be
such that t ≤ n < p. Let c1, . . . , cn ∈ Fp be distinct non-zero elements.
In the Shamir scheme with n people and threshold t, to share the secret
s ∈ Fp, Trevor chooses at random a1, . . . , at−1 ∈ Fp and constructs the
polynomial

f (z) = s + a1z + · · ·+ at−1zt−1

with constant term s. Trevor then issues the share f (ci) to Person i.

As often the case in cryptography, it is important to be clear about what
is private and what is public.

Above we wrote f (ci) because the evaluation points ci are public knowl-
edge, as are the parameters n, t and p. Only Trevor knows f (z), and at
the time it is issued, the share f (ci) is known only to Person i and Trevor.

Example 2.6. Suppose that n = 5 and t = 3. Take p = 7 and ci = i for
each i ∈ {1, 2, 3, 4, 5}. We suppose that s = 5. Trevor chooses a1, a2 ∈ F7
at random, getting a1 = 6 and a2 = 1. Therefore f (z) = 5 + 6z + 1z2 and
the share of Person i is f (ci), for each i ∈ {1, 2, 3, 4, 5}, so the shares for
each person are(

f (1), f (2), f (3), f (4), f (5)
)
= (5, 0, 4, 3, 4).

Remember that all arithmetic is performed in Fp, so working modulo p.

The following exercise shows the main idea needed to prove Theo-
rem 2.8 below.

Exercise 2.7. Suppose that Person 1, with share f (1) = 5, and Person 2,
with share f (2) = 0, cooperate in an attempt to discover s. Show that for
each s′ ∈ F7 there exists a unique polynomial fs′(z) such that deg f ≤ 2
and f (0) = s′, fz(1) = 5 and fz(2) = 0. For example f2(z) = 3z2 + 2 and
f3(z) = 2z + 3. Since Trevor chose the coefficients of f at random, each
polynomial f0(z), . . . , fp−1(z) seems equally likely to Persons 1 and 2,
and they can learn nothing about s.

7

Theorem 2.8. In a Shamir scheme with n people, threshold t and secret s, any t
people can work together to determine s but any t− 1 people, even if they work
together can learn nothing about s.

The proof shows that any t people can determine the polynomial f .
So as well as learning s, they can also learn the shares of all the other
participants.

Exercise 2.9. Suppose Trevor shares s ∈ Fp across n computers using the
Shamir scheme with threshold t. He chooses the first t computers. They
are instructed to exchange their shares; then each computes s and sends
it to Trevor. Unfortunately Malcolm has compromised computer 1. Show
that Malcolm can both learn s and trick Trevor into thinking his secret is
an s′ ∈ Fp of his choice. (Assume that, thanks to a network delays, it is
plausible that computer 1 sends its share after receiving the shares from
the other t− 1 computers.)

Shamir’s Secret Sharing Scheme has been modified in various ways to
get around this problem. See Martin Tompa and Heather Woll, How to
share a secret with cheaters, J. Crypt. 1 (1989) 133–138 for an introduction.

In practice we do not just want to store data on the cloud: we want
to compute with it as well. You are encouraged to spend a good time
thinking about (a) below.

Exercise 2.10. Take the Shamir scheme with threshold t and evaluation
points 1, . . . , n ∈ Fp where p > n. Trevor has shared two large numbers
r and s across n cloud computers, using polynomials f and g so that the
shares are

(
f (1), . . . , f (n)

)
and

(
g(1), . . . , g(n)

)
.

(a) Express in terms of f and g a polynomial suitable for sharing the
secret s + t. [Hint: this will seem obvious in hindsight, but is eas-
ily missed.]

(b) Imagine you are Cloud Computer 1, so you know the shares f (c1)
for r and g(c1) for s. What is your share for s + t, using the poly-
nomial from (a)? Can you compute this share yourself?

(c) Show that the n computers can each compute the shares for s + t
without exchanging any information.

(d) (Optional extension.) Assume that n ≥ 2t. Show that the cloud
computers can compute shares for rs mod p sending information
only between each other.

Thus provided the original messages Trevor sent to each computer were
secure, Trevor can store r + s and rs on the cloud even if Eve is eaves-
dropping on his later messages.

Once you can add and multiply you can do all sorts of computations! For
more on this, search for ’homomorphic encryption’.

8

The remainder of this section is non-examinable and included for in-
terest only.

Example 2.11. The root key for DNSSEC, part of web of trust that guar-
antees an IP connection really is to the claimed end-point, and not to Mal-
colm doing a Man-in-the-Middle attack, is protected by a secret sharing
scheme with n = 7 and t = 5: search for ‘Schneier DNSSEC’.

The search above will take you to Bruce Schneier’s blog. It is highly
recommended for background on practical cryptography.

Remark 2.12. The Reed–Solomon code associated to the parameters p, n,
t and the field elements c1, c2, . . . , cn is the length n code over Fp with
codewords all possible n-tuples

{
(

f (c1), f (c2), . . . , f (cn)
)

: f ∈ Fp[z], deg f ≤ t− 1}.
It will be studied in MT5461. By Theorem 2.8, each codeword is deter-
mined by any t of its positions, and so two codewords agreeing in t po-
sitions are equal. This shows that any two different codewords differ in
at least n− (t− 1) positions. Equivalently, the Reed–Solomon code has
minimum distance at least n− t + 1.

We have worked over a finite field of prime size in this section. Reed–
Solomon codes and the Shamir secret sharing scheme generalize in the
obvious way to arbitrary finite fields. For example, the Reed–Solomon
codes used on compact discs are defined using the finite field F28 .

3. INTRODUCTION TO BOOLEAN FUNCTIONS

Definition and first examples. Recall that F2 = {0, 1} is the finite field of
size 2 whose elements are the bits 0 and 1. As usual, + denotes addition
in F2 or in Fn

2 . We number positions in Fn
2 from 0, so a typical tuple is

(x0, x1, . . . , xn−1).

Definition 3.1. Let n ∈ N. An n-variable boolean function is a function
Fn

2 → F2.

For example, f (x, y, z) = xyz + x is a boolean function of the three
variables x, y and z, such that f (1, 0, 0) = 0 + 1 = 1 and f (1, 1, 1) = 1 +
1 = 0. We shall see that boolean functions are very useful for describing
the primitive building blocks of modern stream and block ciphers.

Exercise 3.2. What is a simpler form for x2y + xz + z + z2?

Exercise 3.3. Let maj(x, y, z) = xy + yz + zx where, as usual, the coeffi-
cients are in F2. Show that

maj(x, y, z) =

{
0 if at most one of x, y, z is 1
1 if at least two of x, y, z are 1.

9

We call maj : F3
2 → F2 the majority vote function. It is a 3-variable boolean

function.

Motivation. A modern block cipher has plaintexts and ciphertexts Fn
2 for

some fixed n. The encryption functions are typically defined by compos-
ing carefully chosen cryptographic primitives over a number of rounds.
We give two motivating examples below.

Example 3.4.

(1) Each round of the widely used block cipher AES is of the form
(x, k) 7→ s(x) + k where + is addition in F128

2 , x ∈ F128
2 is the

input to the round (derived ultimately from the plaintext) and k ∈
F128

2 is a ‘round key’ derived from the key. The most important
cryptographic primitive in the function s : F128

2 → F128
2 is pseudo-

inversion in the finite field F28 , as defined by

s(x) =

{
x−1 if x 6= 0
0 if x = 0.

.

The inversion function is highly non-linear and hard to attack.
Just for fun, the 256 values of the boolean function sending 0 to 0
and a non-zero x to the bit in position 0 of s(x) are shown below,
for one natural order on F28 .

0110101101100111000111010110100000011101100100000100110001011111
1011111110110111101000110000101100111001011111111111010000001010
1010010010111010000100000010101010011010000001000011110110011001
1011000111101000010111000101100111010011001110011100001010101010.

It is highly unlikely that you will see any obvious pattern! As one
sign of the apparent randomness, there are 128 zeros, 128 ones,
and each pair 01, 10, 11 appears exactly 64 times. Later we shall
prove that the inversion function is secure against difference at-
tacks.

The function for bit number 1 in the key addition is

(y0, y1, . . . , y127, k0, k1, . . . , k127) 7→ y1 + k1.

We shall see that such linear functions are very weak cryptograph-
ically taken on their own, but are very useful when combined
with non-linear functions such as s and inversion.

(2) In the block cipher SPECK proposed by NSA in June 2013, the
non-linear primitive is modular addition in Z/2mZ, denoted �.
(Note + on binary words always means addition modulo 2.) As a
’toy’ version we take m = 8; in practice m is at least 16 and usually
64. Identify F8

2 with Z/28Z by writing numbers in their binary
form. For instance, 13 ∈ Z/28Z has binary form 0000 1101 (the

10

space is just for readability) and

1010 1010 � 0000 1111 = 1011 1001

1000 0001 � 1000 0001 = 0000 0010

are the decimal sums 170 + 15 = 185 mod 256 and 129 + 129 = 2
mod 256. Modular addition is a convenient operation because it
is very fast on a computer, but it has some cryptographic weak-
nesses. In SPECK it is combined with other functions in a way
that appears to give a very strong and fast cipher.

One sign that modular addition is weak on its own is that the low
numbered bits are ’close to’ linear functions. We make this precise
in §6 on linear cryptanalysis. For example

(. . . , x2,x1, x0)� (. . . , y2, y1, y0)

= (. . . , x2 + y2 + c2, x1 + y1 + x0y0, x0 + y0)

where c2 is the carry into position 2, defined using the major-
ity vote function by c2 = maj(x1, y1, x0y0). Unless both x0 and
y0 are 1, bit 1 is x1 + y1, a linear function of (. . . , x2, x1, x0) and
(. . . , y2, y1, y0). By Exercise 4.5, output bit 2 is given by the more
complicated polynomial

x2 + y2 + x1y1 + x0x1y0 + x0y0y1.

This formula can be used for part of Question 6 on Problem Sheet 3:
it is the algebraic normal form of the boolean function for bit 2 in
modular addition.

Truth tables and disjunctive normal form. A boolean function f : Fn
2 →

F2 can be defined by its truth table, which records for each x ∈ Fn
2 its

image f (x). For example, the boolean functions F2
2 → F2 of addition and

multiplication are shown below:

x y x + y xy x ∧ y x ∨ y x =⇒ y

0 0 0 0 F F
0 1 1 0 F T
1 0 1 0 F T
1 1 0 1 T T

It is often useful to think of 0 as false and 1 as true. Then xy corre-
sponds to x ∧ y, the logical ‘and’ of x and y, as shown above. The logical
‘or’ of x and y is denoted x ∨ y.

Exercise 3.5. Use the true/false interpretation to complete the columns
for x =⇒ y. Could you convince a sceptical friend that false statement
imply true statements?

11

Example 3.6. The Toffoli function is a 3-variable boolean function impor-
tant in quantum computing. It can be defined by

toffoli(x0, x1, x2) =

{
x0 if x1x2 = 0
x0 if x1x2 = 1.

Here x denotes the bitflip of x, defined by 0 = 1 and 1 = 0. In the
true/false interpretation F = T and T = F. This table shows the majority
vote and Toffoli functions; also shown are two of the f J functions defined
later.

x2 x1 x0 maj(x0, x1, x2) toffoli(x0, x1, x2) f{0} f{0,2}

∅ 0 0 0 0 0 0 0
{0} 0 0 1 0 1 1 0
{1} 0 1 0 0 0 0 0
{0, 1} 0 1 1 1 1 0 0
{2} 1 0 0 0 0 0 0
{0, 2} 1 0 1 1 1 0 1
{1, 2} 1 1 0 1 1 0 0
{0, 1, 2} 1 1 1 1 0 0 0

The sets on the left record which variables are true. For example, the
majority vote function is true on the rows labelled by the sets of sizes 2
and 3, namely, {0, 1}, {0, 2}, {1, 2}, {1, 2, 3}, and false on the other rows.

Given a subset J of {0, . . . , n− 1} we define f J : Fn
2 → F2 by

f J(x) =
∧
j∈J

xj ∧
∧
j 6∈J

xj.

In words, f J is the n-variable boolean function whose truth table has a
unique 1 (or true) in the row labelled J. For instance f{0}(x0, x1, x2) =

x0 ∧ x1 ∧ x2 and f{0,2}(x0, x1, x2) = x0 ∧ x1 ∧ x2 are shown above.

Exercise 3.7.
(i) For what set J do we have

toffoli = f{0} ∨ f{0,1} ∨ f{0,2} ∨ f J?

(ii) Express the majority vote function in the form above.
(iii) Find a way to complete the right-hand side in

maj(x) = (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (. . .).

Theorem 3.8 (Disjunctive Normal Form). Let f : Fn
2 → F2 be a boolean

function.
(i) Suppose that the truth table of f has 1 in the rows labelled by the sets J

for J ∈ T . Then
f =

∨
J∈T

f J .

12

(ii) If T 6= T ′ then
∨

J∈T f J 6=
∨

J∈T ′ f J .

This theorem says that every boolean function f has a unique disjunc-
tive normal form

∨
J∈T f J , for a suitable set T . (Disjunction means logical

or’, i.e.
∨

.) By convention, the empty disjunction is false:
∨

J∈∅(x) = 0
for all x ∈ Fn

2 .

Corollary 3.9. There are 22n
n-variable boolean functions.

Exercise 3.10. By Corollary 3.9, there are 16 truth tables of 2-variable
boolean functions. Using the true/false notation, the 8 for which f (F, F) =
F are shown below. What is a suitable label for the rightmost column?
What are the disjunctive normal forms of these 8 functions? What is a
concise way to specify the remaining 8 functions?

x1 x0 x0 ∨ x1 x0 x1 x0 + x1 x0 ∧ x1 x0 ∧ x1 x0 ∧ x1 ??

∅ F F F F F F F F F F
{0} F T T T F T F T F F
{1} T F T F T T F F T F
{0, 1} T T T T T F T F F F

Algebraic normal form. In F2 we have 02 = 0 and 12 = 1. Therefore the
boolean functions f (x1) = x2

1 and f (x1) = x1 are equal. Hence, as seen
in Exercise 3.2, multivariable polynomials over F2 do not need squares
or higher powers of the variables. Similarly, since 2x1 = 0, the only coef-
ficients needed are the bits 0 and 1. For instance, x0 + x0x2

2x3
3 + x2

0 + x2x3
is the same boolean function as x2x3 + x0x2x3.

Given I ⊆ {0, 1, . . . , n− 1}, let

xI = ∏
i∈I

xi.

We say the xI are boolean monomials. By definition (or convention if you
prefer), x∅ = 1. For example, x{1,2} = x1x2. It is one of the three boolean
monomial summands of maj(x0, x1, x2) = x0x1 + x1x2 + x2x0.

The functions f J so useful for proving Theorem 3.8 have a particularly
simple form as polynomials:

f J(x) = ∏
j∈J

xj ∏
j 6∈J

xj.

Exercise 3.11. Define the 3-variable boolean function

g(x0, x1, x2) =

{
1 if x0 = x1 = x2

0 otherwise.

Express g as sum of boolean monomials. The negation of g is defined
What is the negation g as a sum of boolean monomials?

13

Similarly you can use the truth table on page 3.6 to express the Toffoli
function and its negation as a sum of boolean monomials.

It is only a small generalization of Exercise 3.11 to prove the existence
part of the following theorem. There is a very neat way to prove unique-
ness, using the result from Corollary 3.9 that there are exactly 22n

boolean
functions of n variables.

Theorem 3.12. Let f : Fn
2 → F2 be an n-variable boolean function.

(a) There exist coefficients bJ ∈ {0, 1}, one for each J ⊆ {1, . . . , n} such
that

f = ∑
J⊆{0,1,...,n−1}

bJ f J .

(b) There exist unique coefficients cI ∈ {0, 1}, one for each I ⊆ {1, . . . , n},
such that

f = ∑
I⊆{0,1,...,n−1}

cI xI .

The expression for f in (b) is called the algebraic normal form of f .

Exercise: deduce from the uniqueness of disjunctive normal form that the
coefficients bJ in (a) are also unique.

As shorthand, we write [xI] f for the coefficient of xI in the boolean
function f . Thus f = ∑I⊆{0,1,...,n−1}([xI] f)xI is the algebraic normal form
of f . It is possible to give an explicit formula for the coefficients [xI] f . To
motivate our approach, consider the sums in the exercise below.

Exercise 3.13. Let f (x, y, z) = 1 + x + xz + yz + xyz, given in algebraic
normal form. Let g(x, y, z) = f (0, y, z) + f (1, y, z).

(i) What information does f (0, 0, 0) tell us about f ?
(ii) Find the algebraic normal form of g. What is the connection with

the algebraic normal form of f ?
(iii) What does g(0, 0, 0) = f (0, 0, 0) + f (1, 0, 0) tells us about g? What

does it tell us about f .

Given i ∈ {0, 1, . . . , n− 1}, define ∆(i) = (0, . . . , 1, . . . , 0), where the 1
is in position i. The discrete derivative in position i of an n-variable boolean
function f is the boolean function, (Di f) defined by

(Di f)(x) = f (x + ∆(i)) + f (x).

This definition emphasises the connection with the derivative of real func-
tions.

Since x and x + ∆(i) are, in some order, (x0, . . . , 0, . . . , xn−1) ∈ Fn
2 and

(x0, . . . , 1, . . . , xn−1) ∈ Fn
2 , an equivalent definition is

(Di f)(x0, . . . , xi, . . . , xn−1) = f (x0, . . . , 1, . . . , xn) + f (x0, . . . , 0, . . . , xn).

14

This form emphasises the connection with Exercise 3.13, where we saw
that D0(1 + x0 + x0x2 + x1x2 + x0x1x2) = 1 + x2 + x1x2.

See the slides for a quiz on the discrete derivative, including an illus-
tration that it is linear: that is Di(f + g) = Di f + Dig. This property
should be familiar from the usual derivative.

Given I = {i1, . . . , ir} ⊆ {0, 1, . . . , n− 1}, define

DI = Di1 . . . Dir .

To be careful, we should check this is well-defined, for instance, since
{i, j} = {j, i}, we need DiDj = DjDi. This follows from (i) in the next
lemma.

Lemma 3.14. Let I ⊆ {0, 1, . . . , n− 1}.
(a) Let i ∈ {0, 1, . . . , n− 1}. Then

DixJ =

{
0 if i 6∈ J
J\{i} if i ∈ J.

(b) Let I ⊆ {0, 1, . . . , n− 1}. Then

DI xJ =

{
0 if I 6⊆ J
J\I if I ⊆ J.

We use the lemma to prove this formula for the coefficient in the alge-
braic normal form.

Proposition 3.15. Let f : Fn
2 → F2 be an n-variable boolean function. Then

[xI] f = ∑ f (z0, . . . , zn−1)

where the sum is over all z0, . . . , zn−1 ∈ {0, 1} such that {j : zj = 1} ⊆ I.

To unpick some of the notation, a special case of the proposition is that
if n = 3 then the coefficient of x0x2 in f is the sum over all (z0, z1, z2) ∈ F3

2
such that {j : zj = 1} ⊆ {0, 1, 2}. Thus

[x{0,2}] f = f (0, 0, 0) + f (1, 0, 0) + f (0, 0, 1) + f (1, 0, 1).

In the plenary session we saw this for the function f in Exercise 3.13 by
evaluating ∆2g = ∆2∆0 f at (0, 0, 0). This may help to indicate the proof.

Proof. By linearity, it suffices to prove the lemma when f = xJ is a sin-
gle monomial. The sum in the proposition is then (DI f)(0, . . . , 0). By
Lemma 3.14(b), this is 1 if and only if I = J, and otherwise 0. �

15

The main thing to check is that you understand what is meant by ‘by
linearity’. Here it means that since any boolean function can be written as
a sum of monomials, and since the discrete derivative is linear, that is. Di(f +
g) = Di(f) + Di(g) for all boolean functions f and g, we can reduce to
the case where f is a single monomial.

4. THE DISCRETE FOURIER TRANSFORM

Preliminaries 4.1. It will be very helpful if you review the definition of
vector spaces and inner products. If you know what it means to say that
u, v, w ∈ R3 is an orthonormal basis of the vector space R3 with respect to
the inner product 〈−,−〉 defined by〈

(x0, x1, x2), (y0, y1, y2)
〉
= x0y0 + x1y1 + x2y2

(this is the usual dot-product), and why it follows that

x = 〈x, u〉u + 〈x, v〉v + 〈x, w〉w

for any x ∈ R3, then the proof of Theorem 4.6 should seem easier and
more motivated to you. The slides have a quiz you can use to revise.

In this section it will be useful to change the range of boolean functions
so that they take values in {−1, 1} rather than {0, 1}.

Given x ∈ F2 we define (−1)x by regarding x as an ordinary integer.
Thus (−1)0 = 1 and (−1)1 = −1. Given an n-variable boolean function
f : Fn

2 → F2 we define (−1) f : Fn
2 → {−1, 1} by (−1) f (x) = (−1) f (x).

Definition 4.2. Let f , g : Fn
2 → F be boolean functions. We define the

correlation between f and g by

corr(f , g) =
1
2n ∑

x∈Fn
2

(−1) f (x)(−1)g(x).

The summand (−1) f (x)(−1)g(x) is 1 when f (x) = g(x) and −1 when
f (x) = −g(x). Hence

corr(f , g) =
csame − cdiff

2n

where

csame =
∣∣{x ∈ Fn

2 : f (x) = g(x)}
∣∣

cdiff =
∣∣{x ∈ Fn

2 : f (x) 6= g(x)}
∣∣.

Thus the correlation takes values between 1 (perfect agreement) and −1
(always different); if the correlation is 0 we say that the functions are
uncorrelated.

Linear functions such as f (x0, x1, x2) = x0 + x1 are weak cryptograph-
ically. So are functions such as f (x0, x1, x2) = x0 + x1x2 that are highly

16

correlated with linear functions. Given T ⊆ {0, 1, . . . , n − 1}, define
LT : Fn

2 → F2 by
LT(x) = ∑

t∈T
xt.

For example, L{i}(x0, x1, . . . , xn−1) = xi returns the entry in position i
and L∅(x) = 0 is the zero function.

Exercise 4.3.

(i) Compute the correlation between the Toffoli function (see Exam-
ple 3.6) and each of the functions L∅, L{0}, L{2}.

(ii) In general, when is a 3-variable boolean function uncorrelated
with the zero function?

Given S, T ⊆ {0, 1, . . . , n− 1}, define

S4 T = {u : u ∈ S ∪ T, u 6∈ S ∩ T}.

For instance {1, 2} 4 {0, 2, 3} = {0, 1, 3}.

Lemma 4.4.
(a) The linear functions Fn

2 → F are precisely the LT : Fn
2 → F2 for

T ⊆ {0, 1, . . . , n− 1}.
(b) We have LS + LT = LS4 T for all S, T ⊆ {0, 1, . . . , n− 1}.
(c) L∅ is the zero function.
(d) If T ⊆ {0, 1, . . . , n− 1} and T 6= ∅ then corr(LT, 0) = 0
(e) If S, T ⊆ {0, 1, . . . , n− 1} then

corr(LS, LT) =

{
1 if S = T
0 otherwise.

Example 4.5. Let maj : F3
2 → F2 be the majority vote function from Exer-

cise . We have

corr(maj, LT) =

1
2 if T = {0}, {1}, {2}
− 1

2 if T = {0, 1, 2}
0 otherwise.

To generalize the previous example, we define an inner product on the
vector space W of functions Fn

2 → R by

〈θ, φ〉 = 1
2n ∑

x∈2n
θ(x)φ(x).

Exercise 4.6.

(i) Let θ ∈W. Check that, as required for an inner product, 〈θ, θ〉 ≥ 0
and that 〈θ, θ〉 = 0 if and only if θ(x) = 0 for all x ∈ Fn

2 .
(ii) Show that if n = 2 then W is 4-dimensional. What is dim W in

general?

17

It is immediate from the definition that if f and g are n-variable boolean
functions then

〈(−1) f , (−1)g〉 = corr(f , g).

Theorem 4.7 (Discrete Fourier Transform).

(a) The functions (−1)LT for T ⊆ {0, 1, . . . , n − 1} are an orthonormal
basis for the vector space W of functions Fn

2 → R.
(b) Let θ : Fn

2 → R. Then

θ = ∑
T⊆{0,1,...,n−1}

〈θ, (−1)LT 〉(−1)LT .

(c) Let f : Fn
2 → F2 be a boolean function. Then

(−1) f = ∑
T⊆{0,1,...,n−1}

corr(f , LT)(−1)LT .

We call (c) the ‘Discrete Fourier Inversion Theorem’. The function T 7→
corr(f , LT) = 〈(−1) f , (−1)LT 〉 is the Discrete Fourier Transform of f . For
example, by Example 4.5, the Discrete Fourier Transform of the majority
vote function is

(−1)maj = 1
2(−1)L{0} + 1

2(−1)L{1} + 1
2(−1)L{2} − 1

2(−1)L{0,1,2} .

The following corollary is known as Parseval’s Theorem.

Corollary 4.8. Let f be an n-variable boolean function. Then

∑
T⊆{0,1,...,n−1}

corr(f , LT)
2 = 1.

Since there are 2n linear functions (corresponding to the 2n subsets of
{0, 1, . . . , n− 1}), it follows that any n-variable boolean function f has a
squared correlation of at least 1/2n. Hence f has a correlation of at least
1/
√

2n in absolute value with some linear function.

Example 4.9.

(1) Let f (x0, x1, x2) = x0x1x2. We have corr(f , L∅) =
3
4 , corr(f , L{0}) =

1
4 , corr(f , L{0,1}) = − 1

4 and corr(f , L{0,1,2}) =
1
4 . By Theorem 4.7(c)

and symmetry, the Discrete Fourier Transform of f is

(−1) f = 3
4 +

1
4 ∑

T⊆{0,1,2}
T 6=∅

(−1)|T|−1(−1)LT .

The squares of the correlations are 9
16 and 1

14 (7 times); as expected
from Corollary 4.8, (3

4)
2 + 7(1

4)
2 = 1.

18

(2) Exercise: Consider the 2-variable boolean function f (x0, x1) =
x0x1. Find its correlations with the four linear functions L∅(x0, x1) =
1, L{0}(x0, x1) = x0, L{1}(x0, x1) = x1, L{0,1}(x0, x1) = x1 + x2 and
deduce that

(−1)x0x1 = 1
2(−1)L∅ + 1

2(−1)L{0} + 1
2(−1)L{1} − 1

2(−1)L{0,1}

(3) Let b(x0, x1, x2, x3) = x0x2 + x1y3. We shall use MATHEMATICA

to show that corr(b, LT) = ± 1
4 for every T ⊆ {0, 1, 2, 3}. By the

remark following Corollary 4.8, this function achieves the crypto-
graphic ideal of having all correlations as small (in absolute value)
as possible.

An n-variable boolean function such as b above where the correlations
all have absolute value 1/

√
2n is called a bent function. Many different

constructions have been found and applied in cryptography and pseudo-
random number generation.

Exercise 4.10.

(i) Show that if there is an n-variable bent function then n is even.
(ii) What is the correlation between a bent function and the zero func-

tion L∅?
(iii) Can you find some more 4-variable bent functions? [Hint: the

MATHEMATICA notebook BooleanCorrelations.nb can be used
to compute correlations quickly.]

Since, by (ii), a bent function f has a slight bias towards 0 if corr(f , L∅) =
1/
√

2n, and towards 1 if corr(f , L∅) = −1/
√

2n, they are not used as
cryptographic primitives without some tweaking. The block cipher CAST
makes uses of modified bent-functions.

We end this section with a lemma that is often useful for computing
correlations. For instance applied to x0y0, . . . , xm−1ym−1, and using Ex-
ample 4.9(2) for the correlations of x0y0, it says that the correlations for
x0y0 + · · · + xm−1ym−1 are all ±1/2m. Thus this function is bent. The
special case m = 2 was seen in Example 4.9(3).

Lemma 4.11 (Piling-up Lemma). Let f be an m-variable boolean function of
u0, . . . , um−1 and let g be an n-variable boolean function of v0, . . . , vn−1. Define
f + g by

(f + g)(u0, . . . , um−1, v0, . . . , vn−1) = f (u0, . . . , um−1) + g(v0, . . . , vn−1).

Given S ⊆ {0, . . . , m− 1} and T ⊆ {0, . . . , n− 1}, let L(S,T)(u, v) = LS(u)+
LT(v). The L(S,T) are all linear functions of the m + n variables and

corr(f + g, L(S,T)) = corr(f , LS) corr(g, LT).

19

We did not have time to even state the lemma in the plenary session in
Teaching Week 5. Since the proof is short, I give it below. There will be a
video version later after Problem Sheet 6.

Proof of Lemma 4.11. The first claim is immediate from Lemma 4.4, ap-
plied with m + n variables. By the Discrete Fourier Transform (Theo-
rem 4.7(c)) we have

(−1) f = ∑
S⊆{0,...,m−1}

corr(f , LS)(−1)LS

(−1)g = ∑
T⊆{0,...,n−1}

corr(g, LT)(−1)LT

Observe that by definition of L(S,T),

(−1)LS(u0,...,um−1)(−1)LT(v0,...,vn−1) = (−1)L(S,T)(u0,...,um−1,v0,...,vn−1).

Therefore multiplying the discrete Fourier transforms gives

(−1) f+g = ∑
S⊆{0,...,m−1}

∑
T⊆{0,...,n−1}

corr(f , LS) corr(g, LT)(−1)L(S,T) .

This is the Discrete Fourier Transform of (−1) f+g. Taking the coefficient
of (−1)L(S,T) we get corr(f + g, L(S,T)) = corr(f , LS) corr(g, LT). �

For instance the Piling-up Lemma implies that

x0xm + · · ·+ xm−1x2m−1

is a bent function for all m, generalizing Example 4.9. [Hint: pile-up re-
peatedly. To get the correlations for x0y0 + x1y1 take u0 = x0, u1 = y0,
v0 = x1 and v1 = y1 and use Example 4.9(2).] We use that all itscorrela-
tions are ±1/2m in the analysis of the m-quadratic stream cipher in §8 of
the main course.

5. KEYSTREAMS AND ANNIHILATORS

In Example 8.2 of the main course we took the sum of the keystream
of the LFSR of width 4 and taps {3, 4} and the keystream of the LFSR of
width 3 with taps {2, 3}. Perhaps surprisingly, the sum is a keystream of
the LFSR of width 7 with taps {2, 4, 5, 7}. The main goal in this section
is to prove Corollary 5.5 that explains why these taps are the non-zero
powers of z appears in the product (1 + z3 + z4)(1 + z2 + z3) = 1 + z2 +
z4 + z5 + z7, computed as usual working modulo 2.

Definition 5.1. The power series representing a keystream k0k1k2 . . . is k0 +
k1z + k2z2 + · · · .

20

Power series can be added and multiplied like polynomials in F2[z].1

Example 5.2. The power series κ(z) representing the keystream of the
LFSR F of width 3 and taps {2, 3} with key 110 is

1+ z+ z4 + z6 + z7 + z8 + z11 + z13 + z14 + z15 + · · · ←→ 1100101110010111 . . .

(a) Observe that the coefficient of zm in (1 + z7)κ(X) comes from zm

and zm−7, and so is km + km−7, for all m ≥ 7. Since the keystream
has period 7, km = km−7 and hence the coefficient of xs in (1 +
z7)κ(X) is zero for s ≥ 7. Thus (1 + z7)κ(z) is a polynomial. Ex-
plicitly,

(1 + z7)κ(z) = 1 + z + z4 + z6.
(b) Exercise: using the method of (a) show that (1 + z2 + z3)κ(z) is a

polynomial.
(c) Exercise: show that the product of the power series for the keystream

1011100 . . . and 1 + z2 + z3 is 1. In fact every power series with
constant coefficient 1 has a multiplicative inverse.2 For example,
to find the key 101 we compute

1
1 + z2 + z3 = 1 + (z2 + z3) + (z2 + z3)2 + · · ·

= 1 + z2 + z3 + z4 + z7 + z9 + z12 + · · ·
←→ 10111001011100 . . .

(d) Warning example: The product of κ(z) with 1 + z is

1+ z2 + z4 + z5 + z6 + z9 + z11 + z12 + z13 + · · · ←→ 10101110010111001

Exercise: is the right-hand side a keystream of F?

Motivated by (b), we define the feedback polynomial of a LFSR with
taps T to be

gT(z) = 1 + ∑
t∈T

zt

and make the following definition.

Definition 5.3. Let κ(z) be an infinite power series with coefficients in F2.
Let g(z) be a polynomial. We say that g(z) annihilates κ(z) if g(z)κ(z) is a
polynomial.3

1Footnotes in this section may be useful for those with some ring theory; oth-
erwise please ignore, and you will miss nothing essential for this course. The
ring of binary power series is usually denoted F2[[z]]. There is a homomorphism
from this ring to F2[z]/〈zm〉 defined by ∑∞

s=0 kszs 7→ ∑m−1
s=0 kszs + 〈zm〉. Hence

F2[[z]]/〈zm〉 ∼= F2[z]/〈zm〉 and one can compute any sum, product, or quotient
in F2[[z]] as far as the coefficient of zm−1 by instead imagining one is working in
F2[z] and ignoring all powers zr with r ≥ m.

2Equivalently, F2[[z]] is a local ring with unique maximal ideal 〈z〉.
3Like the annihilators you might have met in ring theory, the set of polynomials

annihilating κ(z) is an ideal of F2[z]. As such it is principal, and so there is a dis-
tinguished monic generator. By Lemma ??(a) this generator divides the feedback
polynomial of the LFSR.

21

For example, we have seen that if κ(z) = 1 + z + z4 + z6 + z7 + z8 +
z11 + z13 + · · · then κ(z) is annihilated by 1 + z7 and also by 1 + z2 + z3,
but not by 1 + z.

Lemma 5.4. Let u0u1u2 . . . be a keystream and let κ(z) = u0 + u1z + u2z2 +
· · · be the corresponding power series. Let T ⊆ {1, . . . , `}. The polynomial
gT(z) annihilates κ(z) with deg gT(z)κ(z) < ` if and only if k0k1k2 . . . is a
keystream of an LFSR with taps T and width `.

Proof. Let s ≥ max T. The coefficient of zs in (1 + ∑t∈T zt)κ(z) is the
sum of us (from multiplying by 1) and ∑t∈T us−t (from multiplying by
∑t∈T zt). Hence it is us + ∑t∈T us−t. This is zero for all s ≥ ` if and only if
u0u1u2 . . . is a keystream of the LFSR with taps T and width `. �

Note that we may need to take ` > max T. For instance the keystream
that is all zero except in position 2, i.e. 001000 . . . is the output of an LFSR
of width 3 with empty taps, but no LFSR of smaller width. This was also
seen in Example 5.2(d); there is another example in the quiz on the slides.

Corollary 5.5. Suppose that k0k1k2 . . . is a keystream of an LFSR with taps T
and width ` and k′0k′1k′2 . . . is a keystream of an LFSR with taps T′ and width `′.
Let us = ks + k′s for each s ∈ N0. Then u0u1u2 . . . is a keystream of the LFSR
of width `+ `′ with feedback polynomial gT(z)gT′(z).

You are asked to prove this in Question 4 on Problem Sheet 4. As a
hint, let κ(z) = k0 + k1z + k2z2 + · · · and κ′(z) = k′0 + k′1z + k′2z2 + · · ·
be the two power series representing the keystreams. Use Lemma 5.4
to show that κ(X) + κ′(z) is annihilated by gT(z)gT′(z). What does this
imply about u0u1u2 . . .?]

Corollary 5.6. Let F be an invertible LFSR with taps T and let m ∈ N. The
following are equivalent:

(a) every keystream of F has period dividing m;
(b) 1+ zm annihilates every power series κ(z) corresponding to a keystream

of F and (1 + zm)κ(z) has degree < m;
(b) gT(z) divides 1 + zm.

Moreover if m is the least number with any of these properties then m is the
period of F and F has a keystream of period m.

Proof. Let k0k1k2 . . . be a keystream of F corresponding to κ(z) = k0 +
k1z + k2z2 + · · · .

• The keystream has period dividing m if and only if ks = ks+m for
all s ∈ N0; this holds if and only if (1 + zm)κ(z) is a polynomial.
Therefore (a) and (b) are equivalent.

22

• Since gT(z)/gT(z) is a polynomial, Lemma 5.4 (‘only if’ direction)
implies that 1/gT(z) is the power series of a keystream of F. Now
(1+ zm)/gT(z) is a polynomial if and only if gT(z) divides 1+ zm.
Hence if (b) holds then gT(z) divides 1 + zm.

Conversely suppose, as in (c), that gT(z) divides 1 + zm. Let 1 +
zm = h(z)gT(z). By Lemma 5.4 (‘if’ direction), gT(z)κ(z) is a poly-
nomial, hence (1 + zm)κ(z) = h(z)

(
gT(z)κ(z)

)
is a polynomial.

Therefore 1 + zm annihilates κ(z), as required in (ii). Hence (b)
and (c) are equivalent.

Finally if m is least such that gT(z) divides 1 + zm then, as seen in the
second step, m is minimal such that 1+ zm annihilates 1/gT(z). Therefore
the keystream corresponding to 1/gT(z) has period m and from (i) we
see that all other keystreams have periods dividing m. By (VUP), F has
period m. �

To work with Corollary 5.6, the following lemma is useful. Let hcf(d, e)
denote the highest common factor of d, e ∈N.

Lemma 5.7. If a polynomial g(z) divides zd + 1 and ze + 1 then it divides
zhcf(d,e) + 1.

Example 5.8. The number 213 − 1 = 8191 is prime. The MATHEMATICA

command Factor[z^8191 + 1, Modulus -> 2] reports that

z8191 + 1 = (1 + z)(1 + z + z3 + z4 + z13)(1 + z + z2 + z5 + z13)

(Here . . . stands for 630 omitted factors all of degree 13.) The taps of the
LFSR of width 13 with feedback polynomial f (z) = 1 + z + z3 + z4 + z13

are 1, 3, 4, 13. By Corollary 5.6, its period is the least m such that f (z)
divides zm + 1. If 1 + z + z3 + z4 + z13 divides ze + 1 with e < 8191 then,
by Lemma 5.7, 1 + z + z3 + z4 + z13 divides zhcf(e,8191) + 1 = z + 1, a
contradiction. Since 1 + z + z3 + z4 + z13 divides X8191 + 1, its period is
8191.

The use of MATHEMATICA in this example can be replaced with some
finite field theory: it is sufficient to note that 1 + z + z3 + z4 + z13 is irre-
ducible in F2[X], and so it splits in F213 and no smaller field. Since 213− 1
is prime, all the roots of the feedback polynomial f (z) have order 213 − 1
and f (z) is factor of Xm + 1 if and only if 213 − 1 divides m.

Primes such as 213 − 1 are known as Mersenne primes. The largest
known prime number is the Mersenne prime 282 589 933 − 1 found by the
Great Internet Mersenne Prime Search in 2018.

23

6. BERLEKAMP–MASSEY ALGORITHM

The Berlekamp–Massey algorithm finds the width and feedback poly-
nomial of an LFSR of minimal width generating a given binary word. It is
faster than the linear algebra method seen in Question 2 of Problem Sheet
5. If an LFSR generates u0 . . . un−1 then clearly it generates u0 . . . um−1 for
all m ≤ n. Therefore the minimal width (also known as the linear complex-
ity) stays the same or goes up as we require more bits to be generated.

Motivation. These examples can be checked using the MATHEMATICA

notebook LFSRs.nb available from Moodle. Recall from after Exercise 6.9
in the main course that the feedback polynomial of an LFSR with taps T
is gT(z) = 1 + ∑t∈T zt.

Example 6.1. We take the sum of the keystreams of the LFSR with taps
{3, 4} and width 4 and the LFSR with taps {2, 3} and width 3, using keys
0001 and 001.

ui = (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

The table below shows the output of the Berlekamp–Massey algorithm
(use BerlekampMasseyFull[usEx61] in LFSRs.nb) applied to the first n
terms u0 . . . un−1 for n ≥ 6. The final column is the m in Proposition 6.5;
ignore it for now.

n width feedback polynomial taps m

6 3 1 + z {1} 2
9 4 1 + z + z4 {1, 4} 6
10 6 1 + z + z3 {1, 3} 9
11 6 1 + z2 + z3 + z5 {2, 3, 5} 9
≥ 13 7 1 + z2 + z4 + z5 + z7 {2, 4, 5, 7} 12

The LFSR does not change for n = 7, 8 or 12.

For instance, the first 10 terms u0u1 . . . u9 are generated by the LFSR of
width 6 with feedback polynomial 1 + z + z3; its taps are {1, 3}. Taking
as the key u0u1u2u3u4u5 = 001111, the first 30 terms of the keystream are:

ki =(0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, . . .)
ui =(0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, . . .)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Since k10 6= u10, running the Berlekamp–Massey algorithm on the first 11
bits u0 . . . u9u10 gives a different LFSR. (The width stays as 6, but the taps
change to {2, 3, 5}.) The new LFSR generates u0 . . . u9u10u11, so is also
correct for the first 12 bits. This is why there is no change for n = 12.

24

For all n ≥ 13 the output of the algorithm is the LFSR of width 7 and
feedback polynomial 1 + z2 + z4 + z5 + z7; that may also be found by the
method of annihilators in Corollary 5.5.

Example 6.2. The first 30 bits output by the Geffe generator seen in Ex-
ample 8.3 of the main course are:

ui 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

The output of the Berlekamp–Massey algorithm run on the first 20 bits is
shown below.

n width feedback polynomial taps m

8 5 1 + z {1} 4
9 5 1 + z + z4 {1, 4} 4

14 9 1 + z + z4 + z9 {1, 4, 9} 13
18 9 1 + z + z5 + z8 + z9 {1, 5, 8, 9} 13
19 10 1 + z6 + z8 {1, 6, 8} 18

Taking n = 30, an LFSR of width 15 is required; the set of taps is then
{1, 3, 4, 5, 7, 8, 9, 10, 11, 12}. We see that the minimal width of a LFSR gen-
erating the first n terms is about n/2. This is the typical case for a ‘ran-
dom’ sequence. This, and the lack of any obvious pattern in the taps,
show that the Geffe cipher is stronger cryptographically than the output
of an LFSR.

Setup. Fix throughout a binary word

u0u1u2 . . . uN−1.

Let Un(z) = u0 + u1z + · · ·+ un−1zn−1 be the polynomial recording the
first n terms. Recall from §1 that the degree of a non-zero polynomial
h(z) is its highest power of z.

Lemma 6.3. The word u0u1 . . . un−1 is the output of the LFSR with width `
and taps T ⊆ {1, . . . , `} if and only if Un(z)gT(z) = h(z) + znr(z) for some
polynomials h(z) and r(z) with deg h < `.

You are asked to give a proof in Question 4 on Problem Sheet 5. The
idea is almost the same as in the proof of Lemma 5.4, except now we have
to watch out for the ‘remainder term’ znr(z) since Un(z) is a polynomial,
not an infinite power series.

Example 6.4. Let u = (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0) = u0 . . . u12 be the first
13 entries of the keystream in Example 6.1. The first 12 entries u0 . . . u11

25

are generated by the LFSR of width 6 with taps {2, 3, 5}. Correspond-
ingly, by the ‘if’ direction of Lemma 6.3,

(z2 + z3 + z4 + z5 + z7)g{2,3,5}(z)

= (z2 + z3 + z4 + z5 + z7)(1 + z2 + z3 + z5)

= z2 + z3 + z5 + z12

= h(z) + z12r(z)

where h(z) = z2 + z3 + z5 and r(z) = 1. This equation also shows that
the ‘only if’ direction fails to hold when n = 13 since z12 is not of the
form z13r(z). Correspondingly, by the ‘only if’ direction of Lemma 6.3,
the LFSR generates (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1) rather than u.

Berlekamp–Massey step. At step n of the Berlekamp–Massey algorithm we
have two LFSRs:

• An LFSR Fm of width `m with taps Tm, generating

u0u1 . . . um−1um

• An LFSR Fn of width `n with taps Tn, where n > m, generating

u0u1 . . . um−1um . . . un−1.

Thus Fm is correct for the first m positions, and then wrong, since it gen-
erates um rather than um. If Fn generates u0u1 . . . um−1um . . . un−1un then
case (a) applies and the algorithm returns Fn. The next proposition deals
with case (b), when Fn outputs un rather than un.

Proposition 6.5. With the notation above, suppose that the LFSR Fn generates
u0u1 . . . un−1un. The LFSR with feedback polynomial

zn−mgTm(z) + gTn(z)

and width max(n−m + `m, `n) generates u0u1 . . . un−1un.

As a useful notation we write [≥ d] for an unspecified polynomial
which is either 0 or whose minimum power of z is at least a. For instance
[≥ 5] could stand for z5 + z8, or for z6, but not for z4, because its degree
is too small. Several times below we use that [≥ a] + [≥ a] = [≥ a].

Proof. For r ∈ {0, 1, . . . , n + 1}, define Ur(z) = ∑r−1
i=0 uizi. Thus Un+1(z) is

the polynomial corresponding to u0u1 . . . un. Observe that

Un+1(z) + zn = Un(z) + unzn + zn = Un(z) + unzn.

Since Fn generates u0 . . . un−1un, Lemma 6.3 implies(
Un+1(z) + zn)gTn(z) = hn(z) + [≥ n + 1]

where deg hn < `n. The same argument replacing n with m shows that

(Um+1(z) + zm)gTm(z) = hm(z) + [≥ m + 1]

26

where deg hm < `m. Since zngTn(z) = zn + [≥ n + 1], and similarly
zmgTm(z) = zm + [≥ m + 1], we have

Un+1(z)gTn(z) = hn(z) + zn + [≥ n + 1]

Um+1(z)gTm(z) = hm(z) + zm + [≥ m + 1].

Hence

Un+1(z)
(
zn−mgTm(z) + gTn(z)

)
= zn−m(Um+1(z) + [≥ m + 1]

)
gTm(z) + Un+1(z)gTn(z)

= zn−mUm+1(z)gTm(z) + [≥ n + 1] + Un+1(z)gTn(z)

=
(
zn−mhm(z) + zn + [≥ n + 1]

)
+
(
hn(z) + zn + [≥ n + 1]

)
= zn−mhm(z) + hn(z) + (≥ n + 1).

where the first equality uses Un+1(z) = Um+1(z) + [≥ m + 1]. Note the
cancellation of the two zn terms. (Intuitively: two wrongs come together
to make a right.) Since

deg
(
zn−mhm(z) + hn(z)

)
< max

(
n−m + deg hm(z), deg hn(z)

)
≤ max(n−m + `m, `n),

the ‘if’ direction of Lemma 6.3 now implies that u0 . . . un−1un is a keystream
of the claimed LFSR. �

Example 6.6. Take the keystream k0k1 . . . k9 of length 10 shown below:

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0).
0 1 2 3 4 5 6 7 8 9

The LFSR F6 of width `6 = 3 and taps T6 = {1, 3} generates the keystream

(1, 1, 1, 0, 1, 0, 0, 1, 1, 1).
0 1 2 3 4 5 6 7 8 9

The LFSR F7 of width `7 = 4 and taps T7 = {1, 4} generates the keystream

(1, 1, 1, 0, 1, 0, 1, 1, 0, 0).
0 1 2 3 4 5 6 7 8 9

Note that F7 is wrong in position 7. Using Proposition 6.5, taking m = 6
and n = 7 we compute

zn−mgTm + gTn(z) = z7−6g{1,3}(z) + g{1,4}(z)

= z(1 + z + z3) + (1 + z + z4)

= 1 + z2.

This is the feedback polynomial of the LFSR F8 with taps T8 = {2} and
width `8 = n−m + `m = 7− 6 + 3 = 4. As expected this generates

(1, 1, 1, 0, 1, 0, 1, 0, 1, 0).
0 1 2 3 4 5 6 7 8 9

27

correct for the first 8 positions. (And then wrong for u8.) Although the
only tap in {2} is 2, we still have to take the width of F8 to be 4 (or more),
to get the first 8 positions correct.

Exercise 6.7. Continuing from the example, apply Proposition 6.5 taking
n = 8, m = 6, and F8 and F6 as in Example 6.6. You should get the LFSR
F9 with taps {3, 5} generating

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0).
0 1 2 3 4 5 6 7 8 9

which is the full keystream. The width is now 8− 6 + 3 = 5; since 5 is a
tap, this is the minimum possible width for these taps.

We could also have used F7 (wrong in position 7) as the ‘deliberately
wrong’ LFSR in Exercise 6.7. Doing this we get instead the LFSR with
taps {1, 5}, which generates (1, 1, 1, 0, 1, 0, 1, 0, 0, 1), also correct for the
first 9 positions. We choose F6 to follow the algorithm specified below.

Berlekamp–Massey algorithm. Let u0u1 . . . uN−1 be a binary word. If ui = 0
for all i then return the LFSR of width 0 and empty taps. Otherwise,
choose c least such that uc 6= 0. The algorithm defines LFSRs Fc, Fc+1,
. . . , FN so that each Fn has width `n and taps Tn and generates the first n
positions of the keystream: u0, . . . , un−1.

• [Initialization] Set Tc = ∅, `c = 0, Tc+1 = ∅ and `c+1 = c + 1. Set
m = c. Set n = c + 1.

• [Step n] We have an LFSR Fn with taps Tn of width `n generating
u0, . . . , un−1 and an LFSR Fm generating u0, . . . , um−1, um.

(a) If Fn generates u0, . . . , un−1, un then set Tn+1 = Tn, `n+1 = `n.
This defines Fn+1 with Fn+1 = Fn. Keep m as it is.

(b) If Fn generates u0, . . . , un−1, un, calculate

g(z) = zn−mgTm(z) + gTn(z)

where, as usual, gTm and gTn are the feedback polynomials.
Define Tn+1 so that g(z) = 1 + ∑t∈Tn+1

zt. Set

`n+1 = max(`n, n + 1− `n).

If `n+1 > `n, update m to n, otherwise keep m as it is.

Thus m is updated if and only if the width increases in step (b).
Continue with step n + 1, or output FN if n = N.

Apart from how the width changes, this should all be expected from
Proposition 6.5 and Example 6.6. Note that we need max Tn+1 ≤ `n+1 for
the LFSR Fn+1 to be well-defined. We prove this as part of Theorem 6.11.

28

Example 6.8. We apply the Berlekamp–Massey algorithm to the keystream
(1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1) from Example 6.6 extended by one extra bit u10 =
1. After initialization we have T0 = ∅, `0 = 0, T1 = ∅, `1 = 1. Case (a)
applies in each step n for n ∈ {2, 4, 5, 9}. The table below shows the steps
when case (b) applies.

n Tn `n m Tm n−m Tn+1 `n+1

1 ∅ 1 0 ∅ 1 {1} 1
3 {1} 1 0 ∅ 3 {1, 3} 3
6 {1, 3} 3 3 {1} 3 {1, 4} 4
7 {1, 4} 4 6 {1, 3} 1 {2} 4
8 {2} 4 6 {1, 3} 2 {3, 5} 5

10 {3, 5} 5 8 {2} 2 {2, 3, 4, 5} 6

The output is the LFSR F11 with taps T11 = {2, 3, 4, 5} and width `11 = 6.

Exercise 6.9.
• Run the algorithm starting with step 1, in which you should de-

fine T2 = {1}, and finishing with step 6, in which you should
define T7 = {1, 4}.
• Then check that steps 7 and 8 of the algorithm are exactly what

we did in Example 6.6 and Exercise 6.7.
• At step 9 you should find that case (a) applies; check that step

10 finishes with the LFSR F11 of width `11 = 6 and taps T11 =
{2, 3, 4, 5}, generating u0u1 . . . u10.

Berlekamp–Massey theorem. To prove that the LFSRs defined by running
the Berlekamp–Massey algorithm have minimal possible width we need
the following lemma. The proof is not obvious, but if you remember the
trick of adding the keystreams, you should find the main idea.

Lemma 6.10. Let n ≥ `. If an LFSR F of width ` generates the keystream
(u0, u1, . . . , un−1, b) of length n+ 1 then any LFSR F′ generating the keystream
(u0, u1, . . . , un−1, b) has width `′ where `′ ≥ n + 1− `.

Proof. Since b + b = 1, the sum of the keystreams is (0, 0, . . . , 0, 1) where
the final 1 is in position number n. By Corollary 5.5 (or Lemma 6.3),
this keystream is the output of an LFSR of width ` + `′. (See video or
scanned notes for details, correcting error in plenary session.) If `+ `′ ≤
n then the key is all zero, and so the keystream is all zeros, a contradiction.
Therefore `+ `′ > n and so `′ ≥ n + 1− `. �

Recall that step n of the Berlekamp–Massey algorithm returns an LFSR
Fn+1 with taps Tn+1 and width `n+1 generating u0 . . . un−1un.

29

Theorem 6.11. With the notation above, max Tn+1 ≤ `n+1. Moreover `n+1 is
the least width of any LFSR generating u0, . . . , un−1, un.

Proof. We work by induction on n.

Base case. let c be least such that kc 6= 0. When n = c or n = c + 1, by the
initialisation step, Tc = Tc+1 = ∅ and `c = 0 and `c+1 = c + 1. Clearly
these are the minimum possible widths.

Inductive step. By induction, `n is the minimum width of an LFSR gen-
erating u0u1 . . . un−1. Hence any LFSR generating u0u1 . . . un−1un has
width ≥ `n.

Suppose case (a) holds. By definition, Tn+1 = Tn and `n+1 = `n. Hence
max Tn+1 = max Tn ≤ `n = `n+1 and `n+1 is minimal by the end of the
first paragraph.

Suppose case (b) holds. We must show (1) that Fn+1 is well defined,
i.e. that max Tn+1 ≤ `n+1 and (2) that Fn+1 has minimum possible width.

(1) Since the most recent width change was at step m, we have `m+1 >
`m, and since, by definition, `m+1 = max(`m, m + 1 − `m) we
have `m+1 = m + 1− `m. Therefore `n = `n−1 = . . . = `m+1 =
m + 1− `m and

n + 1− `n = n−m + `m.

The taps Tn+1 are defined by

1 + ∑
t∈Tn+1

zt = zn−mgTm(z) + gTn(z).

Here zn−mgTm(z) has degree at most n − m + `m, which is n +
1− `n by the displayed equation above, and gTn(z) has degree at
most `n. Since, by definition, `n+1 = max(`n, n+ 1− `n), we have
max Tn+1 ≤ `n+1.

(2) By Lemma 6.10, applied with u0u1 . . . un−1b where b = un (so
Fn generates u0u1 . . . un−1b), any LFSR generating u0u1 . . . un−1un
has width at least n + 1− `n. Since Fn+1 generates u0u1 . . . un−1,
the width is also at least `n. Hence the width is at least max(`n, n+
1− `n) and this is attained by Fn+1.

This completes the proof. �

The linear complexity of a word u0u1 . . . un−1 is the minimal width of an
LFSR that generates it. Modern stream ciphers aim to generate keystreams
with high linear complexity. For example, take the m-quadratic stream ci-
pher from Example 8.5. If m = 1 the keystream u0u1 . . . u29 for the key
pair k = 10101 and k′ = 101010 is

(1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1).

The table below shows the linear complexity of the first n bits of the
keystream for small n and m.

30

m\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 2 2 2 2 5 5 5 5 5 5 5 5 5
2 0 2 2 2 2 2 5 5 5 5 5 5 5 5 5
3 0 0 0 4 4 4 4 4 4 6 6 6 6 6 6
4 0 0 0 0 0 7 7 7 7 7 7 7 7 7 8
5 0 0 0 0 5 5 5 5 5 5 5 7 7 7 8

Some interesting features can be seen for larger lengths: for instance the
linear complexity when m = 1 jumps from 5 for n = 20 to 16 for n = 21.
For n = 5 the linear complexity is about n/2; this is the expected linear
complexity of a random sequence of bits.

Extra. The original paper is Shift-register synthesis and BCH decoding, James
L. Massey, IEEE Transactions on Information Theory, 15 (1969) 122–127.
It deals with LFSRs defined over an arbitrary field and leads to an al-
gorithm for decoding cyclic Reed–Solomon codes (and the more general
BCH codes in the title).

Example 6.12. The Berlekamp–Massey algorithm (for arbitrary fields) is
implemented in the MATHEMATICA notebook LFSRs.nb. Try

BerlekampMasseyFull[{1,1,1,0,1,0,1,0,0,0,1}] // TF

to check Example 5.8. Each line of the output gives a pair(
(m, `m, em, gTm(z)), (n, `n, en, gTn(z))

)
.

Here em and en are the errors on bits um and un; for the binary case, em = 1
for all relevant m (since the LFSR changed) and un = 1 if and only if
Step (b) applies. You can read the taps Tm and Tn off from the feedback
polynomials. Using this you should be able to translate the MATHEMAT-
ICA output into the table in Example 5.8. To see an example where it finds
a linear recurrence for an integer sequence try

BerlekampMasseyFull[{1,1,2,3,5,8,13,21,34},0] // TF

Now try instead the sequence 1, 1, 2, 3, 4, 6, 9, 13, 19, 28. What do you ex-
pect is the next term?

7. LINEAR CRYPTANALYSIS

In §4 we considered boolean functions Fn
2 → F2. Typically crypto-

graphic functions return multiple bits, not just one. So we must choose
which output bits to tap.

Recall that ◦ denotes composition of functions: thus if F : Fm
2 → Fn

2
and G : Fn

2 → F
p
2 then G ◦ F : Fm

2 → F
p
2 is the function defined by

(G ◦ F)(x) = G
(

F(x)
)
.

31

Example 7.1. Let S : F4
2 → F4

2 be the S-box in the Q-block cipher (see
Example 9.5 in the main notes), defined by

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

(a) Suppose we look at position 0 of the output by considering L{0} ◦
S : F4

2 → F2. We have

(L{0} ◦ S)
(
(x0, x1, x2, x3)

)
= L{0}(x2, x3, x0 + x1x2, x1 + x2x3)

= x2

= L{2}
(
(x0, x1, x2, x3)

)
.

Hence L{0} ◦ S = L{2}. By Lemma 4.4,

corr(L{0} ◦ S, LT) =

{
1 if T = {2}
0 otherwise.

(b) Instead if we look at position 2, the relevant boolean function is
L{2} ◦ S, for which L{2} ◦ S

(
(x0, x1, x2, x3)

)
= x0 + x1x2. Exercise:

show that

corr(L{2} ◦ S, LT) =

1
2 if T = {0}, {0, 1}, {0, 2}
− 1

2 if T = {0, 1, 2}
0 otherwise

.

In linear cryptanalysis one uses a high correlation to get information
about certain bits of the key. We shall see this work in an example.

Example 7.2. For k ∈ F12
2 let ek : F8

2 → F8
2 be the Q-block cipher, as

defined in Example 8.4. Then ek
(
(v, w)

)
= (v′, w′) where

v′ = w + S
(
v + S(w + k(1)) + k(2)).

We choose v′ rather than w′ since v′ depends only on the first two round
keys. Recall that k(1) = (k0, k1, k2, k3) and k(2) = (k4, k5, k6, k7). Ex-
ample 7.1 suggests considering corr(L{0} ◦ ek, L{2}). We have (L{0} ◦
ek)
(
(v, w)

)
= L{0}

(
(v′, w′)

)
= v′0 and L{2}

(
(v, w)

)
= v2.

Exercise: using that k(1)0 = k0, k(1)1 = k1, k(1)2 = k2 and k(2)2 = k6, check that

v′0 = v2 + (w1 + k1)(w2 + k2) + k0 + k6.

By definition

corr(L{0} ◦ ek, L{2}) =
1
28 ∑

(v,w)∈F8
2

(−1)v2+(w1+k1)(w2+k2)+k0+k6(−1)v2

=
1
28 (−1)k0+k6 ∑

(v,w)∈F8
2

(−1)(w1+k1)(w2+k2)

=
26

28 (−1)k0+k6 ∑
w1,w2∈F2

(−1)(w1+k1)(w2+k2)

32

When we compute the sum, the values of k1 and k2 are irrelevant. For
instance, if both are 0 we average (−1)w1w2 over all four (w1, w2) ∈ F2

2
to get 1

2 ; if both are 1 we average (−1)(w1+1)(w2+1), seeing the same sum-
mands in a different order, and still getting 1

2 . Hence

corr(L{0} ◦ ek, L{2}) =
1
28 (−1)k0+k6 ∑

(v,w)∈F8
2

(−1)w1w2

= (−1)k0+k6
1
4 ∑

w1,w2∈{0,1}
(−1)w1w2

= 1
2(−1)k0+k6 .

We can estimate this correlation from a collection of plaintext/ciphertext
pairs (v, w), (v′, w′) by computing (−1)v′0+v2 for each pair. We get

(−1)k0+k6 with probability 3
4

−(−1)k0+k6 with probability 1
4

so the average is the correlation 1
2(−1)k0+k6 which tells us k0 + k6.

Using our collection of plaintext/ciphertext pairs we can also estimate

corr(L{0} ◦ ek, L{2,5}) =
1
2(−1)k0+k6+k1

corr(L{0} ◦ ek, L{2,6}) =
1
2(−1)k0+k6+k2

and so learn k1 and k2 as well as k0 + k6. (You are asked to show this on
Problem Sheet 9.) There are similar high correlations of 1

2 for output bit 1.
Using these one learns k2 and k3 as well as k1 + k7.

Exercise 7.3. Given k0 + k6, k1 + k7, k1, k2, k3, how many possibilities are
there for the key in the Q-block cipher?

This exercise shows that linear cryptanalysis gives a sub-exhaustive at-
tack on the Q-block cipher. It is more powerful than the difference attack
seen in the main course. Moreover, the difference attack required chosen
plaintexts, rather than a set of observed plaintext/ciphertext pairs used
here. It is therefore more widely applicable.

In the attack on the Q-Block Cipher we saw that the correlation de-
pended on the key only by a sign. This is because key addition, as is
almost universally the case for block ciphers, was done in Fn

2 .

Lemma 7.4. Fix k ∈ Fn
2 . Define F : Fn

2 → Fn
2 by F(x) = x + k. Then

corr(LS ◦ F, LT) =

{
(−1)LS(k) if S = T
0 if S 6= T.

Another very useful result gives correlations through the composition
of two functions.

33

Proposition 7.5. Let F : Fn
2 → Fn

2 and G : Fn
2 → Fn

2 be functions. For
S, T ⊆ {0, 1, . . . , n− 1},

corr(LS ◦ G ◦ F, LT) = ∑
U⊆{0,1,...,n−1}

corr(LS ◦ G, LU) corr(LU ◦ F, LT).

Example 7.6.
(1) Take G(x0, x1) = (x0, x0x1). The matrix of correlations, with rows

and columns labelled ∅, {0}, {1}, {0, 1} is
1 0 0 0
0 1 0 0
1
2

1
2

1
2 − 1

2
1
2

1
2 − 1

2
1
2

 .

(2) By Lemma 7.4, the matrix for (x0, x1) 7→ (x0 + 1, x1) is diagonal,
with entries 1,−1, 1, 1.

(3) Hence H(x0, x1) = (x0 + 1, x0x1 + x1) = (x0, x0x1) has correlation
matrix

1 0 0 0
0 1 0 0
1
2

1
2

1
2 − 1

2
1
2

1
2 − 1

2
1
2

1 · · ·
· 1 · ·
· · 1 ·
· · · 1

 =

1 0 0 0
0 −1 0 0
1
2 − 1

2
1
2

1
2

1
2 − 1

2 − 1
2 − 1

2

 .

We end by applying Proposition 7.5 to the S-box in the Q-block cipher.
Let F : F3

2 → F3
2 be the S-box in the 3 bit version of the Q-block cipher, so

F
(
(x0, x1, x2)

)
= (x1, x2, x0 + x1x2). The matrix below shows the correla-

tions,

1 · · · · · · ·
· · 1 · · · · ·
· · · · 1 · · ·
· · · · · · 1 ·
· 1

2 · 1
2 · 1

2 · − 1
2

· 1
2 · 1

2 · − 1
2 · 1

2

· 1
2 · − 1

2 · 1
2 · 1

2

· − 1
2 · 1

2 · 1
2 · 1

2

writing · for a 0 correlation, with subsets ordered

∅, {0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}.

For example the first four rows show that tapping in positions ∅, {0},
{1}, or {0, 1} gives a linear function. By taking powers of this matrix we
can compute correlations through any power of F.

In the video we will use MATHEMATICA to find the order of the (nor-
mal) four bit version of F.

34

The high correlations used in Example 7.2 were found by applying
Proposition 7.5 to the Feistel functions and S-box in the Q-block cipher.

