MT5462 CRYPTOGRAPHY I (M.SC. ADD-ON)

MARK WILDON

These notes cover the part of the syllabus for MT5462 that is not part of the undergraduate course. Further installments will be issued as they are ready. All handouts and problem sheets will be put on the MT362 Moodle page, marked M.Sc.

I would very much appreciate being told of any corrections or possible improvements.

You are warmly encouraged to ask questions in the plenary, group work and Q\&A sessions. Sessions marked 'face-to-face' will also be streamed online.

- Tuesday 11am, Plenary MSc session (face-to-face), ALT2.
- Tuesday 1pm, Plenary problem solving (face-to-face) BLT1,
- Wednesday 12 noon, Group work (face-to-face), MFOX-SEM
- Friday 10am, Q\&A session (online)
- Friday 3pm, Group work (online)

Office hour in McCrea LGF 0-25 or online: Thursday 2 pm . The MS Teams link is https://tinyurl.com/y38jovro. It is also on the Moodle page.

Relevant seminar: The Information Security Group Seminar is at 11am Thursdays. To subscribe to the mailing list go to: www.lists.rhul.ac. uk/mailman/listinfo/isg-research-seminar.

Overview

We start with a secret sharing scheme related to Reed-Solomon codes. We then look at boolean functions, the Berlekamp-Massey algorithm and the Discrete Fourier Transform, and see how these mathematical ideas have been applied to stream ciphers and block ciphers.

1. Revision of fields and polynomials

Every modern cipher makes use of the finite field \mathbb{F}_{2}. Many use other finite fields as well: for example, a fundamental building block in AES (Advanced Encryption Standard) is the inversion map $x \mapsto x^{-1}$ on the non-zero elements of the finite field \mathbb{F}_{28} with 256 elements.

This section should give enough background for the course. It will also be useful for MT5461 Theory of Error Correcting Codes.

Fields. Informally, a field is a set in which one can add, subtract and multiply any two elements, and also divide by non-zero elements. Examples of infinite fields are the rational numbers \mathbb{Q} and the real numbers \mathbb{R}. If p is a prime, then the set $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$, with addition and multiplication defined modulo p is a finite field: see Theorem 1.2.

The formal definition is below. You do not need to memorise this.

Definition 1.1. A field is a set of elements \mathbb{F} with two operations, $+($ addition) and \times (multiplication), and two special elements $0,1 \in \mathbb{F}$ such that $0 \neq 1$ and
(1) $a+b=b+a$ for all $a, b \in \mathbb{F}$;
(2) $0+a=a+0=a$ for all $a \in \mathbb{F}$;
(3) for all $a \in \mathbb{F}$ there exists $b \in \mathbb{F}$ such that $a+b=0$;
(4) $a+(b+c)=(a+b)+c$ for all $a, b, c \in \mathbb{F}$;
(5) $a \times b=b \times a$ for all $a, b \in \mathbb{F}$;
(6) $1 \times a=a \times 1=a$ for all $a \in \mathbb{F}$;
(7) for all non-zero $a \in \mathbb{F}$ there exists $b \in \mathbb{F}$ such that $a \times b=1$;
(8) $a \times(b \times c)=(a \times b) \times c$ for all $a, b, c \in \mathbb{F}$;
(9) $a \times(b+c)=a \times b+a \times c$ for all $a, b, c \in \mathbb{F}$.

If you are familiar with basic group theory, it will be helpful to note that (1)-(4) say that \mathbb{F} is an abelian group under addition, and that (5)-(8) say that $(\mathbb{F} \backslash\{0\}, \times)$ is an abelian group under multiplication. The final axiom (9) is the distributive law relating addition and multiplication.

It is usual to write $-a$ for the element b in (4); we call $-a$ the additive inverse of a. We write a^{-1} for the element b in (8); we call a^{-1} the multiplicative inverse of a. We usually write $a b$ rather than $a \times b$.

Exercise 1.2.

(a) Show, from the field axioms, that if $x \in \mathbb{F}$, then x has a unique additive inverse, and that if $x \neq 0$ then x has a unique multiplicative inverse. Show also that if \mathbb{F} is a field then $a \times 0=0$ for all $a \in \mathbb{F}$.
(b) Show from the field axioms that if \mathbb{F} is a field and $a, b \in \mathbb{F}$ are such that $a b=0$, then either $a=0$ or $b=0$.

We will use (b) above many times.
Theorem 1.3. Let p be a prime. The set $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$ with addition and multiplication defined modulo p is a finite field of size p.

There is a unique (up to a suitable notion of isomorphism) finite field of any given prime-power size. The smallest field not of prime size is the finite field of size 4.

Example 1.4. The addition and multiplication tables for the finite field $\mathbb{F}_{4}=\{0,1, \alpha, 1+\alpha\}$ of size 4 are shown below.

+	0	1	α	$1+\alpha$			\times	1	α

Probably the most important thing to realise is that \mathbb{F}_{4} is not the integers modulo 4. Indeed, in $\mathbb{Z}_{4}=\{0,1,2,3\}$ we have $2 \times 2=0$, but if $a \in \mathbb{F}_{4}$ and $a \neq 0$ then $a \times a \neq 0$, as can be seen from the multiplication table. (Alternatively this follows from Exercise 1.2(b).)

Polynomials. Let \mathbb{F} be a field. Let $\mathbb{F}[z]$ denote the set of all polynomials

$$
f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{m} z^{m}
$$

where $m \in \mathbb{N}_{0}$ and $a_{0}, a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{F}$.

Definition 1.5. If $f(z)=a_{0}+a_{1} z+a_{2}+\cdots+a_{m} z^{m}$ where $a_{m} \neq 0$, then we say that m is the degree of the polynomial f, and write $\operatorname{deg} f=m$. The degree of the zero polynomial is, by convention, -1 . We say that a_{0} is the constant term and a_{m} is the leading term.

It is often useful that the constant term in a polynomial f is $f(0)$.
A polynomial is a non-zero constant if and only if it has degree 0 . The degree of the zero polynomial is not entirely standardized: you might also see it defined to be $-\infty$, or left undefined.

Polynomials are added and multiplied in the natural way.
Lemma 1.6 (Division of polynomials). Let \mathbb{F} be a field, let $g(z) \in \mathbb{F}[z]$ be a non-zero polynomial and let $f(z) \in \mathbb{F}[z]$. There exist polynomials $q(z), r(z) \in$ $\mathbb{F}[z]$ such that

$$
f(z)=q(z) g(z)+r(z)
$$

and $\operatorname{deg} r(z)<\operatorname{deg} g(z)$.
We say that $q(z)$ is the quotient and $r(z)$ is the remainder when $f(z)$ is divided by $g(z)$. Note that $r(z)$ may be zero, in which case its degree is -1 . The important thing is that you can find the quotient and remainder in practice. In MATHEMATICA use PolynomialQuotientRemainder, with Modulus -> p for the finite field \mathbb{F}_{p} of prime size.

Exercise 1.7. Let $g(z)=z^{3}+z+1 \in \mathbb{F}_{2}[z]$, let $f(z)=z^{5}+z^{2}+z \in \mathbb{F}_{2}[z]$. Find the quotient and remainder when $f(z)$ is divided by $g(z)$, and when $g(z)$ is divided by $f(z)$.

For Shamir's secret sharing scheme we shall need the following properties of polynomials.

Lemma 1.8. Let \mathbb{F} be a field.
(i) If $f(z) \in \mathbb{F}[z]$ has $a \in \mathbb{F}$ as a root, i.e. $f(a)=0$, then there is a polynomial $q(z) \in \mathbb{F}[z]$ such that $f(z)=(z-a) q(z)$.
(ii) If $f(z) \in \mathbb{F}[z]$ has degree $m \in \mathbb{N}_{0}$ then $f(z)$ has at most m distinct roots in \mathbb{F}.
(iii) Suppose that $f(z), g(z) \in \mathbb{F}[z]$ are non-zero polynomials such that $\operatorname{deg} f, \operatorname{deg} g<t$. If there exist distinct $c_{1}, \ldots, c_{t} \in \mathbb{F}$ such that $f\left(c_{i}\right)=g\left(c_{i}\right)$ for each $i \in\{1, \ldots, t\}$ then $f(z)=g(z)$.

Part (iii) is the critical result. It says, for instance, that a linear polynomial is determined by two points on its graph: when \mathbb{F} is the real numbers \mathbb{R} this should be intuitive - there is a unique line through any two distinct points. Similarly a quadratic is determined by any three points on its graph, and so on.

Conversely, given t values in a field \mathbb{F}, there is a polynomial in $\mathbb{F}[z]$ of degree at most t taking these values at any t distinct specified points. This has a nice constructive proof.

Lemma 1.9 (Polynomial interpolation). Let \mathbb{F} be a field. Let

$$
c_{1}, c_{2}, \ldots, c_{t} \in \mathbb{F}
$$

be distinct and let $y_{1}, y_{2}, \ldots, y_{t} \in \mathbb{F}$. The unique polynomial $f(z) \in \mathbb{F}[z]$, either zero or of degree $<t$, such that $f\left(c_{i}\right)=y_{i}$ for all i is

$$
f(z)=\sum_{i=1}^{t} y_{i} \frac{\prod_{j \neq i}\left(z-c_{j}\right)}{\prod_{j \neq i}\left(c_{i}-c_{j}\right)} .
$$

Later we shall use polynomials in multiple variables with coefficients in \mathbb{F}_{2} to describe cryptographic primitives.

2. SHAMIR'S SECRET SHARING SCHEME

Motivation. Some flavour of secret sharing is given by the following informal example. As a standing convention, we write secret information in red. This is entirely optional for you and not standard.

Example 2.1. Ten people want to know their mean salary. But none is willing to reveal her salary s_{i} to the others, or to a 'Trusted Third Party'. Instead Person 1 chooses a large number M. She remembers M, and whispers $M+s_{1}$ to Person 2. Then Person 2 whispers $M+s_{1}+s_{2}$ to Person 3, and so on, until Person 10 whispers $M+s_{1}+s_{2}+\cdots+s_{9}+$ s_{10} to Person 1. Person 1 then subtracts M and tells everyone the mean $\left(s_{1}+s_{2}+\cdots+s_{10}\right) / 10$.

Exercise 2.2. Why it is reasonable to colour code the whisper from Person 2 as $M+s_{1}+s_{2}$, with $M+s_{1}$ all in red?

Exercise 2.3. Show that if Person j hears N from Person $j-1$ then $s_{1}+\cdots+s_{j-1}$ can consistently be any number between 0 and N.

Provided M is chosen much larger than any conceivable salary, this exercise shows that the scheme does not leak any unintended information.

Exercise 2.4. Person 1 can deduce the total of the salaries of all the other people from $M+s_{1}+\cdots+s_{n}$ by subtracting $M+s_{1}$. In particular, if $n=$ 2, she can learn Person 2's salary. Is this a defect in the scheme?

Shamir's secret sharing scheme. In Shamir's scheme the secret is an element of a finite field \mathbb{F}_{p}. It will be shared across n people so that any t of them, working together, can deduce the secret, but any $t-1$ of them, even if they work together, can learn nothing. To set up the scheme requires a Trusted Third Party, who we will call Trevor.

In a typical application, you are Trevor, and the n people are n untrusted cloud computers, labelled 1 up to n.

Definition 2.5. Let p be a prime and let $s \in \mathbb{F}_{p}$. Let $n \in \mathbb{N}, t \in \mathbb{N}$ be such that $t \leq n<p$. Let $c_{1}, \ldots, c_{n} \in \mathbb{F}_{p}$ be distinct non-zero elements. In the Shamir scheme with n people and threshold t, to share the secret $s \in \mathbb{F}_{p}$, Trevor chooses at random $a_{1}, \ldots, a_{t-1} \in \mathbb{F}_{p}$ and constructs the polynomial

$$
f(z)=s+a_{1} z+\cdots+a_{t-1} z^{t-1}
$$

with constant term s. Trevor then issues the share $f\left(c_{i}\right)$ to Person i.
As often the case in cryptography, it is important to be clear about what is private and what is public.

Above we wrote $f\left(c_{i}\right)$ because the evaluation points c_{i} are public knowledge, as are the parameters n, t and p. Only Trevor knows $f(z)$, and at the time it is issued, the share $f\left(c_{i}\right)$ is known only to Person i and Trevor.

Example 2.6. Suppose that $n=5$ and $t=3$. Take $p=7$ and $c_{i}=i$ for each $i \in\{1,2,3,4,5\}$. We suppose that $s=5$. Trevor chooses $a_{1}, a_{2} \in \mathbb{F}_{7}$ at random, getting $a_{1}=6$ and $a_{2}=1$. Therefore $f(z)=5+6 z+1 z^{2}$ and the share of Person i is $f\left(c_{i}\right)$, for each $i \in\{1,2,3,4,5\}$, so the shares for each person are

$$
(f(1), f(2), f(3), f(4), f(5))=(5,0,4,3,4) .
$$

Remember that all arithmetic is performed in \mathbb{F}_{p}, so working modulo p.
The following exercise shows the main idea needed to prove Theorem 2.8 below.

Exercise 2.7. Suppose that Person 1, with share $f(1)=5$, and Person 2, with share $f(2)=0$, cooperate in an attempt to discover s. Show that for each $s^{\prime} \in \mathbb{F}_{7}$ there exists a unique polynomial $f_{s^{\prime}}(z)$ such that $\operatorname{deg} f \leq 2$ and $f(0)=s^{\prime}, f_{z}(1)=5$ and $f_{z}(2)=0$. For example $f_{2}(z)=3 z^{2}+2$ and $f_{3}(z)=2 z+3$. Since Trevor chose the coefficients of f at random, each polynomial $f_{0}(z), \ldots, f_{p-1}(z)$ seems equally likely to Persons 1 and 2, and they can learn nothing about s.

Theorem 2.8. In a Shamir scheme with n people, threshold t and secret s, any t people can work together to determine s but any $t-1$ people, even if they work together can learn nothing about s.

The proof shows that any t people can determine the polynomial f. So as well as learning s, they can also learn the shares of all the other participants.

Exercise 2.9. Suppose Trevor shares $s \in \mathbb{F}_{p}$ across n computers using the Shamir scheme with threshold t. He chooses the first t computers. They are instructed to exchange their shares; then each computes s and sends it to Trevor. Unfortunately Malcolm has compromised computer 1. Show that Malcolm can both learn s and trick Trevor into thinking his secret is an $s^{\prime} \in \mathbb{F}_{p}$ of his choice. (Assume that, thanks to a network delays, it is plausible that computer 1 sends its share after receiving the shares from the other $t-1$ computers.)

Shamir's Secret Sharing Scheme has been modified in various ways to get around this problem. See Martin Tompa and Heather Woll, How to share a secret with cheaters, J. Crypt. 1 (1989) 133-138 for an introduction.

In practice we do not just want to store data on the cloud: we want to compute with it as well. You are encouraged to spend a good time thinking about (a) below.

Exercise 2.10. Take the Shamir scheme with threshold t and evaluation points $1, \ldots, n \in \mathbb{F}_{p}$ where $p>n$. Trevor has shared two large numbers r and s across n cloud computers, using polynomials f and g so that the shares are $(f(1), \ldots, f(n))$ and $(g(1), \ldots, g(n))$.
(a) Express in terms of f and g a polynomial suitable for sharing the secret $s+t$. [Hint: this will seem obvious in hindsight, but is easily missed.]
(b) Imagine you are Cloud Computer 1 , so you know the shares $f\left(c_{1}\right)$ for r and $g\left(c_{1}\right)$ for s. What is your share for $s+t$, using the polynomial from (a)? Can you compute this share yourself?
(c) Show that the n computers can each compute the shares for $s+t$ without exchanging any information.
(d) (Optional extension.) Assume that $n \geq 2 t$. Show that the cloud computers can compute shares for $r s \bmod p$ sending information only between each other.
Thus provided the original messages Trevor sent to each computer were secure, Trevor can store $r+s$ and $r s$ on the cloud even if Eve is eavesdropping on his later messages.

Once you can add and multiply you can do all sorts of computations! For more on this, search for 'homomorphic encryption'.

The remainder of this section is non-examinable and included for interest only.

Example 2.11. The root key for DNSSEC, part of web of trust that guarantees an IP connection really is to the claimed end-point, and not to Malcolm doing a Man-in-the-Middle attack, is protected by a secret sharing scheme with $n=7$ and $t=5$: search for 'Schneier DNSSEC'.
The search above will take you to Bruce Schneier's blog. It is highly recommended for background on practical cryptography.

Remark 2.12. The Reed-Solomon code associated to the parameters p, n, t and the field elements $c_{1}, c_{2}, \ldots, c_{n}$ is the length n code over \mathbb{F}_{p} with codewords all possible n-tuples

$$
\left\{\left(f\left(c_{1}\right), f\left(c_{2}\right), \ldots, f\left(c_{n}\right)\right): f \in \mathbb{F}_{p}[z], \operatorname{deg} f \leq t-1\right\} .
$$

It will be studied in MT5461. By Theorem 2.8, each codeword is determined by any t of its positions, and so two codewords agreeing in t positions are equal. This shows that any two different codewords differ in at least $n-(t-1)$ positions. Equivalently, the Reed-Solomon code has minimum distance at least $n-t+1$.

We have worked over a finite field of prime size in this section. ReedSolomon codes and the Shamir secret sharing scheme generalize in the obvious way to arbitrary finite fields. For example, the Reed-Solomon codes used on compact discs are defined using the finite field $\mathbb{F}_{2^{8}}$.

3. Introduction to boolean functions

Definition and first examples. Recall that $\mathbb{F}_{2}=\{0,1\}$ is the finite field of size 2 whose elements are the bits 0 and 1 . As usual, + denotes addition in \mathbb{F}_{2} or in \mathbb{F}_{2}^{n}. We number positions in \mathbb{F}_{2}^{n} from 0 , so a typical tuple is $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$.
Definition 3.1. Let $n \in \mathbb{N}$. An n-variable boolean function is a function $\mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$.

For example, $f(x, y, z)=x y z+x$ is a boolean function of the three variables x, y and z, such that $f(1,0,0)=0+1=1$ and $f(1,1,1)=1+$ $1=0$. We shall see that boolean functions are very useful for describing the primitive building blocks of modern stream and block ciphers.
Exercise 3.2. What is a simpler form for $x^{2} y+x z+z+z^{2}$?
Exercise 3.3. Let $\operatorname{maj}(x, y, z)=x y+y z+z x$ where, as usual, the coefficients are in \mathbb{F}_{2}. Show that

$$
\operatorname{maj}(x, y, z)= \begin{cases}0 & \text { if at most one of } x, y, z \text { is } 1 \\ 1 & \text { if at least two of } x, y, z \text { are } 1 .\end{cases}
$$

We call maj: $\mathbb{F}_{2}^{3} \rightarrow \mathbb{F}_{2}$ the majority vote function. It is a 3-variable boolean function.

Motivation. A modern block cipher has plaintexts and ciphertexts \mathbb{F}_{2}^{n} for some fixed n. The encryption functions are typically defined by composing carefully chosen cryptographic primitives over a number of rounds. We give two motivating examples below.

Example 3.4.

(1) Each round of the widely used block cipher AES is of the form $(x, k) \mapsto s(x)+k$ where + is addition in $\mathbb{F}_{2}^{128}, x \in \mathbb{F}_{2}^{128}$ is the input to the round (derived ultimately from the plaintext) and $k \in$ \mathbb{F}_{2}^{128} is a 'round key' derived from the key. The most important cryptographic primitive in the function $s: \mathbb{F}_{2}^{128} \rightarrow \mathbb{F}_{2}^{128}$ is pseudoinversion in the finite field $\mathbb{F}_{2^{8}}$, as defined by

$$
s(x)= \begin{cases}x^{-1} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

The inversion function is highly non-linear and hard to attack. Just for fun, the 256 values of the boolean function sending 0 to 0 and a non-zero x to the bit in position 0 of $s(x)$ are shown below, for one natural order on \mathbb{F}_{2}.

0110101101100111000111010110100000011101100100000100110001011111 1011111110110111101000110000101100111001011111111111010000001010 1010010010111010000100000010101010011010000001000011110110011001 1011000111101000010111000101100111010011001110011100001010101010.

It is highly unlikely that you will see any obvious pattern! As one sign of the apparent randomness, there are 128 zeros, 128 ones, and each pair $01,10,11$ appears exactly 64 times. Later we shall prove that the inversion function is secure against difference attacks.

The function for bit number 1 in the key addition is

$$
\left(y_{0}, y_{1}, \ldots, y_{127}, k_{0}, k_{1}, \ldots, k_{127}\right) \mapsto y_{1}+k_{1} .
$$

We shall see that such linear functions are very weak cryptographically taken on their own, but are very useful when combined with non-linear functions such as s and inversion.
(2) In the block cipher SPECK proposed by NSA in June 2013, the non-linear primitive is modular addition in $\mathbb{Z} / 2^{m} \mathbb{Z}$, denoted \boxplus. (Note + on binary words always means addition modulo 2.) As a 'toy' version we take $m=8$; in practice m is at least 16 and usually 64. Identify \mathbb{F}_{2}^{8} with $\mathbb{Z} / 2^{8} \mathbb{Z}$ by writing numbers in their binary form. For instance, $13 \in \mathbb{Z} / 2^{8} \mathbb{Z}$ has binary form 00001101 (the
space is just for readability) and

$$
\begin{aligned}
& 10101010 \boxplus 00001111=10111001 \\
& 10000001 \boxplus 10000001=00000010
\end{aligned}
$$

are the decimal sums $170+15=185 \bmod 256$ and $129+129=2$ $\bmod 256$. Modular addition is a convenient operation because it is very fast on a computer, but it has some cryptographic weaknesses. In SPECK it is combined with other functions in a way that appears to give a very strong and fast cipher.
One sign that modular addition is weak on its own is that the low numbered bits are 'close to' linear functions. We make this precise in $\S 6$ on linear cryptanalysis. For example

$$
\begin{aligned}
& \left(\ldots, x_{2}, x_{1}, x_{0}\right) \boxplus\left(\ldots, y_{2}, y_{1}, y_{0}\right) \\
& \quad \quad=\left(\ldots, x_{2}+y_{2}+c_{2}, x_{1}+y_{1}+x_{0} y_{0}, x_{0}+y_{0}\right)
\end{aligned}
$$

where c_{2} is the carry into position 2 , defined using the majority vote function by $c_{2}=\operatorname{maj}\left(x_{1}, y_{1}, x_{0} y_{0}\right)$. Unless both x_{0} and y_{0} are 1 , bit 1 is $x_{1}+y_{1}$, a linear function of $\left(\ldots, x_{2}, x_{1}, x_{0}\right)$ and $\left(\ldots, y_{2}, y_{1}, y_{0}\right)$. By Exercise 4.5, output bit 2 is given by the more complicated polynomial

$$
x_{2}+y_{2}+x_{1} y_{1}+x_{0} x_{1} y_{0}+x_{0} y_{0} y_{1} .
$$

This formula can be used for part of Question 6 on Problem Sheet 3: it is the algebraic normal form of the boolean function for bit 2 in modular addition.
Truth tables and disjunctive normal form. A boolean function $f: \mathbb{F}_{2}^{n} \rightarrow$ \mathbb{F}_{2} can be defined by its truth table, which records for each $x \in \mathbb{F}_{2}^{n}$ its image $f(x)$. For example, the boolean functions $\mathbb{F}_{2}^{2} \rightarrow \mathbb{F}_{2}$ of addition and multiplication are shown below:

x	y	$x+y$	$x y$	$x \wedge y$	$x \vee y$	$x \Longrightarrow y$
0	0	0	0	F	F	
0	1	1	0	F	T	
1	0	1	0	F	T	
1	1	0	1	T	T	

It is often useful to think of 0 as false and 1 as true. Then $x y$ corresponds to $x \wedge y$, the logical 'and' of x and y, as shown above. The logical 'or' of x and y is denoted $x \vee y$.

Exercise 3.5. Use the true/false interpretation to complete the columns for $x \Longrightarrow y$. Could you convince a sceptical friend that false statement imply true statements?

Example 3.6. The Toffoli function is a 3-variable boolean function important in quantum computing. It can be defined by

$$
\operatorname{toffoli}\left(x_{0}, x_{1}, x_{2}\right)= \begin{cases}x_{0} & \text { if } x_{1} x_{2}=0 \\ \bar{x}_{0} & \text { if } x_{1} x_{2}=1\end{cases}
$$

Here \bar{x} denotes the bitflip of x, defined by $\overline{0}=1$ and $\overline{1}=0$. In the true/false interpretation $\bar{F}=T$ and $\bar{T}=F$. This table shows the majority vote and Toffoli functions; also shown are two of the f_{J} functions defined later.

	x_{2}	x_{1}	x_{0}	$\operatorname{maj}\left(x_{0}, x_{1}, x_{2}\right)$	toffoli $\left(x_{0}, x_{1}, x_{2}\right)$	$f_{\{0\}}$	$f_{\{0,2\}}$
\varnothing	0	0	0	0	0	0	0
$\{0\}$	0	0	1	0	1	1	0
$\{1\}$	0	1	0	0	0	0	0
$\{0,1\}$	0	1	1	1	1	0	0
$\{2\}$	1	0	0	0	0	0	0
$\{0,2\}$	1	0	1	1	1	0	1
$\{1,2\}$	1	1	0	1	1	0	0
$\{0,1,2\}$	1	1	1	1	0	0	0

The sets on the left record which variables are true. For example, the majority vote function is true on the rows labelled by the sets of sizes 2 and 3 , namely, $\{0,1\},\{0,2\},\{1,2\},\{1,2,3\}$, and false on the other rows.

Given a subset J of $\{0, \ldots, n-1\}$ we define $f_{J}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ by

$$
f_{J}(x)=\bigwedge_{j \in J} x_{j} \wedge \bigwedge_{j \notin J} \bar{x}_{j} .
$$

In words, f_{J} is the n-variable boolean function whose truth table has a unique 1 (or true) in the row labelled J. For instance $f_{\{0\}}\left(x_{0}, x_{1}, x_{2}\right)=$ $x_{0} \wedge \bar{x}_{1} \wedge \bar{x}_{2}$ and $f_{\{0,2\}}\left(x_{0}, x_{1}, x_{2}\right)=x_{0} \wedge \bar{x}_{1} \wedge x_{2}$ are shown above.

Exercise 3.7.

(i) For what set J do we have

$$
\text { toffoli }=f_{\{0\}} \vee f_{\{0,1\}} \vee f_{\{0,2\}} \vee f_{J} ?
$$

(ii) Express the majority vote function in the form above.
(iii) Find a way to complete the right-hand side in

$$
\operatorname{maj}(x)=\left(x_{0} \wedge x_{1} \wedge \bar{x}_{2}\right) \vee\left(x_{0} \wedge \bar{x}_{1} \wedge x_{2}\right) \vee\left(\bar{x}_{0} \wedge x_{1} \wedge x_{2}\right) \vee(\ldots)
$$

Theorem 3.8 (Disjunctive Normal Form). Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be a boolean function.
(i) Suppose that the truth table of f has 1 in the rows labelled by the sets J for $J \in \mathcal{T}$. Then

$$
f=\bigvee_{J \in \mathcal{T}} f_{J}
$$

(ii) If $\mathcal{T} \neq \mathcal{T}^{\prime}$ then $\bigvee_{J \in \mathcal{T}} f_{J} \neq \bigvee_{J \in \mathcal{T}^{\prime}} f_{J}$.

This theorem says that every boolean function f has a unique disjunctive normal form $\bigvee_{J \in \mathcal{T}} f_{J}$, for a suitable set \mathcal{T}. (Disjunction means logical or', i.e. \bigvee.) By convention, the empty disjunction is false: $\bigvee_{J \in \varnothing}(x)=0$ for all $x \in \mathbb{F}_{2}^{n}$.

Corollary 3.9. There are $2^{2^{n}} n$-variable boolean functions.
Exercise 3.10. By Corollary 3.9, there are 16 truth tables of 2 -variable boolean functions. Using the true/false notation, the 8 for which $f(F, F)=$ F are shown below. What is a suitable label for the rightmost column? What are the disjunctive normal forms of these 8 functions? What is a concise way to specify the remaining 8 functions?

	x_{1}	x_{0}	$x_{0} \vee x_{1}$	x_{0}	x_{1}	$x_{0}+x_{1}$	$x_{0} \wedge x_{1}$	$x_{0} \wedge \bar{x}_{1}$	$\bar{x}_{0} \wedge x_{1}$	$? ?$
\varnothing	F	F	F	F	F	F	F	F	F	F
$\{0\}$	F	T	T	T	F	T	F	T	F	F
$\{1\}$	T	F	T	F	T	T	F	F	T	F
$\{0,1\}$	T	T	T	T	T	F	T	F	F	F

Algebraic normal form. In \mathbb{F}_{2} we have $0^{2}=0$ and $1^{2}=1$. Therefore the boolean functions $f\left(x_{1}\right)=x_{1}^{2}$ and $f\left(x_{1}\right)=x_{1}$ are equal. Hence, as seen in Exercise 3.2, multivariable polynomials over \mathbb{F}_{2} do not need squares or higher powers of the variables. Similarly, since $2 x_{1}=0$, the only coefficients needed are the bits 0 and 1 . For instance, $x_{0}+x_{0} x_{2}^{2} x_{3}^{3}+x_{0}^{2}+x_{2} x_{3}$ is the same boolean function as $x_{2} x_{3}+x_{0} x_{2} x_{3}$.

Given $I \subseteq\{0,1, \ldots, n-1\}$, let

$$
x_{I}=\prod_{i \in I} x_{i} .
$$

We say the x_{I} are boolean monomials. By definition (or convention if you prefer), $x_{\varnothing}=1$. For example, $x_{\{1,2\}}=x_{1} x_{2}$. It is one of the three boolean monomial summands of maj $\left(x_{0}, x_{1}, x_{2}\right)=x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{0}$.

The functions f_{J} so useful for proving Theorem 3.8 have a particularly simple form as polynomials:

$$
f_{J}(x)=\prod_{j \in J} x_{j} \prod_{j \notin J} \bar{x}_{j} .
$$

Exercise 3.11. Define the 3-variable boolean function

$$
g\left(x_{0}, x_{1}, x_{2}\right)= \begin{cases}1 & \text { if } x_{0}=x_{1}=x_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Express g as sum of boolean monomials. The negation of g is defined What is the negation \bar{g} as a sum of boolean monomials?

Similarly you can use the truth table on page 3.6 to express the Toffoli function and its negation as a sum of boolean monomials.

It is only a small generalization of Exercise 3.11 to prove the existence part of the following theorem. There is a very neat way to prove uniqueness, using the result from Corollary 3.9 that there are exactly $2^{2^{n}}$ boolean functions of n variables.

Theorem 3.12. Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be an n-variable boolean function.
(a) There exist coefficients $b_{J} \in\{0,1\}$, one for each $J \subseteq\{1, \ldots, n\}$ such that

$$
f=\sum_{J \subseteq\{0,1, \ldots, n-1\}} b_{J} f_{J} .
$$

(b) There exist unique coefficients $c_{I} \in\{0,1\}$, one for each $I \subseteq\{1, \ldots, n\}$, such that

$$
f=\sum_{I \subseteq\{0,1, \ldots, n-1\}} c_{I} x_{I} .
$$

The expression for f in (b) is called the algebraic normal form of f.
Exercise: deduce from the uniqueness of disjunctive normal form that the coefficients b_{J} in (a) are also unique.

As shorthand, we write $\left[x_{I}\right] f$ for the coefficient of x_{I} in the boolean function f. Thus $f=\sum_{I \subseteq\{0,1, \ldots, n-1\}}\left(\left[x_{I}\right] f\right) x_{I}$ is the algebraic normal form of f. It is possible to give an explicit formula for the coefficients $\left[x_{I}\right] f$. To motivate our approach, consider the sums in the exercise below.

Exercise 3.13. Let $f(x, y, z)=1+x+x z+y z+x y z$, given in algebraic normal form. Let $g(x, y, z)=f(0, y, z)+f(1, y, z)$.
(i) What information does $f(0,0,0)$ tell us about f ?
(ii) Find the algebraic normal form of g. What is the connection with the algebraic normal form of f ?
(iii) What does $g(0,0,0)=f(0,0,0)+f(1,0,0)$ tells us about g ? What does it tell us about f.
Given $i \in\{0,1, \ldots, n-1\}$, define $\Delta^{(i)}=(0, \ldots, 1, \ldots, 0)$, where the 1 is in position i. The discrete derivative in position i of an n-variable boolean function f is the boolean function, $\left(D_{i} f\right)$ defined by

$$
\left(D_{i} f\right)(x)=f\left(x+\Delta^{(i)}\right)+f(x) .
$$

This definition emphasises the connection with the derivative of real functions.
Since x and $x+\Delta^{(i)}$ are, in some order, $\left(x_{0}, \ldots, 0, \ldots, x_{n-1}\right) \in \mathbb{F}_{2}^{n}$ and $\left(x_{0}, \ldots, 1, \ldots, x_{n-1}\right) \in \mathbb{F}_{2}^{n}$, an equivalent definition is

$$
\left(D_{i} f\right)\left(x_{0}, \ldots, x_{i}, \ldots, x_{n-1}\right)=f\left(x_{0}, \ldots, 1, \ldots, x_{n}\right)+f\left(x_{0}, \ldots, 0, \ldots, x_{n}\right)
$$

This form emphasises the connection with Exercise 3.13, where we saw that $D_{0}\left(1+x_{0}+x_{0} x_{2}+x_{1} x_{2}+x_{0} x_{1} x_{2}\right)=1+x_{2}+x_{1} x_{2}$.

See the slides for a quiz on the discrete derivative, including an illustration that it is linear: that is $D_{i}(f+g)=D_{i} f+D_{i} g$. This property should be familiar from the usual derivative.

Given $I=\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\{0,1, \ldots, n-1\}$, define

$$
D_{I}=D_{i_{1}} \ldots D_{i_{r}} .
$$

To be careful, we should check this is well-defined, for instance, since $\{i, j\}=\{j, i\}$, we need $D_{i} D_{j}=D_{j} D_{i}$. This follows from (i) in the next lemma.

Lemma 3.14. Let $I \subseteq\{0,1, \ldots, n-1\}$.
(a) Let $i \in\{0,1, \ldots, n-1\}$. Then

$$
D_{i} x_{J}= \begin{cases}0 & \text { if } i \notin J \\ J \backslash\{i\} & \text { if } i \in J .\end{cases}
$$

(b) Let $I \subseteq\{0,1, \ldots, n-1\}$. Then

$$
D_{I} x_{J}= \begin{cases}0 & \text { if } I \nsubseteq J \\ J \backslash I & \text { if } I \subseteq J .\end{cases}
$$

We use the lemma to prove this formula for the coefficient in the algebraic normal form.

Proposition 3.15. Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be an n-variable boolean function. Then

$$
\left[x_{I}\right] f=\sum f\left(z_{0}, \ldots, z_{n-1}\right)
$$

where the sum is over all $z_{0}, \ldots, z_{n-1} \in\{0,1\}$ such that $\left\{j: z_{j}=1\right\} \subseteq I$.
To unpick some of the notation, a special case of the proposition is that if $n=3$ then the coefficient of $x_{0} x_{2}$ in f is the sum over all $\left(z_{0}, z_{1}, z_{2}\right) \in \mathbb{F}_{2}^{3}$ such that $\left\{j: z_{j}=1\right\} \subseteq\{0,1,2\}$. Thus

$$
\left[x_{\{0,2\}}\right] f=f(0,0,0)+f(1,0,0)+f(0,0,1)+f(1,0,1) .
$$

In the plenary session we saw this for the function f in Exercise 3.13 by evaluating $\Delta_{2} g=\Delta_{2} \Delta_{0} f$ at ($0,0,0$). This may help to indicate the proof.

Proof. By linearity, it suffices to prove the lemma when $f=x_{J}$ is a single monomial. The sum in the proposition is then $\left(D_{I} f\right)(0, \ldots, 0)$. By Lemma 3.14(b), this is 1 if and only if $I=J$, and otherwise 0 .

The main thing to check is that you understand what is meant by 'by linearity'. Here it means that since any boolean function can be written as a sum of monomials, and since the discrete derivative is linear, that is. $D_{i}(f+$ $g)=D_{i}(f)+D_{i}(g)$ for all boolean functions f and g, we can reduce to the case where f is a single monomial.

4. The Discrete Fourier Transform

Preliminaries 4.1. It will be very helpful if you review the definition of vector spaces and inner products. If you know what it means to say that $u, v, w \in \mathbb{R}^{3}$ is an orthonormal basis of the vector space \mathbb{R}^{3} with respect to the inner product $\langle-,-\rangle$ defined by

$$
\left\langle\left(x_{0}, x_{1}, x_{2}\right),\left(y_{0}, y_{1}, y_{2}\right)\right\rangle=x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}
$$

(this is the usual dot-product), and why it follows that

$$
x=\langle x, u\rangle u+\langle x, v\rangle v+\langle x, w\rangle w
$$

for any $x \in \mathbb{R}^{3}$, then the proof of Theorem 4.6 should seem easier and more motivated to you. The slides have a quiz you can use to revise.

In this section it will be useful to change the range of boolean functions so that they take values in $\{-1,1\}$ rather than $\{0,1\}$.

Given $x \in \mathbb{F}_{2}$ we define $(-1)^{x}$ by regarding x as an ordinary integer. Thus $(-1)^{0}=1$ and $(-1)^{1}=-1$. Given an n-variable boolean function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ we define $(-1)^{f}: \mathbb{F}_{2}^{n} \rightarrow\{-1,1\}$ by $(-1)^{f}(x)=(-1)^{f(x)}$.

Definition 4.2. Let $f, g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}$ be boolean functions. We define the correlation between f and g by

$$
\operatorname{corr}(f, g)=\frac{1}{2^{n}} \sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x)}(-1)^{g(x)}
$$

The summand $(-1)^{f(x)}(-1)^{g(x)}$ is 1 when $f(x)=g(x)$ and -1 when $f(x)=-g(x)$. Hence

$$
\operatorname{corr}(f, g)=\frac{c_{\text {same }}-c_{\text {diff }}}{2^{n}}
$$

where

$$
\begin{aligned}
c_{\text {same }} & =\left|\left\{x \in \mathbb{F}_{2}^{n}: f(x)=g(x)\right\}\right| \\
c_{\text {diff }} & =\left|\left\{x \in \mathbb{F}_{2}^{n}: f(x) \neq g(x)\right\}\right| .
\end{aligned}
$$

Thus the correlation takes values between 1 (perfect agreement) and -1 (always different); if the correlation is 0 we say that the functions are uncorrelated.

Linear functions such as $f\left(x_{0}, x_{1}, x_{2}\right)=x_{0}+x_{1}$ are weak cryptographically. So are functions such as $f\left(x_{0}, x_{1}, x_{2}\right)=x_{0}+x_{1} x_{2}$ that are highly
correlated with linear functions. Given $T \subseteq\{0,1, \ldots, n-1\}$, define $L_{T}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ by

$$
L_{T}(x)=\sum_{t \in T} x_{t} .
$$

For example, $L_{\{i\}}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=x_{i}$ returns the entry in position i and $L_{\varnothing}(x)=0$ is the zero function.

Exercise 4.3.

(i) Compute the correlation between the Toffoli function (see Example 3.6) and each of the functions $L_{\varnothing}, L_{\{0\}}, L_{\{2\}}$.
(ii) In general, when is a 3 -variable boolean function uncorrelated with the zero function?

Given $S, T \subseteq\{0,1, \ldots, n-1\}$, define

$$
S \triangle T=\{u: u \in S \cup T, u \notin S \cap T\} .
$$

For instance $\{1,2\} \triangle\{0,2,3\}=\{0,1,3\}$.

Lemma 4.4.

(a) The linear functions $\mathbb{F}_{2}^{n} \rightarrow \mathbb{F}$ are precisely the $L_{T}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ for $T \subseteq\{0,1, \ldots, n-1\}$.
(b) We have $L_{S}+L_{T}=L_{S \triangle T}$ for all $S, T \subseteq\{0,1, \ldots, n-1\}$.
(c) L_{\varnothing} is the zero function.
(d) If $T \subseteq\{0,1, \ldots, n-1\}$ and $T \neq \varnothing$ then $\operatorname{corr}\left(L_{T}, 0\right)=0$
(e) If $S, T \subseteq\{0,1, \ldots, n-1\}$ then

$$
\operatorname{corr}\left(L_{S}, L_{T}\right)= \begin{cases}1 & \text { if } S=T \\ 0 & \text { otherwise }\end{cases}
$$

Example 4.5. Let maj : $\mathbb{F}_{2}^{3} \rightarrow \mathbb{F}_{2}$ be the majority vote function from Exercise. We have

$$
\operatorname{corr}\left(\text { maj, } L_{T}\right)= \begin{cases}\frac{1}{2} & \text { if } T=\{0\},\{1\},\{2\} \\ -\frac{1}{2} & \text { if } T=\{0,1,2\} \\ 0 & \text { otherwise }\end{cases}
$$

To generalize the previous example, we define an inner product on the vector space W of functions $\mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ by

$$
\langle\theta, \phi\rangle=\frac{1}{2^{n}} \sum_{x \in 2^{n}} \theta(x) \phi(x)
$$

Exercise 4.6.

(i) Let $\theta \in W$. Check that, as required for an inner product, $\langle\theta, \theta\rangle \geq 0$ and that $\langle\theta, \theta\rangle=0$ if and only if $\theta(x)=0$ for all $x \in \mathbb{F}_{2}^{n}$.
(ii) Show that if $n=2$ then W is 4 -dimensional. What is $\operatorname{dim} W$ in general?

It is immediate from the definition that if f and g are n-variable boolean functions then

$$
\left\langle(-1)^{f},(-1)^{g}\right\rangle=\operatorname{corr}(f, g) .
$$

Theorem 4.7 (Discrete Fourier Transform).
(a) The functions $(-1)^{L_{T}}$ for $T \subseteq\{0,1, \ldots, n-1\}$ are an orthonormal basis for the vector space W of functions $\mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$.
(b) Let $\theta: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$. Then

$$
\theta=\sum_{T \subseteq\{0,1, \ldots, n-1\}}\left\langle\theta,(-1)^{L_{T}}\right\rangle(-1)^{L_{T}} .
$$

(c) Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be a boolean function. Then

$$
(-1)^{f}=\sum_{T \subseteq\{0,1, \ldots, n-1\}} \operatorname{corr}\left(f, L_{T}\right)(-1)^{L_{T}} .
$$

We call (c) the 'Discrete Fourier Inversion Theorem'. The function $T \mapsto$ $\operatorname{corr}\left(f, L_{T}\right)=\left\langle(-1)^{f},(-1)^{L_{T}}\right\rangle$ is the Discrete Fourier Transform of f. For example, by Example 4.5, the Discrete Fourier Transform of the majority vote function is

$$
(-1)^{\mathrm{maj}}=\frac{1}{2}(-1)^{L_{\{0\}}}+\frac{1}{2}(-1)^{L_{\{1\}}}+\frac{1}{2}(-1)^{L_{\{2\}}}-\frac{1}{2}(-1)^{L_{\{0,1,2\}}} .
$$

The following corollary is known as Parseval's Theorem.
Corollary 4.8. Let f be an n-variable boolean function. Then

$$
\sum_{T \subseteq\{0,1, \ldots, n-1\}} \operatorname{corr}\left(f, L_{T}\right)^{2}=1
$$

Since there are 2^{n} linear functions (corresponding to the 2^{n} subsets of $\{0,1, \ldots, n-1\}$), it follows that any n-variable boolean function f has a squared correlation of at least $1 / 2^{n}$. Hence f has a correlation of at least $1 / \sqrt{2^{n}}$ in absolute value with some linear function.

Example 4.9.

(1) Let $f\left(x_{0}, x_{1}, x_{2}\right)=x_{0} x_{1} x_{2}$. We have $\operatorname{corr}\left(f, L_{\varnothing}\right)=\frac{3}{4}, \operatorname{corr}\left(f, L_{\{0\}}\right)=$ $\frac{1}{4}, \operatorname{corr}\left(f, L_{\{0,1\}}\right)=-\frac{1}{4}$ and $\operatorname{corr}\left(f, L_{\{0,1,2\}}\right)=\frac{1}{4}$. By Theorem 4.7(c) and symmetry, the Discrete Fourier Transform of f is

$$
(-1)^{f}=\frac{3}{4}+\frac{1}{4} \sum_{\substack{T \subseteq\{0,1,2\} \\ T \neq \varnothing}}(-1)^{|T|-1}(-1)^{L_{T}} .
$$

The squares of the correlations are $\frac{9}{16}$ and $\frac{1}{14}$ (7 times); as expected from Corollary $4.8,\left(\frac{3}{4}\right)^{2}+7\left(\frac{1}{4}\right)^{2}=1$.
(2) Exercise: Consider the 2-variable boolean function $f\left(x_{0}, x_{1}\right)=$ $x_{0} x_{1}$. Find its correlations with the four linear functions $L_{\varnothing}\left(x_{0}, x_{1}\right)=$ $1, L_{\{0\}}\left(x_{0}, x_{1}\right)=x_{0}, L_{\{1\}}\left(x_{0}, x_{1}\right)=x_{1}, L_{\{0,1\}}\left(x_{0}, x_{1}\right)=x_{1}+x_{2}$ and deduce that

$$
(-1)^{x_{0} x_{1}}=\frac{1}{2}(-1)^{L_{\varnothing}}+\frac{1}{2}(-1)^{L_{\{0\}}}+\frac{1}{2}(-1)^{L_{\{1\}}}-\frac{1}{2}(-1)^{L_{\{0,1\}}}
$$

(3) Let $b\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=x_{0} x_{2}+x_{1} y_{3}$. We shall use Mathematica to show that $\operatorname{corr}\left(b, L_{T}\right)= \pm \frac{1}{4}$ for every $T \subseteq\{0,1,2,3\}$. By the remark following Corollary 4.8 , this function achieves the cryptographic ideal of having all correlations as small (in absolute value) as possible.

An n-variable boolean function such as b above where the correlations all have absolute value $1 / \sqrt{2^{n}}$ is called a bent function. Many different constructions have been found and applied in cryptography and pseudorandom number generation.

Exercise 4.10.

(i) Show that if there is an n-variable bent function then n is even.
(ii) What is the correlation between a bent function and the zero function L_{\varnothing} ?
(iii) Can you find some more 4 -variable bent functions? [Hint: the MATHEMATICA notebook BooleanCorrelations.nb can be used to compute correlations quickly.]

Since, by (ii), a bent function f has a slight bias towards 0 if $\operatorname{corr}\left(f, L_{\varnothing}\right)=$ $1 / \sqrt{2^{n}}$, and towards 1 if $\operatorname{corr}\left(f, L_{\varnothing}\right)=-1 / \sqrt{2^{n}}$, they are not used as cryptographic primitives without some tweaking. The block cipher CAST makes uses of modified bent-functions.

We end this section with a lemma that is often useful for computing correlations. For instance applied to $x_{0} y_{0}, \ldots, x_{m-1} y_{m-1}$, and using Example 4.9(2) for the correlations of $x_{0} y_{0}$, it says that the correlations for $x_{0} y_{0}+\cdots+x_{m-1} y_{m-1}$ are all $\pm 1 / 2^{m}$. Thus this function is bent. The special case $m=2$ was seen in Example 4.9(3).

Lemma 4.11 (Piling-up Lemma). Let f be an m-variable boolean function of u_{0}, \ldots, u_{m-1} and let g be an n-variable boolean function of v_{0}, \ldots, v_{n-1}. Define $f+g b y$

$$
(f+g)\left(u_{0}, \ldots, u_{m-1}, v_{0}, \ldots, v_{n-1}\right)=f\left(u_{0}, \ldots, u_{m-1}\right)+g\left(v_{0}, \ldots, v_{n-1}\right) .
$$

Given $S \subseteq\{0, \ldots, m-1\}$ and $T \subseteq\{0, \ldots, n-1\}$, let $L_{(S, T)}(u, v)=L_{S}(u)+$ $L_{T}(v)$. The $L_{(S, T)}$ are all linear functions of the $m+n$ variables and

$$
\operatorname{corr}\left(f+g, L_{(S, T)}\right)=\operatorname{corr}\left(f, L_{S}\right) \operatorname{corr}\left(g, L_{T}\right)
$$

We did not have time to even state the lemma in the plenary session in Teaching Week 5 . Since the proof is short, I give it below. There will be a video version later after Problem Sheet 6 .

Proof of Lemma 4.11. The first claim is immediate from Lemma 4.4, applied with $m+n$ variables. By the Discrete Fourier Transform (Theorem 4.7(c)) we have

$$
\begin{aligned}
& (-1)^{f}=\sum_{S \subseteq\{0, \ldots, m-1\}} \operatorname{corr}\left(f, L_{S}\right)(-1)^{L_{S}} \\
& (-1)^{g}=\sum_{T \subseteq\{0, \ldots, n-1\}} \operatorname{corr}\left(g, L_{T}\right)(-1)^{L_{T}}
\end{aligned}
$$

Observe that by definition of $L_{(S, T)}$,

$$
(-1)^{L_{S}\left(u_{0}, \ldots, u_{m-1}\right)}(-1)^{L_{T}\left(v_{0}, \ldots, v_{n-1}\right)}=(-1)^{L_{(S, T)}\left(u_{0}, \ldots, u_{m-1}, v_{0}, \ldots, v_{n-1}\right)} .
$$

Therefore multiplying the discrete Fourier transforms gives

$$
(-1)^{f+g}=\sum_{S \subseteq\{0, \ldots, m-1\}} \sum_{T \subseteq\{0, \ldots, n-1\}} \operatorname{corr}\left(f, L_{S}\right) \operatorname{corr}\left(g, L_{T}\right)(-1)^{L_{(S, T)}} .
$$

This is the Discrete Fourier Transform of $(-1)^{f+g}$. Taking the coefficient of $(-1)^{L_{(S, T)}}$ we get $\operatorname{corr}\left(f+g, L_{(S, T)}\right)=\operatorname{corr}\left(f, L_{S}\right) \operatorname{corr}\left(g, L_{T}\right)$.

For instance the Piling-up Lemma implies that

$$
x_{0} x_{m}+\cdots+x_{m-1} x_{2 m-1}
$$

is a bent function for all m, generalizing Example 4.9. [Hint: pile-up repeatedly. To get the correlations for $x_{0} y_{0}+x_{1} y_{1}$ take $u_{0}=x_{0}, u_{1}=y_{0}$, $v_{0}=x_{1}$ and $v_{1}=y_{1}$ and use Example 4.9(2).] We use that all itscorrelations are $\pm 1 / 2^{m}$ in the analysis of the m-quadratic stream cipher in $\S 8$ of the main course.

5. Keystreams and annihilators

In Example 8.2 of the main course we took the sum of the keystream of the LFSR of width 4 and taps $\{3,4\}$ and the keystream of the LFSR of width 3 with taps $\{2,3\}$. Perhaps surprisingly, the sum is a keystream of the LFSR of width 7 with taps $\{2,4,5,7\}$. The main goal in this section is to prove Corollary 5.5 that explains why these taps are the non-zero powers of z appears in the product $\left(1+z^{3}+z^{4}\right)\left(1+z^{2}+z^{3}\right)=1+z^{2}+$ $z^{4}+z^{5}+z^{7}$, computed as usual working modulo 2 .

Definition 5.1. The power series representing a keystream $k_{0} k_{1} k_{2} \ldots$ is $k_{0}+$ $k_{1} z+k_{2} z^{2}+\cdots$.

Power series can be added and multiplied like polynomials in $\mathbb{F}_{2}[z] .^{1}$
Example 5.2. The power series $\kappa(z)$ representing the keystream of the LFSR F of width 3 and taps $\{2,3\}$ with key 110 is

$$
\mathbf{1}+\mathbf{z}+z^{4}+z^{6}+\mathbf{z}^{7}+\mathbf{z}^{8}+z^{11}+z^{13}+z^{14}+z^{15}+\cdots \longleftrightarrow \mathbf{1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 \ldots}
$$

(a) Observe that the coefficient of z^{m} in $\left(1+z^{7}\right) \kappa(X)$ comes from z^{m} and z^{m-7}, and so is $k_{m}+k_{m-7}$, for all $m \geq 7$. Since the keystream has period $7, k_{m}=k_{m-7}$ and hence the coefficient of x^{s} in $(1+$ $\left.z^{7}\right) \kappa(X)$ is zero for $s \geq 7$. Thus $\left(1+z^{7}\right) \kappa(z)$ is a polynomial. Explicitly,

$$
\left(1+z^{7}\right) \kappa(z)=\mathbf{1}+\mathbf{z}+z^{4}+z^{6} .
$$

(b) Exercise: using the method of (a) show that $\left(1+z^{2}+z^{3}\right) \kappa(z)$ is a polynomial.
(c) Exercise: show that the product of the power series for the keystream $1011100 \ldots$ and $1+z^{2}+z^{3}$ is 1 . In fact every power series with constant coefficient 1 has a multiplicative inverse. ${ }^{2}$ For example, to find the key 101 we compute

$$
\begin{aligned}
\frac{1}{1+z^{2}+z^{3}} & =1+\left(z^{2}+z^{3}\right)+\left(z^{2}+z^{3}\right)^{2}+\cdots \\
& =1+z^{2}+z^{3}+z^{4}+z^{7}+z^{9}+z^{12}+\cdots \\
& \longleftrightarrow \mathbf{1 0 1 1 1 0 0 1 0 1 1 1 0 0 \ldots}
\end{aligned}
$$

(d) Warning example: The product of $\kappa(z)$ with $1+z$ is
$1+z^{2}+z^{4}+z^{5}+z^{6}+z^{9}+z^{11}+z^{12}+z^{13}+\cdots \longleftrightarrow 10101110010111001 \ldots \ldots$
Exercise: is the right-hand side a keystream of F ?
Motivated by (b), we define the feedback polynomial of a LFSR with taps T to be

$$
g_{T}(z)=1+\sum_{t \in T} z^{t}
$$

and make the following definition.
Definition 5.3. Let $\kappa(z)$ be an infinite power series with coefficients in \mathbb{F}_{2}. Let $g(z)$ be a polynomial. We say that $g(z)$ annihilates $\kappa(z)$ if $g(z) \kappa(z)$ is a polynomial. ${ }^{3}$

[^0]For example, we have seen that if $\kappa(z)=\mathbf{1}+\mathbf{z}+z^{4}+z^{6}+\mathbf{z}^{7}+\mathbf{z}^{8}+$ $z^{11}+z^{13}+\cdots$ then $\kappa(z)$ is annihilated by $1+z^{7}$ and also by $1+z^{2}+z^{3}$, but not by $1+z$.

Lemma 5.4. Let $u_{0} u_{1} u_{2} \ldots$ be a keystream and let $\kappa(z)=u_{0}+u_{1} z+u_{2} z^{2}+$ \cdots be the corresponding power series. Let $T \subseteq\{1, \ldots, \ell\}$. The polynomial $g_{T}(z)$ annihilates $\kappa(z)$ with $\operatorname{deg} g_{T}(z) \kappa(z)<\ell$ if and only if $k_{0} k_{1} k_{2} \ldots$ is a keystream of an LFSR with taps T and width ℓ.

Proof. Let $s \geq \max T$. The coefficient of z^{s} in $\left(1+\sum_{t \in T} z^{t}\right) \kappa(z)$ is the sum of u_{s} (from multiplying by 1) and $\sum_{t \in T} u_{s-t}$ (from multiplying by $\sum_{t \in T} z^{t}$). Hence it is $u_{s}+\sum_{t \in T} u_{s-t}$. This is zero for all $s \geq \ell$ if and only if $u_{0} u_{1} u_{2} \ldots$ is a keystream of the LFSR with taps T and width ℓ.

Note that we may need to take $\ell>\max T$. For instance the keystream that is all zero except in position 2, i.e. $001000 \ldots$ is the output of an LFSR of width 3 with empty taps, but no LFSR of smaller width. This was also seen in Example 5.2(d); there is another example in the quiz on the slides.

Corollary 5.5. Suppose that $k_{0} k_{1} k_{2} \ldots$ is a keystream of an LFSR with taps T and width ℓ and $k_{0}^{\prime} k_{1}^{\prime} k_{2}^{\prime} \ldots$ is a keystream of an LFSR with taps T^{\prime} and width ℓ^{\prime}. Let $u_{s}=k_{s}+k_{s}^{\prime}$ for each $s \in \mathbb{N}_{0}$. Then $u_{0} u_{1} u_{2} \ldots$ is a keystream of the LFSR of width $\ell+\ell^{\prime}$ with feedback polynomial $g_{T}(z) g_{T^{\prime}}(z)$.

You are asked to prove this in Question 4 on Problem Sheet 4. As a hint, let $\kappa(z)=k_{0}+k_{1} z+k_{2} z^{2}+\cdots$ and $\kappa^{\prime}(z)=k_{0}^{\prime}+k_{1}^{\prime} z+k_{2}^{\prime} z^{2}+\cdots$ be the two power series representing the keystreams. Use Lemma 5.4 to show that $\kappa(X)+\kappa^{\prime}(z)$ is annihilated by $g_{T}(z) g_{T^{\prime}}(z)$. What does this imply about $u_{0} u_{1} u_{2} \ldots$?]

Corollary 5.6. Let F be an invertible LFSR with taps T and let $m \in \mathbb{N}$. The following are equivalent:
(a) every keystream of F has period dividing m;
(b) $1+z^{m}$ annihilates every power series $\kappa(z)$ corresponding to a keystream of F and $\left(1+z^{m}\right) \kappa(z)$ has degree $<m$;
(b) $g_{T}(z)$ divides $1+z^{m}$.

Moreover if m is the least number with any of these properties then m is the period of F and F has a keystream of period m.

Proof. Let $k_{0} k_{1} k_{2} \ldots$ be a keystream of F corresponding to $\kappa(z)=k_{0}+$ $k_{1} z+k_{2} z^{2}+\cdots$.

- The keystream has period dividing m if and only if $k_{s}=k_{s+m}$ for all $s \in \mathbb{N}_{0}$; this holds if and only if $\left(1+z^{m}\right) \kappa(z)$ is a polynomial. Therefore (a) and (b) are equivalent.
- Since $g_{T}(z) / g_{T}(z)$ is a polynomial, Lemma 5.4 ('only if' direction) implies that $1 / g_{T}(z)$ is the power series of a keystream of F. Now $\left(1+z^{m}\right) / g_{T}(z)$ is a polynomial if and only if $g_{T}(z)$ divides $1+z^{m}$. Hence if (b) holds then $g_{T}(z)$ divides $1+z^{m}$.
Conversely suppose, as in (c), that $g_{T}(z)$ divides $1+z^{m}$. Let $1+$ $z^{m}=h(z) g_{T}(z)$. By Lemma 5.4 ('if' direction), $g_{T}(z) \kappa(z)$ is a polynomial, hence $\left(1+z^{m}\right) \kappa(z)=h(z)\left(g_{T}(z) \kappa(z)\right)$ is a polynomial. Therefore $1+z^{m}$ annihilates $\kappa(z)$, as required in (ii). Hence (b) and (c) are equivalent.

Finally if m is least such that $g_{T}(z)$ divides $1+z^{m}$ then, as seen in the second step, m is minimal such that $1+z^{m}$ annihilates $1 / g_{T}(z)$. Therefore the keystream corresponding to $1 / g_{T}(z)$ has period m and from (i) we see that all other keystreams have periods dividing m. By (VUP), F has period m.

To work with Corollary 5.6 , the following lemma is useful. Let hcf (d, e) denote the highest common factor of $d, e \in \mathbb{N}$.

Lemma 5.7. If a polynomial $g(z)$ divides $z^{d}+1$ and $z^{e}+1$ then it divides $z^{\operatorname{hcf}(d, e)}+1$.

Example 5.8. The number $2^{13}-1=8191$ is prime. The MATHEMATICA command Factor $\left[z^{\wedge} 8191+1\right.$, Modulus -> 2] reports that

$$
z^{8191}+1=(1+z)\left(1+z+z^{3}+z^{4}+z^{13}\right)\left(1+z+z^{2}+z^{5}+z^{13}\right) \ldots .
$$

(Here . . . stands for 630 omitted factors all of degree 13.) The taps of the LFSR of width 13 with feedback polynomial $f(z)=1+z+z^{3}+z^{4}+z^{13}$ are $1,3,4,13$. By Corollary 5.6 , its period is the least m such that $f(z)$ divides $z^{m}+1$. If $1+z+z^{3}+z^{4}+z^{13}$ divides $z^{e}+1$ with $e<8191$ then, by Lemma $5.7,1+z+z^{3}+z^{4}+z^{13}$ divides $z^{\text {hcf }(e, 8191)}+1=z+1$, a contradiction. Since $1+z+z^{3}+z^{4}+z^{13}$ divides $X^{8191}+1$, its period is 8191.

The use of MATHEMATICA in this example can be replaced with some finite field theory: it is sufficient to note that $1+z+z^{3}+z^{4}+z^{13}$ is irreducible in $\mathbb{F}_{2}[X]$, and so it splits in $\mathbb{F}_{2^{13}}$ and no smaller field. Since $2^{13}-1$ is prime, all the roots of the feedback polynomial $f(z)$ have order $2^{13}-1$ and $f(z)$ is factor of $X^{m}+1$ if and only if $2^{13}-1$ divides m.

Primes such as $2^{13}-1$ are known as Mersenne primes. The largest known prime number is the Mersenne prime $2^{82589933}-1$ found by the Great Internet Mersenne Prime Search in 2018.

6. BERLEKAMP-MASSEY ALGORITHM

The Berlekamp-Massey algorithm finds the width and feedback polynomial of an LFSR of minimal width generating a given binary word. It is faster than the linear algebra method seen in Question 2 of Problem Sheet 5. If an LFSR generates $u_{0} \ldots u_{n-1}$ then clearly it generates $u_{0} \ldots u_{m-1}$ for all $m \leq n$. Therefore the minimal width (also known as the linear complex$i t y)$ stays the same or goes up as we require more bits to be generated.

Motivation. These examples can be checked using the Mathematica notebook LFSRs.nb available from Moodle. Recall from after Exercise 6.9 in the main course that the feedback polynomial of an LFSR with taps T is $g_{T}(z)=1+\sum_{t \in T} z^{t}$.

Example 6.1. We take the sum of the keystreams of the LFSR with taps $\{3,4\}$ and width 4 and the LFSR with taps $\{2,3\}$ and width 3 , using keys 0001 and 001.

$$
\left.\begin{array}{rl}
u_{i}=(0,0,1,1,1,1,0,1,0,0,0,0,0,0,1,0,1,0,0,1,1,1,1,1,1,1,0,0,1,1, \ldots)
\end{array}\right)
$$

The table below shows the output of the Berlekamp-Massey algorithm (use BerlekampMasseyFull [usEx61] in LFSRs.nb) applied to the first n terms $u_{0} \ldots u_{n-1}$ for $n \geq 6$. The final column is the m in Proposition 6.5; ignore it for now.

n	width	feedback polynomial	taps	m
6	3	$1+z$	$\{1\}$	2
9	4	$1+z+z^{4}$	$\{1,4\}$	6
10	6	$1+z+z^{3}$	$\{1,3\}$	9
11	6	$1+z^{2}+z^{3}+z^{5}$	$\{2,3,5\}$	9
≥ 13	7	$1+z^{2}+z^{4}+z^{5}+z^{7}$	$\{2,4,5,7\}$	12

The LFSR does not change for $n=7,8$ or 12 .
For instance, the first 10 terms $u_{0} u_{1} \ldots u_{9}$ are generated by the LFSR of width 6 with feedback polynomial $1+z+z^{3}$; its taps are $\{1,3\}$. Taking as the key $u_{0} u_{1} u_{2} u_{3} u_{4} u_{5}=001111$, the first 30 terms of the keystream are:

$$
\left.\begin{array}{rl}
k_{i}= & (0,0,1,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0, \ldots) \\
u_{i}= & (0,0,1,1,1,1,0,1,0,0,0,0,0,0,1,0,1,0,0,1,1,1,1,1,1,1,0,0,1,1, \ldots) \\
& 012345678901234567890123456789
\end{array}\right)
$$

Since $k_{10} \neq u_{10}$, running the Berlekamp-Massey algorithm on the first 11 bits $u_{0} \ldots u_{9} u_{10}$ gives a different LFSR. (The width stays as 6 , but the taps change to $\{2,3,5\}$.) The new LFSR generates $u_{0} \ldots u_{9} u_{10} u_{11}$, so is also correct for the first 12 bits. This is why there is no change for $n=12$.

For all $n \geq 13$ the output of the algorithm is the LFSR of width 7 and feedback polynomial $1+z^{2}+z^{4}+z^{5}+z^{7}$; that may also be found by the method of annihilators in Corollary 5.5.

Example 6.2. The first 30 bits output by the Geffe generator seen in Example 8.3 of the main course are:

$$
\begin{aligned}
& u_{i} 0,0,0,0,1,1,1,1,0,1,0,1,1,1,0,0,0,0,1,1,1,0,1,1,1,1,1,1,1,0
\end{aligned}
$$

The output of the Berlekamp-Massey algorithm run on the first 20 bits is shown below.

n	width	feedback polynomial	taps	m
8	5	$1+z$	$\{1\}$	4
9	5	$1+z+z^{4}$	$\{1,4\}$	4
14	9	$1+z+z^{4}+z^{9}$	$\{1,4,9\}$	13
18	9	$1+z+z^{5}+z^{8}+z^{9}$	$\{1,5,8,9\}$	13
19	10	$1+z^{6}+z^{8}$	$\{1,6,8\}$	18

Taking $n=30$, an LFSR of width 15 is required; the set of taps is then $\{1,3,4,5,7,8,9,10,11,12\}$. We see that the minimal width of a LFSR generating the first n terms is about $n / 2$. This is the typical case for a 'random' sequence. This, and the lack of any obvious pattern in the taps, show that the Geffe cipher is stronger cryptographically than the output of an LFSR.

Setup. Fix throughout a binary word

$$
u_{0} u_{1} u_{2} \ldots u_{N-1} .
$$

Let $U_{n}(z)=u_{0}+u_{1} z+\cdots+u_{n-1} z^{n-1}$ be the polynomial recording the first n terms. Recall from $\S 1$ that the degree of a non-zero polynomial $h(z)$ is its highest power of z.

Lemma 6.3. The word $u_{0} u_{1} \ldots u_{n-1}$ is the output of the LFSR with width ℓ and taps $T \subseteq\{1, \ldots, \ell\}$ if and only if $U_{n}(z) g_{T}(z)=h(z)+z^{n} r(z)$ for some polynomials $h(z)$ and $r(z)$ with $\operatorname{deg} h<\ell$.

You are asked to give a proof in Question 4 on Problem Sheet 5. The idea is almost the same as in the proof of Lemma 5.4, except now we have to watch out for the 'remainder term' $z^{n} r(z)$ since $U_{n}(z)$ is a polynomial, not an infinite power series.

Example 6.4. Let $u=(0,0,1,1,1,1,0,1,0,0,0,0,0)=u_{0} \ldots u_{12}$ be the first 13 entries of the keystream in Example 6.1. The first 12 entries $u_{0} \ldots u_{11}$
are generated by the LFSR of width 6 with taps $\{2,3,5\}$. Correspondingly, by the 'if' direction of Lemma 6.3,

$$
\begin{aligned}
\left(z^{2}+z^{3}\right. & \left.+z^{4}+z^{5}+z^{7}\right) g_{\{2,3,5\}}(z) \\
& =\left(z^{2}+z^{3}+z^{4}+z^{5}+z^{7}\right)\left(1+z^{2}+z^{3}+z^{5}\right) \\
& =z^{2}+z^{3}+z^{5}+z^{12} \\
& =h(z)+z^{12} r(z)
\end{aligned}
$$

where $h(z)=z^{2}+z^{3}+z^{5}$ and $r(z)=1$. This equation also shows that the 'only if' direction fails to hold when $n=13$ since z^{12} is not of the form $z^{13} r(z)$. Correspondingly, by the 'only if' direction of Lemma 6.3, the LFSR generates $(0,0,1,1,1,1,0,1,0,0,0,0,1)$ rather than u.

Berlekamp-Massey step. At step n of the Berlekamp-Massey algorithm we have two LFSRs:

- An LFSR F_{m} of width ℓ_{m} with taps T_{m}, generating

$$
u_{0} u_{1} \ldots u_{m-1} \bar{u}_{m} \ldots
$$

- An LFSR F_{n} of width ℓ_{n} with taps T_{n}, where $n>m$, generating

$$
u_{0} u_{1} \ldots u_{m-1} u_{m} \ldots u_{n-1} .
$$

Thus F_{m} is correct for the first m positions, and then wrong, since it generates \bar{u}_{m} rather than u_{m}. If F_{n} generates $u_{0} u_{1} \ldots u_{m-1} u_{m} \ldots u_{n-1} u_{n}$ then case (a) applies and the algorithm returns F_{n}. The next proposition deals with case (b), when F_{n} outputs \bar{u}_{n} rather than u_{n}.

Proposition 6.5. With the notation above, suppose that the LFSR F_{n} generates $u_{0} u_{1} \ldots u_{n-1} \bar{u}_{n}$. The LFSR with feedback polynomial

$$
z^{n-m} g_{T_{m}}(z)+g_{T_{n}}(z)
$$

and width $\max \left(n-m+\ell_{m}, \ell_{n}\right)$ generates $u_{0} u_{1} \ldots u_{n-1} u_{n}$.
As a useful notation we write $[\geq d]$ for an unspecified polynomial which is either 0 or whose minimum power of z is at least a. For instance $[\geq 5]$ could stand for $z^{5}+z^{8}$, or for z^{6}, but not for z^{4}, because its degree is too small. Several times below we use that $[\geq a]+[\geq a]=[\geq a]$.

Proof. For $r \in\{0,1, \ldots, n+1\}$, define $U_{r}(z)=\sum_{i=0}^{r-1} u_{i} z^{i}$. Thus $U_{n+1}(z)$ is the polynomial corresponding to $u_{0} u_{1} \ldots u_{n}$. Observe that

$$
U_{n+1}(z)+z^{n}=U_{n}(z)+u_{n} z^{n}+z^{n}=U_{n}(z)+\bar{u}_{n} z^{n} .
$$

Since F_{n} generates $u_{0} \ldots u_{n-1} \bar{u}_{n}$, Lemma 6.3 implies

$$
\left(U_{n+1}(z)+z^{n}\right) g_{T_{n}}(z)=h_{n}(z)+[\geq n+1]
$$

where $\operatorname{deg} h_{n}<\ell_{n}$. The same argument replacing n with m shows that

$$
\left(U_{m+1}(z)+z^{m}\right) g_{T_{m}}(z)=h_{m}(z)+[\geq m+1]
$$

where $\operatorname{deg} h_{m}<\ell_{m}$. Since $z^{n} g_{T_{n}}(z)=z^{n}+[\geq n+1]$, and similarly $z^{m} g_{T_{m}}(z)=z^{m}+[\geq m+1]$, we have

$$
\begin{aligned}
U_{n+1}(z) g_{T_{n}}(z) & =h_{n}(z)+z^{n}+[\geq n+1] \\
U_{m+1}(z) g_{T_{m}}(z) & =h_{m}(z)+z^{m}+[\geq m+1] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
U_{n+1}(z) & \left(z^{n-m} g_{T_{m}}(z)+g_{T_{n}}(z)\right) \\
& =z^{n-m}\left(U_{m+1}(z)+[\geq m+1]\right) g_{T_{m}}(z)+U_{n+1}(z) g_{T_{n}}(z) \\
& =z^{n-m} U_{m+1}(z) g_{T_{m}}(z)+[\geq n+1]+U_{n+1}(z) g_{T_{n}}(z) \\
& =\left(z^{n-m} h_{m}(z)+z^{n}+[\geq n+1]\right)+\left(h_{n}(z)+z^{n}+[\geq n+1]\right) \\
& =z^{n-m} h_{m}(z)+h_{n}(z)+(\geq n+1) .
\end{aligned}
$$

where the first equality uses $U_{n+1}(z)=U_{m+1}(z)+[\geq m+1]$. Note the cancellation of the two z^{n} terms. (Intuitively: two wrongs come together to make a right.) Since

$$
\begin{aligned}
\operatorname{deg}\left(z^{n-m} h_{m}(z)+h_{n}(z)\right) & <\max \left(n-m+\operatorname{deg} h_{m}(z), \operatorname{deg} h_{n}(z)\right) \\
& \leq \max \left(n-m+\ell_{m}, \ell_{n}\right),
\end{aligned}
$$

the 'if' direction of Lemma 6.3 now implies that $u_{0} \ldots u_{n-1} u_{n}$ is a keystream of the claimed LFSR.

Example 6.6. Take the keystream $k_{0} k_{1} \ldots k_{9}$ of length 10 shown below:

$$
(1,1,1,0,1,0,1,0,0,0) .
$$

$$
0123456789
$$

The LFSR F_{6} of width $\ell_{6}=3$ and taps $T_{6}=\{1,3\}$ generates the keystream

$$
\begin{gathered}
(1,1,1,0,1,0,0,1,1,1) . \\
012234456778
\end{gathered}
$$

The LFSR F_{7} of width $\ell_{7}=4$ and taps $T_{7}=\{1,4\}$ generates the keystream

$$
\begin{gathered}
(1,1,1,0,1,0,1,1,0,0) . \\
012234566789
\end{gathered}
$$

Note that F_{7} is wrong in position 7. Using Proposition 6.5, taking $m=6$ and $n=7$ we compute

$$
\begin{aligned}
z^{n-m} g_{T_{m}}+g_{T_{n}}(z) & =z^{7-6} g_{\{1,3\}}(z)+g_{\{1,4\}}(z) \\
& =z\left(1+z+z^{3}\right)+\left(1+z+z^{4}\right) \\
& =1+z^{2} .
\end{aligned}
$$

This is the feedback polynomial of the LFSR F_{8} with taps $T_{8}=\{2\}$ and width $\ell_{8}=n-m+\ell_{m}=7-6+3=4$. As expected this generates

$$
\begin{aligned}
& (1,1,1,0,1,0,1,0,1,0) . \\
& 0112344567889
\end{aligned}
$$

correct for the first 8 positions. (And then wrong for u_{8}.) Although the only tap in $\{2\}$ is 2 , we still have to take the width of F_{8} to be 4 (or more), to get the first 8 positions correct.

Exercise 6.7. Continuing from the example, apply Proposition 6.5 taking $n=8, m=6$, and F_{8} and F_{6} as in Example 6.6. You should get the LFSR F_{9} with taps $\{3,5\}$ generating

$$
\begin{gathered}
(1,1,1,0,1,0,1,0,0,0) . \\
01223455678
\end{gathered}
$$

which is the full keystream. The width is now $8-6+3=5$; since 5 is a tap, this is the minimum possible width for these taps.

We could also have used F_{7} (wrong in position 7) as the 'deliberately wrong' LFSR in Exercise 6.7. Doing this we get instead the LFSR with taps $\{1,5\}$, which generates ($1,1,1,0,1,0,1,0,0,1$), also correct for the first 9 positions. We choose F_{6} to follow the algorithm specified below.

Berlekamp-Massey algorithm. Let $u_{0} u_{1} \ldots u_{N-1}$ be a binary word. If $u_{i}=0$ for all i then return the LFSR of width 0 and empty taps. Otherwise, choose c least such that $u_{c} \neq 0$. The algorithm defines LFSRs F_{c}, F_{c+1}, \ldots, F_{N} so that each F_{n} has width ℓ_{n} and taps T_{n} and generates the first n positions of the keystream: u_{0}, \ldots, u_{n-1}.

- [Initialization] Set $T_{c}=\varnothing, \ell_{c}=0, T_{c+1}=\varnothing$ and $\ell_{c+1}=c+1$. Set $m=c$. Set $n=c+1$.
- [Step n] We have an LFSR F_{n} with taps T_{n} of width ℓ_{n} generating u_{0}, \ldots, u_{n-1} and an LFSR F_{m} generating $u_{0}, \ldots, u_{m-1}, \bar{u}_{m}$.
(a) If F_{n} generates $u_{0}, \ldots, u_{n-1}, u_{n}$ then set $T_{n+1}=T_{n}, \ell_{n+1}=\ell_{n}$. This defines F_{n+1} with $F_{n+1}=F_{n}$. Keep m as it is.
(b) If F_{n} generates $u_{0}, \ldots, u_{n-1}, \bar{u}_{n}$, calculate

$$
g(z)=z^{n-m} g_{T_{m}}(z)+g_{T_{n}}(z)
$$

where, as usual, $g_{T_{m}}$ and $g_{T_{n}}$ are the feedback polynomials. Define T_{n+1} so that $g(z)=1+\sum_{t \in T_{n+1}} z^{t}$. Set

$$
\ell_{n+1}=\max \left(\ell_{n}, n+1-\ell_{n}\right) .
$$

If $\ell_{n+1}>\ell_{n}$, update m to n, otherwise keep m as it is.
Thus m is updated if and only if the width increases in step (b). Continue with step $n+1$, or output F_{N} if $n=N$.

Apart from how the width changes, this should all be expected from Proposition 6.5 and Example 6.6. Note that we need $\max T_{n+1} \leq \ell_{n+1}$ for the LFSR F_{n+1} to be well-defined. We prove this as part of Theorem 6.11.

Example 6.8. We apply the Berlekamp-Massey algorithm to the keystream (1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1) from Example 6.6 extended by one extra bit $u_{10}=$ 1. After initialization we have $T_{0}=\varnothing, \ell_{0}=0, T_{1}=\varnothing, \ell_{1}=1$. Case (a) applies in each step n for $n \in\{2,4,5,9\}$. The table below shows the steps when case (b) applies.

n	T_{n}	ℓ_{n}	m	T_{m}	$n-m$	T_{n+1}	ℓ_{n+1}
1	\varnothing	1	0	\varnothing	1	$\{1\}$	1
3	$\{1\}$	1	0	\varnothing	3	$\{1,3\}$	3
6	$\{1,3\}$	3	3	$\{1\}$	3	$\{1,4\}$	4
7	$\{1,4\}$	4	6	$\{1,3\}$	1	$\{2\}$	4
8	$\{2\}$	4	6	$\{1,3\}$	2	$\{3,5\}$	5
10	$\{3,5\}$	5	8	$\{2\}$	2	$\{2,3,4,5\}$	6

The output is the LFSR F_{11} with taps $T_{11}=\{2,3,4,5\}$ and width $\ell_{11}=6$.

Exercise 6.9.

- Run the algorithm starting with step 1 , in which you should define $T_{2}=\{1\}$, and finishing with step 6 , in which you should define $T_{7}=\{1,4\}$.
- Then check that steps 7 and 8 of the algorithm are exactly what we did in Example 6.6 and Exercise 6.7.
- At step 9 you should find that case (a) applies; check that step 10 finishes with the LFSR F_{11} of width $\ell_{11}=6$ and taps $T_{11}=$ $\{2,3,4,5\}$, generating $u_{0} u_{1} \ldots u_{10}$.

Berlekamp-Massey theorem. To prove that the LFSRs defined by running the Berlekamp-Massey algorithm have minimal possible width we need the following lemma. The proof is not obvious, but if you remember the trick of adding the keystreams, you should find the main idea.

Lemma 6.10. Let $n \geq \ell$. If an LFSR F of width ℓ generates the keystream $\left(u_{0}, u_{1}, \ldots, u_{n-1}, \underline{b}\right)$ of length $n+1$ then any LFSR F^{\prime} generating the keystream $\left(u_{0}, u_{1}, \ldots, u_{n-1}, \bar{b}\right)$ has width ℓ^{\prime} where $\ell^{\prime} \geq n+1-\ell$.

Proof. Since $b+\bar{b}=1$, the sum of the keystreams is $(0,0, \ldots, 0,1)$ where the final 1 is in position number n. By Corollary 5.5 (or Lemma 6.3), this keystream is the output of an LFSR of width $\ell+\ell^{\prime}$. (See video or scanned notes for details, correcting error in plenary session.) If $\ell+\ell^{\prime} \leq$ n then the key is all zero, and so the keystream is all zeros, a contradiction. Therefore $\ell+\ell^{\prime}>n$ and so $\ell^{\prime} \geq n+1-\ell$.

Recall that step n of the Berlekamp-Massey algorithm returns an LFSR F_{n+1} with taps T_{n+1} and width ℓ_{n+1} generating $u_{0} \ldots u_{n-1} u_{n}$.

Theorem 6.11. With the notation above, $\max T_{n+1} \leq \ell_{n+1}$. Moreover ℓ_{n+1} is the least width of any LFSR generating $u_{0}, \ldots, u_{n-1}, u_{n}$.

Proof. We work by induction on n.
Base case. let c be least such that $k_{c} \neq 0$. When $n=c$ or $n=c+1$, by the initialisation step, $T_{c}=T_{c+1}=\varnothing$ and $\ell_{c}=0$ and $\ell_{c+1}=c+1$. Clearly these are the minimum possible widths.
Inductive step. By induction, ℓ_{n} is the minimum width of an LFSR generating $u_{0} u_{1} \ldots u_{n-1}$. Hence any LFSR generating $u_{0} u_{1} \ldots u_{n-1} u_{n}$ has width $\geq \ell_{n}$.
Suppose case (a) holds. By definition, $T_{n+1}=T_{n}$ and $\ell_{n+1}=\ell_{n}$. Hence $\max T_{n+1}=\max T_{n} \leq \ell_{n}=\ell_{n+1}$ and ℓ_{n+1} is minimal by the end of the first paragraph.

Suppose case (b) holds. We must show (1) that F_{n+1} is well defined, i.e. that $\max T_{n+1} \leq \ell_{n+1}$ and (2) that F_{n+1} has minimum possible width.
(1) Since the most recent width change was at step m, we have $\ell_{m+1}>$ ℓ_{m}, and since, by definition, $\ell_{m+1}=\max \left(\ell_{m}, m+1-\ell_{m}\right)$ we have $\ell_{m+1}=m+1-\ell_{m}$. Therefore $\ell_{n}=\ell_{n-1}=\ldots=\ell_{m+1}=$ $m+1-\ell_{m}$ and

$$
n+1-\ell_{n}=n-m+\ell_{m} .
$$

The taps T_{n+1} are defined by

$$
1+\sum_{t \in T_{n+1}} z^{t}=z^{n-m} g_{T_{m}}(z)+g_{T_{n}}(z) .
$$

Here $z^{n-m} g_{T_{m}}(z)$ has degree at most $n-m+\ell_{m}$, which is $n+$ $1-\ell_{n}$ by the displayed equation above, and $g_{T_{n}}(z)$ has degree at most ℓ_{n}. Since, by definition, $\ell_{n+1}=\max \left(\ell_{n}, n+1-\ell_{n}\right)$, we have $\max T_{n+1} \leq \ell_{n+1}$.
(2) By Lemma 6.10 , applied with $u_{0} u_{1} \ldots u_{n-1} b$ where $b=\bar{u}_{n}$ (so F_{n} generates $u_{0} u_{1} \ldots u_{n-1} b$), any LFSR generating $u_{0} u_{1} \ldots u_{n-1} u_{n}$ has width at least $n+1-\ell_{n}$. Since F_{n+1} generates $u_{0} u_{1} \ldots u_{n-1}$, the width is also at least ℓ_{n}. Hence the width is at least $\max \left(\ell_{n}, n+\right.$ $\left.1-\ell_{n}\right)$ and this is attained by F_{n+1}.
This completes the proof.
The linear complexity of a word $u_{0} u_{1} \ldots u_{n-1}$ is the minimal width of an LFSR that generates it. Modern stream ciphers aim to generate keystreams with high linear complexity. For example, take the m-quadratic stream cipher from Example 8.5. If $m=1$ the keystream $u_{0} u_{1} \ldots u_{29}$ for the key pair $k=10101$ and $k^{\prime}=101010$ is

$$
(1,0,1,0,1,0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,0,0,1,0,0,1) .
$$

The table below shows the linear complexity of the first n bits of the keystream for small n and m.

$m \backslash n$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	2	2	2	2	5	5	5	5	5	5	5	5	5
2	0	2	2	2	2	2	5	5	5	5	5	5	5	5	5
3	0	0	0	4	4	4	4	4	4	6	6	6	6	6	6
4	0	0	0	0	0	7	7	7	7	7	7	7	7	7	8
5	0	0	0	0	5	5	5	5	5	5	5	7	7	7	8

Some interesting features can be seen for larger lengths: for instance the linear complexity when $m=1$ jumps from 5 for $n=20$ to 16 for $n=21$. For $n=5$ the linear complexity is about $n / 2$; this is the expected linear complexity of a random sequence of bits.

Extra. The original paper is Shift-register synthesis and BCH decoding, James L. Massey, IEEE Transactions on Information Theory, 15 (1969) 122-127. It deals with LFSRs defined over an arbitrary field and leads to an algorithm for decoding cyclic Reed-Solomon codes (and the more general BCH codes in the title).

Example 6.12. The Berlekamp-Massey algorithm (for arbitrary fields) is implemented in the Mathematica notebook lFSRs.nb. Try

```
BerlekampMasseyFull[{1,1,1,0,1,0,1,0,0,0,1}] // TF
```

to check Example 5.8. Each line of the output gives a pair

$$
\left(\left(m, \ell_{m}, e_{m}, g_{T_{m}}(z)\right),\left(n, \ell_{n}, e_{n}, g_{T_{n}}(z)\right)\right)
$$

Here e_{m} and e_{n} are the errors on bits u_{m} and u_{n}; for the binary case, $e_{m}=1$ for all relevant m (since the LFSR changed) and $u_{n}=1$ if and only if Step (b) applies. You can read the taps T_{m} and T_{n} off from the feedback polynomials. Using this you should be able to translate the MathematICA output into the table in Example 5.8. To see an example where it finds a linear recurrence for an integer sequence try

```
BerlekampMasseyFull[{1,1,2,3,5,8,13,21,34},0] // TF
```

Now try instead the sequence $1,1,2,3,4,6,9,13,19,28$. What do you expect is the next term?

7. LINEAR CRYPTANALYSIS

In $\S 4$ we considered boolean functions $\mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$. Typically cryptographic functions return multiple bits, not just one. So we must choose which output bits to tap.

Recall that o denotes composition of functions: thus if $F: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{n}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{p}$ then $G \circ F: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{p}$ is the function defined by $(G \circ F)(x)=G(F(x))$.

Example 7.1. Let $S: \mathbb{F}_{2}^{4} \rightarrow \mathbb{F}_{2}^{4}$ be the S-box in the Q-block cipher (see Example 9.5 in the main notes), defined by

$$
S\left(\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{2}, x_{3}, x_{0}+x_{1} x_{2}, x_{1}+x_{2} x_{3}\right)
$$

(a) Suppose we look at position 0 of the output by considering $L_{\{0\}} \circ$ $S: \mathbb{F}_{2}^{4} \rightarrow \mathbb{F}_{2}$. We have

$$
\begin{aligned}
\left(L_{\{0\}} \circ S\right)\left(\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right) & =L_{\{0\}}\left(x_{2}, x_{3}, x_{0}+x_{1} x_{2}, x_{1}+x_{2} x_{3}\right) \\
& =x_{2} \\
& =L_{\{2\}}\left(\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right) .
\end{aligned}
$$

Hence $L_{\{0\}} \circ S=L_{\{2\}}$. By Lemma 4.4,

$$
\operatorname{corr}\left(L_{\{0\}} \circ S, L_{T}\right)= \begin{cases}1 & \text { if } T=\{2\} \\ 0 & \text { otherwise }\end{cases}
$$

(b) Instead if we look at position 2, the relevant boolean function is $L_{\{2\}} \circ S$, for which $L_{\{2\}} \circ S\left(\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right)=x_{0}+x_{1} x_{2}$. Exercise: show that

$$
\operatorname{corr}\left(L_{\{2\}} \circ S, L_{T}\right)=\left\{\begin{array}{ll}
\frac{1}{2} & \text { if } T=\{0\},\{0,1\},\{0,2\} \\
-\frac{1}{2} & \text { if } T=\{0,1,2\} \\
0 & \text { otherwise }
\end{array} .\right.
$$

In linear cryptanalysis one uses a high correlation to get information about certain bits of the key. We shall see this work in an example.

Example 7.2. For $k \in \mathbb{F}_{2}^{12}$ let $e_{k}: \mathbb{F}_{2}^{8} \rightarrow \mathbb{F}_{2}^{8}$ be the Q-block cipher, as defined in Example 8.4. Then $e_{k}((v, w))=\left(v^{\prime}, w^{\prime}\right)$ where

$$
v^{\prime}=w+S\left(v+S\left(w+k^{(1)}\right)+k^{(2)}\right)
$$

We choose v^{\prime} rather than w^{\prime} since v^{\prime} depends only on the first two round keys. Recall that $k^{(1)}=\left(k_{0}, k_{1}, k_{2}, k_{3}\right)$ and $k^{(2)}=\left(k_{4}, k_{5}, k_{6}, k_{7}\right)$. Example 7.1 suggests considering $\operatorname{corr}\left(L_{\{0\}} \circ e_{k}, L_{\{2\}}\right)$. We have $\left(L_{\{0\}} \circ\right.$ $\left.e_{k}\right)((v, w))=L_{\{0\}}\left(\left(v^{\prime}, w^{\prime}\right)\right)=v_{0}^{\prime}$ and $L_{\{2\}}((v, w))=v_{2}$.
Exercise: using that $k_{0}^{(1)}=k_{0}, k_{1}^{(1)}=k_{1}, k_{2}^{(1)}=k_{2}$ and $k_{2}^{(2)}=k_{6}$, check that

$$
v_{0}^{\prime}=v_{2}+\left(w_{1}+k_{1}\right)\left(w_{2}+k_{2}\right)+k_{0}+k_{6} .
$$

By definition

$$
\begin{aligned}
\operatorname{corr}\left(L_{\{0\}} \circ e_{k}, L_{\{2\}}\right) & =\frac{1}{2^{8}} \sum_{(v, w) \in \mathbb{F}_{2}^{8}}(-1)^{v_{2}+\left(w_{1}+k_{1}\right)\left(w_{2}+k_{2}\right)+k_{0}+k_{6}}(-1)^{v_{2}} \\
& =\frac{1}{2^{8}}(-1)^{k_{0}+k_{6}} \sum_{(v, w) \in \mathbb{F}_{2}^{8}}(-1)^{\left(w_{1}+k_{1}\right)\left(w_{2}+k_{2}\right)} \\
& =\frac{2^{6}}{2^{8}}(-1)^{k_{0}+k_{6}} \sum_{w_{1}, w_{2} \in \mathbb{F}_{2}}(-1)^{\left(w_{1}+k_{1}\right)\left(w_{2}+k_{2}\right)}
\end{aligned}
$$

When we compute the sum, the values of k_{1} and k_{2} are irrelevant. For instance, if both are 0 we average $(-1)^{w_{1} w_{2}}$ over all four $\left(w_{1}, w_{2}\right) \in \mathbb{F}_{2}^{2}$ to get $\frac{1}{2}$; if both are 1 we average $(-1)^{\left(w_{1}+1\right)\left(w_{2}+1\right)}$, seeing the same summands in a different order, and still getting $\frac{1}{2}$. Hence

$$
\begin{aligned}
\operatorname{corr}\left(L_{\{0\}} \circ e_{k}, L_{\{2\}}\right) & =\frac{1}{2^{8}}(-1)^{k_{0}+k_{6}} \sum_{(v, w) \in \mathbb{F}_{2}^{8}}(-1)^{w_{1} w_{2}} \\
& =(-1)^{k_{0}+k_{6}} \frac{1}{4} \sum_{w_{1}, w w_{2} \in\{0,1\}}(-1)^{w_{1} w_{2}} \\
& =\frac{1}{2}(-1)^{k_{0}+k_{6}} .
\end{aligned}
$$

We can estimate this correlation from a collection of plaintext/ciphertext pairs $(v, w),\left(v^{\prime}, w^{\prime}\right)$ by computing $(-1)^{v_{0}^{\prime}+v_{2}}$ for each pair. We get

$$
\begin{aligned}
(-1)^{k_{0}+k_{6}} & \text { with probability } \frac{3}{4} \\
-(-1)^{k_{0}+k_{6}} & \text { with probability } \frac{1}{4}
\end{aligned}
$$

so the average is the correlation $\frac{1}{2}(-1)^{k_{0}+k_{6}}$ which tells us $k_{0}+k_{6}$.
Using our collection of plaintext/ciphertext pairs we can also estimate

$$
\begin{aligned}
& \operatorname{corr}\left(L_{\{0\}} \circ e_{k}, L_{\{2,5\}}\right)=\frac{1}{2}(-1)^{k_{0}+k_{6}+k_{1}} \\
& \operatorname{corr}\left(L_{\{0\}} \circ e_{k}, L_{\{2,6\}}\right)=\frac{1}{2}(-1)^{k_{0}+k_{6}+k_{2}}
\end{aligned}
$$

and so learn k_{1} and k_{2} as well as $k_{0}+k_{6}$. (You are asked to show this on Problem Sheet 9.) There are similar high correlations of $\frac{1}{2}$ for output bit 1 . Using these one learns k_{2} and k_{3} as well as $k_{1}+k_{7}$.

Exercise 7.3. Given $k_{0}+k_{6}, k_{1}+k_{7}, k_{1}, k_{2}, k_{3}$, how many possibilities are there for the key in the Q-block cipher?

This exercise shows that linear cryptanalysis gives a sub-exhaustive attack on the Q-block cipher. It is more powerful than the difference attack seen in the main course. Moreover, the difference attack required chosen plaintexts, rather than a set of observed plaintext/ciphertext pairs used here. It is therefore more widely applicable.

In the attack on the Q-Block Cipher we saw that the correlation depended on the key only by a sign. This is because key addition, as is almost universally the case for block ciphers, was done in \mathbb{F}_{2}^{n}.

Lemma 7.4. Fix $k \in \mathbb{F}_{2}^{n}$. Define $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ by $F(x)=x+k$. Then

$$
\operatorname{corr}\left(L_{S} \circ F, L_{T}\right)= \begin{cases}(-1)^{L_{S}(k)} & \text { if } S=T \\ 0 & \text { if } S \neq T\end{cases}
$$

Another very useful result gives correlations through the composition of two functions.

Proposition 7.5. Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be functions. For $S, T \subseteq\{0,1, \ldots, n-1\}$,

$$
\operatorname{corr}\left(L_{S} \circ G \circ F, L_{T}\right)=\sum_{U \subseteq\{0,1, \ldots, n-1\}} \operatorname{corr}\left(L_{S} \circ G, L_{U}\right) \operatorname{corr}\left(L_{U} \circ F, L_{T}\right) .
$$

Example 7.6.

(1) Take $G\left(x_{0}, x_{1}\right)=\left(x_{0}, x_{0} x_{1}\right)$. The matrix of correlations, with rows and columns labelled $\varnothing,\{0\},\{1\},\{0,1\}$ is

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right) .
$$

(2) By Lemma 7.4, the matrix for $\left(x_{0}, x_{1}\right) \mapsto\left(x_{0}+1, x_{1}\right)$ is diagonal, with entries $1,-1,1,1$.
(3) Hence $H\left(x_{0}, x_{1}\right)=\left(x_{0}+1, x_{0} x_{1}+x_{1}\right)=\left(\bar{x}_{0}, \bar{x}_{0} x_{1}\right)$ has correlation matrix

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right) .
$$

We end by applying Proposition 7.5 to the S-box in the Q-block cipher. Let $F: \mathbb{F}_{2}^{3} \rightarrow \mathbb{F}_{2}^{3}$ be the S-box in the 3 bit version of the Q-block cipher, so $F\left(\left(x_{0}, x_{1}, x_{2}\right)\right)=\left(x_{1}, x_{2}, x_{0}+x_{1} x_{2}\right)$. The matrix below shows the correlations,

$$
\left(\begin{array}{cccccccc}
1 & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \frac{1}{2} & \cdot & \frac{1}{2} & \cdot & \frac{1}{2} & \cdot & -\frac{1}{2} \\
\cdot & \frac{1}{2} & \cdot & \frac{1}{2} & \cdot & -\frac{1}{2} & \cdot & \frac{1}{2} \\
\cdot & \frac{1}{2} & \cdot & -\frac{1}{2} & \cdot & \frac{1}{2} & \cdot & \frac{1}{2} \\
\cdot & -\frac{1}{2} & \cdot & \frac{1}{2} & \cdot & \frac{1}{2} & \cdot & \frac{1}{2}
\end{array}\right)
$$

writing for a 0 correlation, with subsets ordered

$$
\varnothing,\{0\},\{1\},\{0,1\},\{2\},\{0,2\},\{1,2\},\{0,1,2\} .
$$

For example the first four rows show that tapping in positions $\varnothing,\{0\}$, $\{1\}$, or $\{0,1\}$ gives a linear function. By taking powers of this matrix we can compute correlations through any power of F.

In the video we will use Mathematica to find the order of the (normal) four bit version of F.

The high correlations used in Example 7.2 were found by applying Proposition 7.5 to the Feistel functions and S-box in the Q-block cipher.

[^0]: ${ }^{1}$ Footnotes in this section may be useful for those with some ring theory; otherwise please ignore, and you will miss nothing essential for this course. The ring of binary power series is usually denoted $\mathbb{F}_{2}[[z]]$. There is a homomorphism from this ring to $\mathbb{F}_{2}[z] /\left\langle z^{m}\right\rangle$ defined by $\sum_{s=0}^{\infty} k_{s} z^{s} \mapsto \sum_{s=0}^{m-1} k_{s} z^{s}+\left\langle z^{m}\right\rangle$. Hence $\mathbb{F}_{2}[[z]] /\left\langle z^{m}\right\rangle \cong \mathbb{F}_{2}[z] /\left\langle z^{m}\right\rangle$ and one can compute any sum, product, or quotient in $\mathbb{F}_{2}[[z]]$ as far as the coefficient of z^{m-1} by instead imagining one is working in $\mathbb{F}_{2}[z]$ and ignoring all powers z^{r} with $r \geq m$.
 ${ }^{2}$ Equivalently, $\mathbb{F}_{2}[[z]]$ is a local ring with unique maximal ideal $\langle z\rangle$.
 ${ }^{3}$ Like the annihilators you might have met in ring theory, the set of polynomials annihilating $\kappa(z)$ is an ideal of $\mathbb{F}_{2}[z]$. As such it is principal, and so there is a distinguished monic generator. By Lemma ??(a) this generator divides the feedback polynomial of the LFSR.

