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§1 Revision of fields and polynomials
Every modern cipher makes use of the finite field F2. Many use other
finite fields as well: for example, a fundamental building block in AES
(Advanced Encryption Standard) is the inversion map x 7→ x−1 on the
non-zero elements of the finite field F28 with 256 elements.

Definition 1.1
A field is a set of elements F with two operations, + (addition)

and × (multiplication), and two special elements 0, 1 ∈ F such

that 0 6= 1 and

(1) a + b = b + a for all a, b ∈ F;

(2) 0 + a = a + 0 = a for all a ∈ F;

(3) for all a ∈ F there exists b ∈ F such that a + b = 0;

(4) a + (b + c) = (a + b) + c for all a, b, c ∈ F;

(5) a× b = b × a for all a, b ∈ F;

(6) 1× a = a× 1 = a for all a ∈ F;

(7) for all non-zero a ∈ F there exists b ∈ F such that a× b = 1;

(8) a× (b × c) = (a× b)× c for all a, b, c ∈ F;

(9) a× (b + c) = a× b + a× c for all a, b, c ∈ F.



Basic Properties and Why Fp is a Field

Exercise 1.2

(a) Show, from the field axioms, that if x ∈ F, then x has a
unique additive inverse, and that if x 6= 0 then x has a unique
multiplicative inverse. Show also that if F is a field then
a× 0 = 0 for all a ∈ F.

(b) Show from the field axioms that if F is a field and a, b ∈ F
are such that ab = 0, then either a = 0 or b = 0.

Theorem 1.3
Let p be a prime. The set Fp = {0, 1, . . . , p− 1} with addition and
multiplication defined modulo p is a finite field of size p.

Quiz: What is the multiplicative inverse of 7 in the finite field F23?
[Hint: use Euclid’s Algorithm to solve 7q + 23s = 1 and then read
this equation modulo 23.]

(A) 3 (B) 7 (C) 10 (D) 17
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F4 is NOT the Integers Modulo 4
There is a unique (up to a suitable notion of isomorphism) finite
field of any given prime-power size. The smallest field not of prime
size is the finite field of size 4.

Example 1.4

The addition and multiplication tables for the finite field
F4 = {0, 1, α, 1 + α} of size 4 are shown below.

+ 0 1 α 1 + α

0 0 1 α 1 + α
1 1 0 1 + α α
α α 1 + α 0 1

1 + α 1 + α α 1 0

× 1 α 1 + α

1 1 α 1 + α
α α 1 + α 1

1 + α 1 + α 1 α

Probably the most important thing to realise is that F4 is not the
integers modulo 4. Indeed, in Z4 = {0, 1, 2, 3} we have
2× 2 = 0, but if a ∈ F4 and a 6= 0 then a× a 6= 0, as can be seen
from the multiplication table. (Alternatively this follows from
Exercise 1.2(b).)



Polynomials
Let F be a field. Let F[z ] denote the set of all polynomials

f (z) = a0 + a1z + a2z
2 + · · ·+ amz

m

where m ∈ N0 and a0, a1, a2, . . . , am ∈ F.

Definition 1.5
If f (z) = a0 + a1z + a2 + · · ·+ amz

m where am 6= 0, then we say
that m is the degree of the polynomial f , and write deg f = m.
The degree of the zero polynomial is, by convention, −1. We say
that a0 is the constant term and am is the leading term.

Lemma 1.6 (Division of polynomials)

Let F be a field, let g(z) ∈ F[z ] be a non-zero polynomial and let
f (z) ∈ F[z ]. There exist polynomials q(z), r(z) ∈ F[z ] such that

f (z) = q(z)g(z) + r(z)

and deg r(z) < deg g(z).



Division of Polynomials

Lemma 1.6 (Division of polynomials)

Let F be a field, let g(z) ∈ F[z ] be a non-zero polynomial and let
f (z) ∈ F[z ]. There exist polynomials q(z), r(z) ∈ F[z ] such that

f (z) = q(z)g(z) + r(z)

and deg r(z) < deg g(z).

We say that q(z) is the quotient and r(z) is the remainder when
f (z) is divided by g(z). Note that r(z) may be zero, in which case
its degree is −1. The important thing is that you can find the
quotient and remainder in practice. In Mathematica use

PolynomialQuotientRemainder

with Modulus -> p for the finite field Fp of prime size.



Division of Polynomials

Lemma 1.6 (Division of polynomials)

Let F be a field, let g(z) ∈ F[z ] be a non-zero polynomial and let
f (z) ∈ F[z ]. There exist polynomials q(z), r(z) ∈ F[z ] such that

f (z) = q(z)g(z) + r(z)

and deg r(z) < deg g(z).

Exercise 1.7
Let g(z) = z3 + z + 1 ∈ F2[z ], let f (z) = z5 + z2 + z ∈ F2[z ].

(a) What is the quotient when f (z) is divided by g(z)?

(A) z2 + 1 (B) z2 + z + 1 (C) z + 1 (D) z3 + z + 1

(b) What is the remainder when f (z) is divided by g(z)?

(A) 0 (B) 1 (C) z + 1 (D) z3 + z + 1

(c) What is the remainder when g(z) is divided by f (z)?

(A) z2 + 1 (B) z2 + z + 1 (C) z + 1 (D) z3 + z + 1
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Polynomials and Roots

Lemma 1.8
Let F be a field.

(i) If f (z) ∈ F[z ] has a ∈ F as a root, i.e. f (a) = 0, then there is
a polynomial q(z) ∈ F[z ] such that f (z) = (z − a)q(z).

(ii) If f (z) ∈ F[z ] has degree m ∈ N0 then f (z) has at most m
distinct roots in F.

(iii) Suppose that f (z), g(z) ∈ F[z ] are non-zero polynomials such
that deg f , deg g < t. If there exist distinct c1, . . . , ct ∈ F
such that f (ci ) = g(ci ) for each i ∈ {1, . . . , t} then
f (z) = g(z).

Quiz: Work in the finite field F3 in which 2 + 1 = 0 and 2× 2 = 1.
Let f (z) = z3 + z2 − z − 1 ∈ F3[z ].

(a) What is the polynomial q(z) when the root is 1?

(A) z2 − z + 1 (B) z2 − 1 (C) z − 1 (D) does not exist

(b) How many distinct roots does f (z) have in F3[z ]?

(A) 1 (B) 2 (C) 3 (D) 4
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Polynomials and Roots

Lemma 1.8
Let F be a field.

(i) If f (z) ∈ F[z ] has a ∈ F as a root, i.e. f (a) = 0, then there is
a polynomial q(z) ∈ F[z ] such that f (z) = (z − a)q(z).

(ii) If f (z) ∈ F[z ] has degree m ∈ N0 then f (z) has at most m
distinct roots in F.

(iii) Suppose that f (z), g(z) ∈ F[z ] are non-zero polynomials such
that deg f , deg g < t. If there exist distinct c1, . . . , ct ∈ F
such that f (ci ) = g(ci ) for each i ∈ {1, . . . , t} then
f (z) = g(z).

Part (iii) is the critical result. It says, for instance, that a linear
polynomial is determined by two points on its graph: when F is the
real numbers R this should be intuitive — there is a unique line
through any two distinct points. Similarly a quadratic is
determined by any three points on its graph, and so on.



Polynomial Interpolation

Conversely, given t values in a field F, there is a polynomial in F[z ]
of degree at most t taking these values at any t distinct specified
points. This has a nice constructive proof.

Lemma 1.9 (Polynomial interpolation)

Let F be a field. Let

c1, c2, . . . , ct ∈ F

be distinct and let y1, y2, . . . , yt ∈ F. The unique polynomial
f (z) ∈ F[z ], either zero or of degree < t, such that f (ci ) = yi for
all i is

f (z) =
t∑

i=1

yi

∏
j 6=i (z − cj)∏
j 6=i (ci − cj)

.

Later we shall use polynomials in multiple variables with
coefficients in F2 to describe cryptographic primitives.



§2: Shamir’s Secret Sharing Scheme

As a standing convention, we write secret information in red. This
is entirely optional for you and not standard.

Example 2.1

Ten people want to know their mean salary. But none is willing to
reveal her salary si to the others, or to a ‘Trusted Third Party’.
Instead Person 1 chooses a large number M. She remembers M,
and whispers M + s1 to Person 2. Then Person 2 whispers
M + s1 + s2 to Person 3, and so on, until Person 10 whispers
M + s1 + s2 + · · ·+ s9 + s10 to Person 1. Person 1 then subtracts
M and tells everyone the mean (s1 + s2 + · · ·+ s10)/10.

Exercise 2.2
Why it is reasonable to colour code the whisper from Person 2 as
M + s1 + s2, with M + s1 all in red?



Secret Sharing Salaries: No Information Leak

Exercise 2.3
Show that if Person j hears N from Person j − 1 then
s1 + · · ·+ sj−1 can consistently be any number between 0 and N.

Exercise 2.4
Person 1 can deduce the total of the salaries of all the other people
from M + s1 + · · ·+ sn by subtracting M + s1. In particular, if
n = 2, she can learn Person 2’s salary. Is this a defect in the
scheme?



Shamir Secret Sharing Scheme

Definition 2.5
Let p be a prime and let s ∈ Fp. Let n ∈ N, t ∈ N be such that
t ≤ n < p. Let c1, . . . , cn ∈ Fp be distinct non-zero elements. In
the Shamir scheme with n people and threshold t, to share the
secret s ∈ Fp, Trevor chooses at random a1, . . . , at−1 ∈ Fp and
constructs the polynomial

f (x) = s + a1z + · · ·+ at−1z
t−1

with constant term s. Trevor then issues the share f (ci ) to
Person i .

As often the case in cryptography, it is important to be clear about
what is private and what is public.

Above we wrote f (ci ) because the evaluation points ci are public
knowledge, as are the parameters n, t and p. Only Trevor knows
f (z), and at the time it is issued, the share f (ci ) (written all in
red, as it’s secret) is known only to Person i and Trevor.



Shamir Secret Sharing Scheme: Example

Example 2.6

Suppose that n = 5 and t = 3. Take p = 7 and ci = i for each
i ∈ {1, 2, 3, 4, 5}. We suppose that s = 5. Trevor chooses
a1, a2 ∈ F7 at random, getting a1 = 6 and a2 = 1. Therefore
f (z) = 5 + 6z + 1z2 and the share of Person i is f (ci ), for each
i ∈ {1, 2, 3, 4, 5}, so the shares for each person are(

f (1), f (2), f (3), f (4), f (5)
)

= (5, 0, 4, 3, 4).

Remember that all arithmetic is performed in Fp, so working
modulo p.



Shamir Secret Sharing Scheme: No Information Leak

The following exercise shows the main idea needed to prove
Theorem 2.8 below.

Exercise 2.7
Suppose that Person 1, with share f (1) = 5, and Person 2, with
share f (2) = 0, cooperate in an attempt to discover s. Show that
for each s ′ ∈ F7 there exists a unique polynomial fs′(z) such that
deg f ≤ 2 and f (0) = s ′, fz(1) = 5 and fz(2) = 0. For example
f2(z) = 3z2 + 2 and f3(z) = 2z + 3. Since Trevor chose the
coefficients of f at random, each polynomial f0(z), . . . , fp−1(z)
seems equally likely to Persons 1 and 2, and they can learn nothing
about s.

Theorem 2.8
In a Shamir scheme with n people, threshold t and secret s, any t
people can work together to determine s but any t − 1 people,
even if they work together, can learn nothing about s.



Pre-requisites for Proof of Theorem 2.8

Lemma 1.8
Let F be a field.
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Let F be a field. Let c1, c2, . . . , ct ∈ F be distinct and let
y1, y2, . . . , yt ∈ F. The unique polynomial f (z) ∈ F[z ], either zero
or of degree < t, such that f (ci ) = yi for all i is

f (z) =
t∑

i=1

yi

∏
j 6=i (z − cj)∏
j 6=i (ci − cj)

.



Adversarial Secret Sharing

Exercise 2.9
Suppose Trevor shares s ∈ Fp across n computers using the Shamir
scheme with threshold t. He chooses the first t computers. They
are instructed to exchange their shares; then each computes s and
sends it to Trevor. Unfortunately Malcolm has compromised
computer 1. Show that Malcolm can both learn s and trick Trevor
into thinking his secret is an s ′ ∈ Fp of his choice.

(Assume that, thanks to a network delays, it is plausible that
computer 1 sends its share after receiving the shares from the
other t − 1 computers.)

Shamir’s Secret Sharing Scheme has been modified in various ways
to get around this problem. See Martin Tompa and Heather Woll,
How to share a secret with cheaters, J. Crypt. 1 (1989) 133–138
for an introduction.



Addition and Multiplication in the Cloud

Exercise 2.10
Take the Shamir scheme with threshold t and evaluation points
1, . . . , n ∈ Fp where p > n. Trevor has shared two large numbers r
and s across n cloud computers, using polynomials f and g so that
the shares are

(
f (1), . . . , f (n)

)
and

(
g(1), . . . , g(n)

)
.

(a) Express in terms of f and g a polynomial suitable for sharing
the secret s + t. [Hint: this will seem obvious in hindsight,
but is easily missed.]

(b) Imagine you are Cloud Computer 1, so you know the shares
f (c1) for r and g(c1) for s. What is your share for s + t,
using the polynomial from (a)? Can you compute this share
yourself?

(c) Show that the n computers can each compute the shares for
s + t without exchanging any information.

(d) (Optional extension.) Assume that n ≥ 2t. Show that the
cloud computers can compute shares for rs mod p sending
information only between each other.



Optional Extras on Secret Sharing: DNSSEC

Example 2.11

The root key for DNSSEC, part of web of trust that guarantees an
IP connection really is to the claimed end-point, and not Malcolm
doing a Man-in-the-Middle attack, is protected by a secret sharing
scheme with n = 7 and t = 5: search for ‘Schneier DNSSEC’.

The search above will take you to Bruce Schneier’s blog. It is
highly recommended for background on practical cryptography.



Optional Extras on Secret Sharing: Reed–Solomon Codes

Remark 2.12
The Reed–Solomon code associated to the parameters p, n, t and
the field elements c1, c2, . . . , cn is the length n code over Fp with
codewords all possible n-tuples

{
(
f (c1), f (c2), . . . , f (cn)

)
: f ∈ Fp[z ], deg f ≤ t − 1}.

It will be studied in MT5461. By Theorem 2.8, each codeword is
determined by any t of its positions, and so two codewords
agreeing in t positions are equal. This shows that any two different
codewords differ in at least n − (t − 1) positions. Equivalently, the
Reed–Solomon code has minimum distance at least n − t + 1.

For simplicity we have worked over a finite field of prime size in
this section. Reed–Solomon codes and the Shamir secret sharing
scheme generalize in the obvious way to arbitrary finite fields. For
example, the Reed–Solomon codes used on compact discs have
alphabet the finite field F28 .
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§3 Introduction to boolean Functions

Recall that F2 = {0, 1} is the finite field of size 2 whose elements
are the bits 0 and 1. As usual, + denotes addition in F2 or in Fn

2.
We number positions in Fn

2 from 0, so a typical tuple is
(x0, x1, . . . , xn−1).

Definition 3.1
Let n ∈ N. An n-variable boolean function is a function Fn

2 → F2.

For example, f (x , y , z) = xyz + x is a boolean function of the
three variables x , y and z , such that f (1, 0, 0) = 0 + 1 = 1 and
f (1, 1, 1) = 1 + 1 = 0. We shall see that boolean functions are
very useful for describing the primitive building blocks of modern
stream and block ciphers.

Exercise 3.2
What is a simpler form for x2y + xz + z + z2?



Almost the Smallest Interesting Non-Linear Function?

Exercise 3.3
Let maj(x , y , z) = xy + yz + zx where, as usual, the coefficients
are in F2. Show that

maj(x , y , z) =

{
0 if at most one of x , y , z is 1

1 if at least two of x , y , z are 1.

We call maj : F3
2 → F2 the majority vote function. It is a

3-variable boolean function.



Block Ciphers
A block cipher has plaintexts and ciphertexts Fn

2 for some fixed n.
The encryption functions are typically defined by composing
carefully chosen cryptographic primitives over a number of rounds.

Example 3.4

(1) Each round of the widely used block cipher AES is of the form
(x , k) 7→ s(x) + k where + is addition in F128

2 , x ∈ F128
2 is the

input to the round (derived ultimately from the plaintext) and
k ∈ F128

2 is a ‘round key’ derived from the key.

The most important cryptographic primitive in the function
s : F128

2 → F128
2 is inversion in the finite field F28 . The

inversion function is highly non-linear and hard to attack. Just
for fun, the 255 values of the boolean function sending 0 to 0
and a non-zero x to the bit in position 0 of x−1 are shown
below, for one natural order on F28 .

0110101101100111000111010110100000011101100100000100110001011111
1011111110110111101000110000101100111001011111111111010000001010
1010010010111010000100000010101010011010000001000011110110011001
1011000111101000010111000101100111010011001110011100001010101010.



SPECK

(2) In the block cipher SPECK proposed by NSA in June 2013,
the non-linear primitive is modular addition in Z/2mZ. As a
’toy’ version we take m = 8; in practice m is at least 16 and
usually 64. Identify F8

2 with Z/28Z by writing numbers in
their binary form. For instance, 13 ∈ Z/28Z has binary form
0000 1101 (the space is just for readability) and

1010 1010� 0000 1111 = 1011 1001

1000 0001� 1000 0001 = 0000 0010

corresponding to 170 + 15 = 185 mod 256 and 129 + 129 = 2
mod 256. Modular addition is a convenient operation because
it is very fast on a computer, but it has some cryptographic
weaknesses. In SPECK it is combined with other functions in
a way that appears to give a very strong and fast cipher.



Modular Addition as a boolean Function

One sign that modular addition is weak is that the low numbered
bits are ’close to’ linear functions. We make this precise in §6 on
linear cryptanalysis. For example

(. . . , x2,x1, x0)� (. . . , y2, y1, y0)

= (. . . , x2 + y2 + c2, x1 + y1 + x0y0, x0 + y0)

where c2 is the carry into position 2, defined using the majority
vote function by c2 = maj(x1, y1, x0y0). Unless both x0 and y0
are 1, bit 1 is x1 + y1, a linear function of (. . . , x2, x1, x0) and
(. . . , y2, y1, y0). By Exercise 4.5, output bit 2 is given by the more
complicated polynomial

x2 + y2 + x1y1 + x0x1y0 + x0y0y1.

This formula can be used for part of Question 6 on Problem
Sheet 2: it is the algebraic normal form of the boolean function for
bit 2 in modular addition.



Quiz on Binary Form and � modulo 24

I What is the 4-bit binary form of 11?

(A) 1101 (B) 1011 (C) 0111 (D) 1001

I What is the 4-bit binary form of 7?

(A) 0011 (B) 0111 (C) 1011 (D) 1101

I In the previous slide we saw that output bit 1 of x � y is given
by x1 + y1 + x0y0 and output bit 2 of x + y is given by

x2 + y2 + x1y1 + x0x1y0 + x0y0y1.

According to these formulae, what is 11� 7?

(A) ?00? (B) ?01? (C) ?10? (D) ?11?

I What is the formula for output bit 0 of x � y?

(A) x0 + y0 (B) x0 + y0 + x0y0 (C) x0 + x1 (D) other

I What is the 4-bit binary form of 11� 7?

(A) 0010 (B) 1010 (C) 1000 (D) 1110

I To think about: what is special about output bit 0 compared
to the other bits?
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Truth Tables and Disjunctive Normal Form
A boolean function f : Fn

2 → F2 can be defined by its truth table,
which records for each x ∈ Fn

2 its image f (x). For example, the
boolean functions F2

2 → F2 of addition and multiplication are
shown below:

x y x + y xy x ∧ y x ∨ y x =⇒ y

0 0 0 0 F F
0 1 1 0 F T
1 0 1 0 F T
1 1 0 1 T T

It is often useful to think of 0 as false and 1 as true. Then xy
corresponds to x ∧ y , the logical ‘and’ of x and y , as shown above.
The logical ‘or’ of x and y is denoted x ∨ y .

Exercise 3.5
Use the true/false interpretation to complete the columns for
x =⇒ y . Could you convince a sceptical friend that false
statement imply true statements?
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Toffoli Function

Example 3.6

The Toffoli function is a 3-variable boolean function important in
quantum computing. It can be defined by

toffoli(x0, x1, x2) =

{
x0 if x1x2 = 0

x0 if x1x2 = 1.

Here x denotes the bitflip of x , defined by 0 = 1 and 1 = 0. In the
true/false interpretation F = T and T = F .

x2 x1 x0 maj(x0, x1, x2) toffoli(x0, x1, x2) f{0} f{0,2}

∅ 0 0 0 0 0 0 0
{0} 0 0 1 0 1 1 0
{1} 0 1 0 0 0 0 0
{0, 1} 0 1 1 1 1 0 0
{2} 1 0 0 0 0 0 0
{0, 2} 1 0 1 1 1 0 1
{1, 2} 1 1 0 1 1 0 0
{0, 1, 2} 1 1 1 1 0 0 0



A Step Towards Disjunctive Normal Form for Toffoli

x2 x1 x0 maj(x0, x1, x2) toffoli(x0, x1, x2) f{0} f{0,2}

∅ 0 0 0 0 0 0 0
{0} 0 0 1 0 1 1 0
{1} 0 1 0 0 0 0 0
{0, 1} 0 1 1 1 1 0 0
{2} 1 0 0 0 0 0 0
{0, 2} 1 0 1 1 1 0 1
{1, 2} 1 1 0 1 1 0 0
{0, 1, 2} 1 1 1 1 0 0 0

The sets on the left record which variables are true. For example,
the majority vote function is true on the rows labelled by the sets
of sizes 2 and 3, namely, {0, 1}, {0, 2}, {1, 2}, {1, 2, 3}, and false
on the other rows.



Disjunctive Normal Form: Motivation
Given a subset J of {0, . . . , n − 1} we define fJ : Fn

2 → F2 by

fJ(x) =
∧
j∈J

xj ∧
∧
j 6∈J

x j .

In words, fJ is the n-variable boolean function whose truth table
has a unique 1 (or true) in the row labelled J. For instance
f{0}(x0, x1, x2) = x0 ∧ x1 ∧ x2 and f{0,2}(x0, x1, x2) = x0 ∧ x1 ∧ x2
are on the previous slide.

Exercise 3.7

(i) For what set J do we have

toffoli = f{0} ∨ f{0,1} ∨ f{0,2} ∨ fJ?

(ii) Express the majority vote function in the form above.

(iii) Find a way to complete the right-hand side in

maj(x) = (x0 ∧ x1 ∧ x2)∨ (x0 ∧ x1 ∧ x2)∨ (x0 ∧ x1 ∧ x2)∨ (. . .).

This should seem almost the same as (ii).



Disjunctive Normal Form: Motivation
Recall that fJ(x) =

∧
j∈J

xj ∧
∧
j 6∈J

x j . It is defined so that

fJ(x) = 1 if and only if xj = 1 ⇐⇒ j ∈ J.

x2 x1 x0 maj(x0, x1, x2) toffoli(x0, x1, x2) f{0} f{0,2} True

∅ 0 0 0 0 0 0 0 1

{0} 0 0 1 0 1 1 0 1

{1} 0 1 0 0 0 0 0 1

{0, 1} 0 1 1 1 1 0 0 1

{2} 1 0 0 0 0 0 0 1

{0, 2} 1 0 1 1 1 0 1 1

{1, 2} 1 1 0 1 1 0 0 1

{0, 1, 2} 1 1 1 1 0 0 0 1

We saw in Exercise 3.7 that

(a) toffoli = f{0} ∨ f{0,1} ∨ f{0,2} ∨ f{1,2};

(b) maj = f{0,1} ∨ f{0,2} ∨ f{1,2} ∨ f{0,1,2}; equivalently,

maj(x0, x1, x2) = (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2).

How would you express the boolean function g(x0, x1, x2) that is

true if and only if x0 = x1 = x2 as a disjunction (
∨

) of the fJ?
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We saw in Exercise 3.7 that
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(b) maj = f{0,1} ∨ f{0,2} ∨ f{1,2} ∨ f{0,1,2}; equivalently,

maj(x0, x1, x2) = (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2).

How would you express the boolean function g(x0, x1, x2) that is

true if and only if x0 = x1 = x2 as a disjunction (
∨

) of the fJ?

Answer. It’s simply x0 ∧ x1 ∧ x2 with just one ‘∨ clause’.



Disjunctive Normal Form: Motivation
Recall that fJ(x) =
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Find the disjunctive normal form of x0 =⇒ x1.



Disjunctive Normal Form: Motivation
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Find the disjunctive normal form of x0 =⇒ x1. Answer. Since

x0 =⇒ x1 is true if and only if

{i : xi = 1} ∈
{
∅, {1}, {0, 1}

}
the disjunctive normal form is (x0 ∧ x1) ∨ (x0 ∧ x1) ∨ (x0 ∧ x1).
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How many ∨ clauses (of the form x0 ∧ x1 ∧ x2) are in the

disjunctive normal form of the always true function, shown in the

rightmost column?

(A) 0 (B) 2 (C) 6 (D) 8
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In fact the disjunctive normal form of the always true function is

(x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ · · · ∨ (x0 ∧ x1 ∧ x2).
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What is the disjunctive normal form of the always false function?



Disjunctive Normal Form: Motivation
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maj(x0, x1, x2) = (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2).

What is the disjunctive normal form of the always false function?

Answer. The empty disjunction, i.e. the ‘or’ with no formulae. In

symbols
∨
∅ = 0
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maj(x0, x1, x2) = (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2).

What is the empty conjunction, i.e. the ‘and’ with no formulae. In

symbols, what is
∧
∅?
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fJ(x) = 1 if and only if xj = 1 ⇐⇒ j ∈ J.

x2 x1 x0 maj(x0, x1, x2) toffoli(x0, x1, x2) f{0} f{0,2} True

∅ 0 0 0 0 0 0 0 1

{0} 0 0 1 0 1 1 0 1

{1} 0 1 0 0 0 0 0 1

{0, 1} 0 1 1 1 1 0 0 1

{2} 1 0 0 0 0 0 0 1

{0, 2} 1 0 1 1 1 0 1 1

{1, 2} 1 1 0 1 1 0 0 1

{0, 1, 2} 1 1 1 1 0 0 0 1

We saw in Exercise 3.7 that

(a) toffoli = f{0} ∨ f{0,1} ∨ f{0,2} ∨ f{1,2};

(b) maj = f{0,1} ∨ f{0,2} ∨ f{1,2} ∨ f{0,1,2}; equivalently,

maj(x0, x1, x2) = (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2).

What is the empty conjunction, i.e. the ‘and’ with no formulae. In

symbols, what is
∧
∅? Answer. The always true function:

∧
∅ = 1.
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Disjunctive Normal Form

Theorem 3.8 (Disjunctive Normal Form)

Let f : Fn
2 → F2 be a boolean function.

(i) Suppose that the truth table of f has 1 in the rows labelled by
the sets J for J ∈ T . Then

f =
∨
J∈T

fJ .

(ii) If T 6= T ′ then
∨

J∈T fJ 6=
∨

J∈T ′ fJ .

This theorem says that every boolean function has a unique
disjunctive normal form

∨
J∈T fJ , for a suitable set T .

Corollary 3.9

There are 22
n
n-variable boolean functions.

Quiz: How many boolean functions are there of 4 variables?

(A) 16 (B) 256 (C) 1024 (D) 65536
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All Boolean Functions of Two Variables: Exercise 3.10
By Corollary 3.9, there are 16 truth tables of 2-variable boolean
functions. Using the true/false notation, the 8 for which
f (F ,F ) = F are shown below.

(a) What is a suitable label for the rightmost column?

Answer: F or 0, for the always false function. This is the
empty disjunction: see quiz after Exercise 3.7.

(b) What is the disjunctive normal form of x0 + x1?
(A) (x0 ∧ x1) ∨ (x0 ∧ x1) (B) (x0 ∧ x1)

(C) (x0 ∧ x1) ∨ (x0 ∧ x1) (D) (x0 ∨ x1) ∧ (x0 ∨ x1))

(c) Find the remaining disjunctive normal forms.

Example: the DNF of x0 is (x0 ∧ x1) ∨ (x0 ∧ x1).

(d) What is a concise way to specify the remaining 8 functions?

Answer: x0 ∨ x1, x0, x1, x0 + x1, . . . i.e. just negate!

x1 x0 x0 ∨ x1 x0 x1 x0 + x1 x0 ∧ x1 x0 ∧ x1 x0 ∧ x1 ??

∅ F F F F F F F F F F
{0} F T T T F T F T F F
{1} T F T F T T F F T F
{0, 1} T T T T T F T F F F
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Algebraic Normal Form
In F2 we have 02 = 0 and 12 = 1. Therefore the boolean functions
f (x1) = x21 and f (x1) = x1 are equal. Hence, as seen in
Exercise 3.2, multivariable polynomials over F2 do not need
squares or higher powers of the variables. Similarly, since 2x1 = 0,
the only coefficients needed are the bits 0 and 1. For instance,

x0 + x0x
2
2x

3
3 + x20 + x2x3

is the same boolean function as x2x3 + x0x2x3.

Given I ⊆ {0, 1, . . . , n − 1}, let

xI =
∏
i∈I

xi .

We say the xI are boolean monomials. By definition (or convention
if you prefer), x∅ = 1. For example, x{1,2} = x1x2. It is one of the
three boolean monomial summands of

maj(x0, x1, x2) = x0x1 + x1x2 + x2x0 = x{0,1} + x{1,2} + x{0,2}.



Motivation for Algebraic Normal Form
The functions fJ so useful for proving Theorem 3.8 have a
particularly simple form as polynomials:

fJ(x) =
∏
j∈J

xj
∏
j 6∈J

x j .

Exercise 3.11

(i) Define the 3-variable boolean function

g(x0, x1, x2) =

{
1 if x0 = x1 = x2 = 0

0 otherwise.

Express g as sum of boolean monomials. How many
monomials do you need?

(A) 1 (B) 4 (C) 7 (D) 8

Since

x0x1x2 = (1 + x0)(1 + x1)(1 + x2)

= 1 + x0 + x1 + x2 + x0x1 + x0x2 + x1x2 + x0x1x2

(ii) What is the negation g as a sum of boolean monomials?

Answer. You can negate anything by adding 1 to it, so just
get rid of the 1 in the expression for g .
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Toffoli function in Algebraic Normal Form
We saw that the disjunctive normal form, written using the fJ
functions, of the Toffoli function is

toffoli(x0, x1, x2) = f{0} + f{0,1} + f{0,2} + f{1,2}.

Hence or otherwise write it as a sum of boolean monomials.

I The mechanical way to do this is

toffoli = f{0} + f{0,1} + f{0,2} + f{1,2}

= x0(1 + x1)(1 + x2) + x0x1(1 + x2) + x0(1 + x1)x2 + (1 + x0)x1x2

=
(
x0 + x0x1 + x0x2 + x0x1x2

)
+
(
x0x1 + x0x1x2

)
+
(
x0x2 + x0x1x2

)
+
(
x1x2 + x0x1x2

)
= x0 + x1x2

I Better: go back to Example 3.6 and use that toffoli(x0, x1, x2)
is 1 if and only if x1x2 = 0 and x0 = 1, or x1x2 = 1 and
x0 = 0, and so

toffoli(x0, x1, x2) = x1x2x0+x1x2x0 = (1+x1x2)x0+x1x2(1+x0)

which expands to x0 + x1x2.
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Algebraic Normal Form
It is only a small generalization of the Toffoli example just seen to
prove the existence part of the following theorem. There is a very
neat way to prove uniqueness, using the result from Corollary 3.9
that there are exactly 22

n
boolean functions of n variables.

Theorem 3.12
Let f : Fn

2 → F2 be an n-variable boolean function.

(a) There exist coefficients bJ ∈ {0, 1}, one for each
J ⊆ {0, 1, . . . , n − 1} such that

f =
∑

J⊆{0,1,...,n}

bJ fJ .

(b) There exist unique coefficients cI ∈ {0, 1}, one for each
I ⊆ {0, 1, . . . , n − 1}, such that

f =
∑

I⊆{0,1,...,n−1}

cI xI .

The expression for f in (b) is called the algebraic normal form of f .
Exercise: deduce from the uniqueness of disjunctive normal form that the
coefficients bJ in (a) are also unique.
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Motivation for Coefficient Formula

Exercise 3.13
Let f (x , y , z) = 1 + x + xz + yz + xyz and let

g(x , y , z) = f (0, y , z) + f (1, y , z).

(i) What information does f (0, 0, 0) tell us about f ?

(ii) Find the algebraic normal form of g . What is the connection
with the algebraic normal form of f ?

(iii) What does g(0, 0, 0) = f (0, 0, 0) + f (1, 0, 0) tells us about g?
What does it tell us about f ?
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What does it tell us about f ?

Answers.

(i) f (0, 0, 0) is the constant term in f , namely 1.
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(ii) g(x , y , z) = 1 + z + yz in algebraic normal form. You can get

this from the algebraic normal form of f by differentiating in
the usual way! That is, delete any monomial not having x ,
and cancel x from those that do have it.
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this from the algebraic normal form of f by differentiating in
the usual way! That is, delete any monomial not having x ,
and cancel x from those that do have it.

(iii) g(0, 0, 0) = 1 is the constant term of g , which corresponds to
the x in f . Hence the algebraic normal form of f has x .



Motivation for Coefficient Formula

Exercise 3.13
Let f (x , y , z) = 1 + x + xz + yz + xyz and let

g(x , y , z) = f (0, y , z) + f (1, y , z).

(i) What information does f (0, 0, 0) tell us about f ?

(ii) Find the algebraic normal form of g . What is the connection
with the algebraic normal form of f ?

(iii) What does g(0, 0, 0) = f (0, 0, 0) + f (1, 0, 0) tells us about g?
What does it tell us about f ?

Given i ∈ {0, 1, . . . , n − 1}, define ∆(i) = (0, . . . , 1, . . . , 0), where
the 1 is in position i . The discrete derivative in position i of an
n-variable boolean function f is the boolean function, (Di f )
defined by

(Di f )(x) = f (x + ∆(i)) + f (x).

Since x and x + ∆(i) are, in some order, (x0, . . . , 0, . . . , xn−1) ∈ Fn
2

and (x0, . . . , 1, . . . , xn−1) ∈ Fn
2, an equivalent definition is

(Di f )(x0, . . . , xi , . . . , xn−1) = f (x0, . . . , 1, . . . , xn)+f (x0, . . . , 0, . . . , xn).



Coefficients Via the Discrete Derivative
Recall that

(Di f )(x0, . . . , xn−1) = f (x0, . . . , 1, . . . , xn) + f (x0, . . . , 0, . . . , xn).

where the 0 and 1 are in position i .
I Di f does not depend on xi

(A) False (B) True

Since xi does not appear on the right-hand side.

Restated using the discrete derivative, in Exercise 3.13 we had

f (x0, x1, x2) = 1 + x0 + x0x2 + x1x2 + x0x1x2

and considered g = D0f and, in plenary session, h = D2g = D2D0f .

(D0f )(x0, x1, x2) = 0 + 1 + x0 + 0 + x1x2 = 1 + x0 + x1x2

(D2g)(x0, x1, x2) = 0 + 0 + x1 = x1.

So (D0f )(0, 0, 0) = (D2D0f )(0, 0, 0) = 1 giving the coefficients of
x0 and x0x2 in f . Written out as a sum

(D2D0f )(0, 0, 0) = g(0, 0, 0) + g(0, 0, 1)

= f (0, 0, 0) + f (1, 0, 0) + f (0, 0, 1) + f (1, 0, 1) = 1.
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Quiz on Discrete Derivative (1)
The function f{2} which is true if and only if x0, x1 are 0 and x2
is 1 has product form (1 + x0)(1 + x1)x2.
I What is D2f{2}?

(A) 1 + x0 (B) 1 + x0 + x1 + x0x2 (C) (1 + x0)(1 + x1) (D) (1 + x0)x1

I What is D0D1f{2}?
(A) x0 (B) x2 (C) x0 + x2 (D) 1 + x2

I What is D0D1D2f{2}?
(A) 0 (B) 1 (C) x0 (D) 1 + x0

I What is D2(f{2} + x1x2)? [Hint: derivatives are linear.]
(A) 1 + x0 + x1 (B) 1 + x1 + x0x2 (C) (1 + x0)(1 + x1) + x1 (D) x0x1

I True or false: (D2f{2})(0, 0, 0) = 1?
(A) False (B) True

I True or false: (D0D1f{2})(0, 0, 0) = 1?
(A) False (B) True

I True or false: (D0D1D2f{2})(0, 0, 0) = 1?
(A) False (B) True

Correspond to the final three questions, the algebraic normal form of
f{2}, given by multiplying out (1 + x0)(1 + x1)x2 has the monomials x2
and x0x1x2 but does not have x0x1.
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Quiz on Discrete Derivative (2)
For i ∈ {0, 1, . . . , n − 1}, let ∆(i) = (0, . . . , 1, . . . , 0) ∈ Fn

2, where
the 1 is in position i . Thus if f is an n-variable boolean function,

(Di f )(x) = f (x + ∆(i)) + f (x)

for all x ∈ Fn
2.

I True or false: DiDj f = DjDi f for all i , j ∈ {0, 1, . . . , n − 1}?
[Hint: write each side evaluated at x ∈ Fn

2 using ∆(i) and ∆(j).]

(A) False (B) True

(DiDj f )(x) = Di

(
f (x + ∆(j)) + f (x)

)
=
(
f (x + ∆(j) + ∆(i)) + f (x + ∆(i))

)
+
(
f (x + ∆(j) + f (x)

)
=
(
f (x + ∆(i) + ∆(j)) + f (x + ∆(j))

)
+
(
f (x + ∆(i) + f (x)

)
= Dj

(
f (x + ∆(i)) + f (x)

)
= (DjDi f )(x).

This should remind you of the usual rule that partial
derivatives such as ∂

∂x and ∂
∂y commute. (For real functions

this needs some technical assumptions — it’s always true for
the discrete derivative.)
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for all x ∈ Fn
2.

I What is DiDi f , for any function f ?
(A) 0 (B) 1 (C) Di f (D) depends on f

You can check this by a calculation like the one just done. It
also follows from Lemma 3.14(a), next slide, using that each
boolean monomial has xi at most once. Thie first part of the
lemma also gives another proof that DiDj f = DjDi f .
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Coefficient Formula

Given I = {i1, . . . , ir} ⊆ {0, 1, . . . , n − 1}, define

DI = Di1 . . .Dir .

(By the previous quiz, this is well-defined, e.g. D{0,2} can be read as
either D0D2 or D2D0, and D{0,1,2} = D0D1D2 = D0D2D1 = . . ..)

Reminder of notation: {0, 2, 3}\{2, 4} = {0, 3}.

Lemma 3.14
Let J ⊆ {0, 1, . . . , n − 1}.
(a) If i ∈ {0, 1, . . . , n − 1} then

DixJ =

{
0 if i 6∈ J

J\{i} if i ∈ J.

(b) Let I ⊆ {0, 1, . . . , n − 1}. Then

DI xJ =

{
0 if I 6⊆ J

J\I if I ⊆ J.



Coefficient Formula
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Lemma 3.14
Let J ⊆ {0, 1, . . . , n − 1}.
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(b) Let I ⊆ {0, 1, . . . , n − 1}. Then

DI xJ =

{
0 if I 6⊆ J

J\I if I ⊆ J.

Proposition 3.15

Let f : Fn
2 → F2 be an n-variable boolean function. Then

[xI ]f =
∑

f (z0, . . . , zn−1)

where the sum is over all z0, . . . , zn−1∈{0, 1} such that {j : zj = 1} ⊆ I .

See the printed notes for an outline of my preferred proof: you may
be able to guess it from Lemma 3.14(b).



§4 The Discrete Fourier Transform

Preliminaries 4.1
It will be very helpful if you review the definition of vector spaces
and inner products. If you know what it means to say that
u, v ,w ∈ R3 is an orthonormal basis of the vector space R3 with
respect to the inner product 〈−,−〉 defined by〈

(x0, x1, x2), (y0, y1, y2)
〉

= x0y0 + x1y1 + x2y2

(this is the usual dot-product), and why it follows that

x = 〈x , u〉u + 〈x , v〉v + 〈x ,w〉w

for any x ∈ R3, then the proof of Theorem 4.7 should seem easier
and more motivated to you.



Quiz on the Dot Product on R3

Let (α, β, γ) ∈ R3. What is
I 〈(1, 1, 1), (α, β, γ)〉?

(A) 0 (B) α (C) α + β + γ (D) α + γ

True or false?
I (1, 1, 1), (1,−1, 0), (−1,−1, 2) is a basis of R3.

(A) False (B) True
I (1, 1, 1), (1,−1, 0), (−1,−1, 2) is an orthogonal basis of R3,

i.e. the dot product of any two distinct basis vectors is 0.
(A) False (B) True

I (1, 1, 1), (1,−1, 0), (−1,−1, 2) is an orthonormal basis of R3.
(A) False (B) True

I 1√
3

(1, 1, 1), 1√
2

(1,−1, 0), 1√
6

(−1,−1, 2) is an orthonormal basis of

R3. (A) False (B) True
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I 〈(1, 1, 1), (α, β, γ)〉?

(A) 0 (B) α (C) α + β + γ (D) α + γ

True or false?
I (1, 1, 1), (1,−1, 0), (−1,−1, 2) is a basis of R3.

(A) False (B) True
I (1, 1, 1), (1,−1, 0), (−1,−1, 2) is an orthogonal basis of R3,

i.e. the dot product of any two distinct basis vectors is 0.
(A) False (B) True

I (1, 1, 1), (1,−1, 0), (−1,−1, 2) is an orthonormal basis of R3.
(A) False (B) True

I 1√
3

(1, 1, 1), 1√
2

(1,−1, 0), 1√
6

(−1,−1, 2) is an orthonormal basis of

R3. (A) False (B) True
I When (α, β, γ) is written as a linear combination of the basis

vectors in this orthonormal basis the coefficient of (1,−1, 0) is
1√
2

(α− β).
(A) False (B) True
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If u = 1√
3

(1, 1, 1), v = 1√
2

(1,−1, 0) and w = 1√
6

(−1,−1, 2)

then in fact

(α, β, γ) =
1√
3

(α+β+γ)u+
1√
2

(α−β)v+
1√
6

(−α−β+2γ)w .



Correlations

Given x ∈ F2 we define (−1)x by regarding x as an ordinary
integer. Thus (−1)0 = 1 and (−1)1 = −1. Given an n-variable
boolean function f : Fn

2 → F2 we define (−1)f : Fn
2 → {−1, 1} by

(−1)f (x) = (−1)f (x).

Definition 4.2
Let f , g : Fn

2 → F be boolean functions. We define the correlation
between f and g by

corr(f , g) =
1

2n

∑
x∈Fn

2

(−1)f (x)(−1)g(x).

The summand (−1)f (x)(−1)g(x) is 1 when f (x) = g(x) and −1
when f (x) = −g(x). Hence

corr(f , g) =
csame − cdiff

2n

where

csame =
∣∣{x ∈ Fn

2 : f (x) = g(x)}
∣∣, cdiff =

∣∣{x ∈ Fn
2 : f (x) 6= g(x)}

∣∣.



Linear Functions

Given T ⊆ {0, 1, . . . , n − 1}, define LT : Fn
2 → F2 by

LT (x) =
∑
t∈T

xt .

For example, L{i}(x0, x1, . . . , xn−1) = xi returns the entry in
position i and L∅(x) = 0 is the zero function.

Exercise 4.3

(i) Compute the correlation between the Toffoli function (see
Example 3.6) and each of the functions L∅, L{0}, L{2}.

(ii) In general, when is a 3-variable boolean function uncorrelated
with the zero function?



Linear Functions and Correlations
Given S ,T ⊆ {0, 1, . . . , n − 1}, define

S 4T = {u : u ∈ S ∪ T , u 6∈ S ∩ T}.

For instance {1, 2}4 {0, 2, 3} = {0, 1, 3}.
Lemma 4.4

(a) The linear functions Fn
2 → F are precisely the LT : Fn

2 → F2

for T ⊆ {0, 1, . . . , n − 1}.
(b) We have LS + LT = LS4T for all S ,T ⊆ {0, 1, . . . , n − 1}.
(c) L∅ is the zero function.

(d) If T ⊆ {0, 1, . . . , n − 1} and T 6= ∅ then corr(LT , 0) = 0

(e) If S ,T ⊆ {0, 1, . . . , n − 1} then

corr(LS , LT ) =

{
1 if S = T

0 otherwise.

The symmetric difference appears again on Question 6(b) on
Problem Sheet 3.



Majority Vote as a ‘Combination’ of Linear Functions
Recall that if T ⊆ {0, 1, . . . , n− 1} then LT : Fn

2 → F2 is the linear
n-variable boolean function defined by LT (x) =

∑
t∈T xt .

I The 3-variable boolean function L{1,2} + L{1,3} is linear?
(A) False (B) True

I Since it is linear, it must be equal to some LT by Lemma 4.4.
What is T?

(A) {1, 2} (B) {1, 2, 3} (C) {2, 3} (D) ∅

Example 4.5

Let maj : F3
2 → F2 be the majority vote function from Exercise .

corr(maj, LT ) =


1
2 if T = {0}, {1}, {2}
−1

2 if T = {0, 1, 2}
0 otherwise.

Moreover

(−1)maj(x) = 1
2(−1)L{1}(x)+1

2(−1)L{2}(x)+1
2(−1)L{3}(x)+1

2(−1)L{1,2,3}(x)

So although majority vote is not linear, (−1)maj is equal to a linear
combination of the (−1)LT functions.
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Inner Product on Real-Valued Functions on Fn
2

We define an inner product on the vector space W of functions
Fn
2 → R by

〈θ, φ〉 =
1

2n

∑
x∈2n

θ(x)φ(x).

If f and g are n-variable boolean functions then critically

〈(−1)f , (−1)g 〉 = corr(f , g). (?)
Exercise 4.6

(i) Let θ ∈W . Check that, as required for an inner product,
〈θ, θ〉 ≥ 0 and that 〈θ, θ〉 = 0 if and only if θ(x) = 0 for all
x ∈ Fn

2.

(ii) Show that if n = 2 then W is 4-dimensional. What is dimW
in general?

Writing functions f ∈W like columns of truth tables


f (0, 0)
f (0, 1)
f (1, 0)
f (1, 1)

,

we have

(−1)L∅ =


1
1
1
1

 and (−1)L{1} =


1
1
−1
−1

 and so on.
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Reminder of Inner Product Spaces
I Any orthonormal set is linearly independent: for instance, with

three orthonormal vectors u, v , w , if λu + µv + νw = 0 then
taking the inner product with u we get

0 = 〈0, u〉 = 〈λu + µv + νw , u〉 = λ.

I If x = λu + µv + νw where u, v , w are orthonormal then
〈x , x〉 = λ2 + µ2 + ν2.

For instance, using the orthonormal basis u = 1√
3

(1, 1, 1),

v = 1√
2

(1,−1, 0) and w = 1√
6

(−1,−1, 2) from earlier, we saw that

(α, β, γ) = 〈(α, β, γ), u〉u + 〈(α, β, γ), v〉v + 〈(α, β, γ),w〉w

=
1√
3

(α + β + γ)u +
1√
2

(α− β)v +
1√
6

(−α− β + 2γ)w .

Correspondingly, check that 〈(α, β, γ), (α, β, γ)〉 is

1

3
(α + β + γ)2 +

1

2
(α− β)2 +

1

6
(−α− β + 2γ)2.



Discrete Fourier Transform
The inner product on the vector space W of functions Fn

2 → R is
defined by

〈θ, φ〉 =
1

2n

∑
x∈2n

θ(x)φ(x).

We saw that 〈(−1)f , (−1)g 〉 = corr(f , g) for n-variable boolean
functions f and g .

Theorem 4.7 (Discrete Fourier Transform)
(a) The functions (−1)LT for T ⊆ {0, 1, . . . , n − 1} are an

orthonormal basis for the vector space W of functions
Fn
2 → R.

(b) Let θ : Fn
2 → R. Then

θ =
∑

T⊆{0,1,...,n−1}

〈θ, (−1)LT 〉(−1)LT .

(c) Let f : Fn
2 → F2 be a boolean function. Then

(−1)f =
∑

T⊆{0,1,...,n−1}

corr(f , LT )(−1)LT .



Parseval’s Theorem

Corollary 4.8

Let f be an n-variable boolean function. Then∑
T⊆{0,1,...,n−1}

corr(f , LT )2 = 1.

Since there are 2n linear functions (corresponding to the 2n subsets
of {0, 1, . . . , n − 1}), it follows that any n-variable boolean
function f has a squared correlation of at least 1/2n.

Example 4.9
(1) Let f (x0, x1, x2) = x0x1x2. We have corr(f , L∅) = 3

4 ,
corr(f , L{0}) = 1

4 , corr(f , L{0,1}) = −1
4 and

corr(f , L{0,1,2}) = 1
4 . By Theorem 4.7(c) and symmetry, the

Discrete Fourier Transform of f is

(−1)f = 3
4 + 1

4

∑
T⊆{0,1,2}

T 6=∅

(−1)|T |−1(−1)LT .

We will check Parseval’s Theorem holds.



Example 4.9 [continued]

(2) Exercise: Consider the 2-variable boolean function
f (x0, x1) = x0x1. Find its correlations with the four linear
functions L∅(x0, x1) = 1, L{0}(x0, x1) = x0, L{1}(x0, x1) = x1,
L{0,1}(x0, x1) = x1 + x2 and deduce that

(−1)x0x1 = 1
2(−1)L∅ + 1

2(−1)L{0} + 1
2(−1)L{1} − 1

2(−1)L{0,1}

(3) Let b(x0, x1, x2, x3) = x0x2 + x1x3. The Mathematica
notebook BooleanCorrelations.nb on Moodle shows that
corr(b, LT ) = ±1

4 for every T ⊆ {0, 1, 2, 3}.
�����������������

{} {0} {1} {2} {3} {0, 1} {0, 2} {0, 3} {1, 2} {1, 3} {2, 3} {0, 1, 2} {0, 1, 3} {0, 2, 3} {1, 2, 3} {0, 1, 2, 3}
1
4

1
4

1
4

1
4

1
4

1
4

- 1
4

1
4

1
4

- 1
4

1
4

- 1
4

- 1
4

- 1
4

- 1
4

1
4

By the remark following Corollary 4.8, this function achieves
the cryptographic ideal of having all correlations as small (in
absolute value) as possible.



Bent Functions

An n-variable boolean function such as b where the correlations all
have absolute value 1/

√
2n is called a bent function.

Exercise 4.10

(i) Show that if there is an n-variable bent function then n is
even. [Hint: correlations are rational numbers.]

(ii) What is the correlation between a bent function and the zero
function L∅?

(iii) Can you find some more 4-variable bent functions? [Hint: the
Mathematica notebook BooleanCorrelations.nb will
help you search!]

Since a bent function b has a slight bias towards 0 if
corr(f , L∅) = 1/

√
2n, and towards 1 if corr(f , L∅) = −1/

√
2n, they

are not used as cryptographic primitives without some tweaking.
The block cipher CAST makes uses of modified bent-functions.



Piling-Up Lemma

Lemma 4.11 (Piling-up Lemma)

Let f be an m-variable boolean function of u0, . . . , um−1 and let g
be an n-variable boolean function of v0, . . . , vn−1. Define f + g by

(f +g)(u0, . . . , um−1, v0, . . . , vn−1) = f (u0, . . . , um−1)+g(v0, . . . , vn−1).

Given S ⊆ {0, . . . ,m − 1} and T ⊆ {0, . . . , n − 1}, let
L(S,T )(u, v) = LS(u) + LT (v). The L(S ,T ) are all linear functions
of the m + n variables and

corr(f + g , L(S ,T )) = corr(f , LS) corr(g , LT ).

For instance the Piling-up Lemma implies that

x0y0 + · · ·+ xm−1ym−1

is a bent function for all m, generalizing Example 4.9. [Hint: apply
it repeatedly. To get the correlations for x0y0 + x1y1 take u0 = x0,
u1 = y0, v0 = x1 and v1 = y1 and use Example 4.9(2).]



§5 Keystreams and annihilators
In Example 8.2 of the main course we will take the sum of the
keystream of the LFSR of width 4 and taps {3, 4} and the
keystream of the LFSR of width 3 with taps {2, 3}.



§5 Keystreams and annihilators
In Example 8.2 of the main course we will take the sum of the
keystream of the LFSR of width 4 and taps {3, 4} and the
keystream of the LFSR of width 3 with taps {2, 3}.

Perhaps surprisingly, the sum is a keystream of the LFSR of width
7 with taps {2, 4, 5, 7}. The main goal in this section is to prove
Corollary 5.5 that explains why these taps are the non-zero powers
of z appears in the product

(1 + z3 + z4)(1 + z2 + z3) = 1 + z2 + z4 + z5 + z7,

computed as usual working modulo 2.

Definition 5.1
The power series representing a keystream k0k1k2 . . . is
k0 + k1z + k2z

2 + · · · .



Example 5.2

The power series κ(z) representing the keystream of the LFSR F
of width 3 and taps {2, 3} with key 110 is

1+z+z4+z6+z7+z8+z11+z13+z14+z15+· · · ←→ 1100101110010111 . . .

(a) Observe that the coefficient of zm in (1 + z7)κ(X ) comes
from zm and zm−7, and so is km + km−7, for all m ≥ 7. Since
the keystream has period 7, km = km−7 and hence the
coefficient of x s in (1 + z7)κ(X ) is zero for s ≥ 7. Thus
(1 + z7)κ(z) is a polynomial. Explicitly,

(1 + z7)κ(z) = 1 + z + z4 + z6.

(b) Exercise: show using the method on the slides for (a) that
(1 + z2 + z3)κ(z) is a polynomial.

(c) Exercise: what is the product of the power series for the
keystream 1011100 . . . produced by F and 1 + z2 + z3?

(d) Warning example. The product of κ(z) with 1 + z is

1+z2+z4+z5+z6+z9+z11+z12+z13+· · · ←→ 10101110010111001 . . . . . .

Exercise: is the right-hand side a keystream of F?
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Tapping Polynomial
Motivated by (b), we define the feedback polynomial of a LFSR
with taps T to be

gT (z) = 1 +
∑
t∈T

z t

and make the following definition.

Definition 5.3
Let κ(z) be an infinite power series with coefficients in F2. Let
g(z) be a polynomial. We say that g(z) annihilates κ(z) if
g(z)κ(z) is a polynomial.

For example, we have seen that if

κ(z) = 1 + z + z4 + z6 + z7 + z8 + z11 + z13 + · · ·

is the power series corresponding to a keystream of the LFSR of
width 3 and period 7 with taps {2, 3} then κ(z) is annihilated by
1 + z7 and also by 1 + z2 + z3, but not by 1 + z .



Algebra Can be Powerful!
Definition 5.3
Let κ(z) be an infinite power series with coefficients in F2. Let
g(z) be a polynomial. We say that g(z) annihilates κ(z) if
g(z)κ(z) is a polynomial.

Lemma 5.4
Let u0u1u2 . . . be a keystream and let

κ(z) = u0 + u1z + u2z
2 + · · ·

be the corresponding power series. Let T ⊆ {1, . . . , `}. The
polynomial gT (z) annihilates κ(z) with deg gT (z)κ(z) < ` if and
only if u0u1u2 . . . is a keystream of an LFSR with taps T and
width `.

This shows we may need to take ` > maxT . (This was also seen
in Example 5.2(d).) For a simpler example, the keystream that is
all zero except in position 2, i.e. 001000 . . . is the output of an
LFSR of width 3 with empty taps, but no LFSR of smaller width.



Algebra Can be Powerful!
Lemma 5.4
Let u0u1u2 . . . be a keystream and let

κ(z) = u0 + u1z + u2z
2 + · · ·

be the corresponding power series. Let T ⊆ {1, . . . , `}. The
polynomial gT (z) annihilates κ(z) with deg gT (z)κ(z) < ` if and
only if u0u1u2 . . . is a keystream of an LFSR with taps T and
width `.

Proof.
Let s ≥ maxT . The coefficient of zs in (1 +

∑
t∈T z t)κ(z) is the

sum of us (from multiplying by 1) and
∑

t∈T us−t (from
multiplying by

∑
t∈T z t). Hence it is us +

∑
t∈T us−t . This is zero

for all s ≥ ` if and only if u0u1u2 . . . is a keystream of the LFSR
with taps T and width `.

This shows we may need to take ` > maxT . (This was also seen
in Example 5.2(d).) For a simpler example, the keystream that is
all zero except in position 2, i.e. 001000 . . . is the output of an
LFSR of width 3 with empty taps, but no LFSR of smaller width.
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only if u0u1u2 . . . is a keystream of an LFSR with taps T and
width `.

The keystream 0010111 0010111 . . . is produced by the LFSR of
width 3 and taps {2, 3}.
I What are the taps of the smallest width LFSR generating

00010111 0010111 . . .? Note extra 0 at the start.
(A) {1, 2} (B) {1, 3} (C) {2, 3} (D) {1, 2, 3}

I What is the width of this LFSR?
(A) 2 (B) 3 (C) 4 (D) > 4

This shows we may need to take ` > maxT . (This was also seen
in Example 5.2(d).) For a simpler example, the keystream that is
all zero except in position 2, i.e. 001000 . . . is the output of an
LFSR of width 3 with empty taps, but no LFSR of smaller width.
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This shows we may need to take ` > maxT . (This was also seen
in Example 5.2(d).) For a simpler example, the keystream that is
all zero except in position 2, i.e. 001000 . . . is the output of an
LFSR of width 3 with empty taps, but no LFSR of smaller width.



Algebra Can be Powerful!
Lemma 5.4
Let u0u1u2 . . . be a keystream and let

κ(z) = u0 + u1z + u2z
2 + · · ·
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This shows we may need to take ` > maxT . (This was also seen
in Example 5.2(d).) For a simpler example, the keystream that is
all zero except in position 2, i.e. 001000 . . . is the output of an
LFSR of width 3 with empty taps, but no LFSR of smaller width.



Question 4 on Problem Sheet 4

Corollary 5.5

Suppose that k0k1k2 . . . is a keystream of an LFSR with taps T
and width ` and k ′0k

′
1k
′
2 . . . is a keystream of an LFSR with taps T ′

and width `′. Let us = ks + k ′s for each s ∈ N0. Then u0u1u2 . . . is
a keystream of the LFSR of width `+ `′ with feedback polynomial
gT (z)gT ′(z).



Determining Periods

Corollary 5.6

Let F be an invertible LFSR with taps T and let m ∈ N. The
following are equivalent:

(a) every keystream of F has period dividing m;

(b) 1 + zm annihilates every power series κ(z) corresponding to a
keystream of F and (1 + zm)κ(z) has degree < m;

(c) gT (z) divides 1 + zm.

Moreover if m is the least number with any of these properties
then m is the period of F and F has a keystream of period m.
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This improves on the corollary of (VUP) seen in the main course
that the period of F is the lowest common multiple of the periods
of the keystreams: by the final part, it is simply the maximum of
the keystream periods.



Determining Periods

Corollary 5.6

Let F be an invertible LFSR with taps T and let m ∈ N. The
following are equivalent:

(a) every keystream of F has period dividing m;

(b) 1 + zm annihilates every power series κ(z) corresponding to a
keystream of F and (1 + zm)κ(z) has degree < m;

(c) gT (z) divides 1 + zm.

Moreover if m is the least number with any of these properties
then m is the period of F and F has a keystream of period m.

To work with Corollary 5.6, the following lemma is useful. Let
hcf(d , e) denote the highest common factor of d , e ∈ N.

Lemma 5.7
If a polynomial g(z) divides zd + 1 and ze + 1 then it divides
zhcf(d ,e) + 1.



Example of Corollary 5.6 and Lemma 5.7

Example 5.8

The number 213 − 1 = 8191 is prime. The Mathematica
command Factor[z^8191 + 1, Modulus -> 2] reports that

z8191 + 1 = (1 + z)(1 + z + z3 + z4 + z13)(1 + z + z2 + z5 + z13) . . . .

(Here . . . stands for 630 omitted factors all of degree 13.) The
taps of the LFSR of width 13 with feedback polynomial
f (z) = 1 + z + z3 + z4 + z13 are 1, 3, 4, 13. By Corollary 5.6, its
period is the least m such that f (z) divides zm + 1. If
1 + z + z3 + z4 + z13 divides ze + 1 with e < 8191 then, by
Lemma 5.7, 1 + z + z3 + z4 + z13 divides zhcf(e,8191) + 1 = z + 1,
a contradiction. Since 1 + z + z3 + z4 + z13 divides z8191 + 1, its
period is 8191.



§6 The Berlekamp–Massey Algorithm

Example 6.1

The sum u of the keystreams of the LFSR with taps {3, 4} and
width 4 and the LFSR with taps {2, 3} and width 3, using keys
0001 and 001, has period 15× 7 = 105.

ui = (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

The output of the Berlekamp–Massey algorithm applied to the first
n terms u0 . . . un−1 for n ≥ 6 is below. No change for n = 7, 8, 12.
(Ignore the column labelled m for the moment.)

n width feedback polynomial taps m

6 3 1 + z {1} 2
9 4 1 + z + z4 {1, 4} 6

10 6 1 + z + z3 {1, 3} 9
11 6 1 + z2 + z3 + z5 {2, 3, 5} 9
≥ 13 7 1 + z2 + z4 + z5 + z7 {2, 4, 5, 7} 12



Example 6.1 [continued]

Example 6.1 

������ usEx61 := Keystream[{3, 4}, {0, 0, 0, 1}, 15] + Keystream[{2, 3}, {0, 0, 1}, 15] // ModTwo

������ usEx61

������ {0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1}

������ BerlekampMasseyFull[usEx61] // TF

�����������������

{2, 0, 1, 1} {3, 3, 1, 1}
{2, 0, 1, 1} {4, 3, 0, 1 + z}
{2, 0, 1, 1} {5, 3, 0, 1 + z}
{2, 0, 1, 1} {6, 3, 1, 1 + z}
{6, 3, 1, 1 + z} 7, 4, 0, 1 + z + z4

{6, 3, 1, 1 + z} 8, 4, 0, 1 + z + z4

{6, 3, 1, 1 + z} 9, 4, 1, 1 + z + z4

9, 4, 1, 1 + z + z4 10, 6, 1, 1 + z + z3

9, 4, 1, 1 + z + z4 11, 6, 0, 1 + z2 + z3 + z5

9, 4, 1, 1 + z + z4 12, 6, 1, 1 + z2 + z3 + z5

12, 6, 1, 1 + z2 + z3 + z5 13, 7, 0, 1 + z2 + z4 + z5 + z7

12, 6, 1, 1 + z2 + z3 + z5 14, 7, 0, 1 + z2 + z4 + z5 + z7

12, 6, 1, 1 + z2 + z3 + z5 15, 7, 0, 1 + z2 + z4 + z5 + z7



Example 6.1 [continued]
For instance, the first 10 terms u0u1 . . . u9 are generated by the
LFSR of width 6 with feedback polynomial 1 + z + z3; its taps are
{1, 3}. Taking as the key u0u1u2u3u4u5 = 001111, the first 30
terms of the keystream are:

ki =(0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, . . .)
ui =(0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, . . .)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Since k10 6= u10, running the Berlekamp–Massey algorithm on the
first 11 bits u0 . . . u9u10 gives a different LFSR. (The width stays
as 6, but the taps change to {2, 3, 5}.) The new LFSR generates
u0 . . . u9u10u11, so is also correct for the first 12 bits. This is why
there is no change for n = 12.

For all n ≥ 13 the output of the algorithm is the LFSR of width 7
and feedback polynomial 1 + z2 + z4 + z5 + z7; as suggested on
the problem sheet, this may also be found by the method of
annihilators.



Preliminaries
Fix throughout a binary stream

u0u1u2 . . . .

Let Un(z) = u0 + u1z + · · ·+ un−1z
n−1 be the polynomial

recording the first n terms. Recall from §1 that the degree of a
non-zero polynomial h(z) is its highest power of z .

I Which of the following is a necessary and sufficient condition
for an LFSR of width ` and taps T to be invertible?

(A) 1 ∈ T (B) 1 6∈ T (C) ` ∈ T (D) ` 6∈ T
I The keystream 00010 01101 01111 is the output of the LFSR

with taps {3, 4} and what width(s)?
(A) 4 (B) any ` ≥ 4 (C) any ` ≥ 3 (D) 4 or 5

Lemma 6.3
The word u0u1 . . . un−1 is the output of the LFSR with width ` and
taps T ⊆ {1, . . . , `} if and only if Un(z)gT (z) = h(z) + znr(z) for
some polynomials h(z) and r(z) with deg h < `.
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Example of Lemma 6.3

Example 6.4

Let u = (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0) = u0 . . . u12 be the first 13
entries of the keystream in Example 6.1. The first 12 entries
u0 . . . u11 are generated by the LFSR of width 6 with taps {2, 3, 5}.
Correspondingly, by the ‘if’ direction of Lemma 6.3,

(z2 + z3 + z4 + z5 + z7)g{2,3,5}(z)

= (z2 + z3 + z4 + z5 + z7)(1 + z2 + z3 + z5)

= z2 + z3 + z5 + z12

= h(z) + z12r(z)

where h(z) = z2 + z3 + z5 and r(z) = 1. This equation also shows
that the ‘only if’ direction fails to hold when n = 13 since z12 is
not of the form z13r(z). Correspondingly, by the ‘only if’ direction
of Lemma 6.3, the LFSR generates (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1)
rather than u.



At step n of the Berlekamp–Massey algorithm we have two LFSRs:
I An LFSR Fm of width `m with taps Tm, generating

u0u1 . . . um−1um . . . .

I An LFSR Fn of width `n with taps Tn, where n > m,
generating

u0u1 . . . um−1um . . . un−1.

Thus Fm is correct for the first m positions, and then wrong, since
it generates um rather than um. If Fn generates
u0u1 . . . um−1um . . . un−1un then case (a) applies and the algorithm
returns Fn. The next proposition deals with case (b), when Fn
outputs un rather than un.

Proposition 6.5

With the notation above, suppose that the LFSR Fn generates
u0u1 . . . un−1un. The LFSR with feedback polynomial

zn−mgTm(z) + gTn(z)

and width max(n −m + `m, `n) generates u0u1 . . . un−1un.



Proof of Proposition 6.5

Proposition 6.5

With the notation above, suppose that the LFSR Fn generates
u0u1 . . . un−1un. The LFSR with feedback polynomial

zn−mgTm(z) + gTn(z)

and width max(n −m + `m, `n) generates u0u1 . . . un−1un.

Notation: we write [≥ a] to stand for a polynomial which is either
0, or whose minimum power of z is za or a higher power.

Consider the following statements

(A) z3 = [≥ 3]
(B) z4 + z5 + z20 = [≥ 3]
(C) If f (z) = [≥ 3] and g(z) = [≥ 3] then f (z) + g(z) = [≥ 3]
(D) If f (z) = [≥ 3] and g(z) = [≥ 3] then f (z) + g(z) 6= [≥ 4].

Which is the only false statement?

(A) (B) (C) (D)
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Proof of Proposition 6.5

Proposition 6.5

With the notation above, suppose that the LFSR Fn generates
u0u1 . . . un−1un. The LFSR with feedback polynomial

zn−mgTm(z) + gTn(z)

and width max(n −m + `m, `n) generates u0u1 . . . un−1un.

Lemma 6.3
The word u0u1 . . . un−1 is the output of the LFSR with width ` and
taps T ⊆ {1, . . . , `} if and only if Un(z)gTn(z) = h(z) + znr(z) for
some polynomials h(z) and r(z) with deg h < `.

Notation reminder: We have already defined

Ur (z) = u0 + u1z + · · ·+ ur−1z
r−1.

This takes r terms from the keystream, namely u0u1 . . . ur−1.



Example of Proposition 6.5

Example 6.6

Take the keystream k0k1 . . . k9 of length 10 shown below:

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0).
0 1 2 3 4 5 6 7 8 9

The LFSR F6 of width `6 = 3 and taps T6 = {1, 3} generates the
keystream

(1, 1, 1, 0, 1, 0, 0, 1, 1, 1).
0 1 2 3 4 5 6 7 8 9

The LFSR F7 of width `7 = 4 and taps T7 = {1, 4} generates the
keystream

(1, 1, 1, 0, 1, 0, 1, 1, 0, 0).
0 1 2 3 4 5 6 7 8 9

Note that F7 is wrong in position 7.



Example 6.6 [continued]

Using Proposition 6.5, taking m = 6 and n = 7 we compute

zn−mgTm + gTn(z) = z7−6g{1,3}(z) + g{1,4}(z)

= z(1 + z + z3) + (1 + z + z4)

= 1 + z2.

This is the feedback polynomial of the LFSR F8 with taps
T8 = {2} and width `8 = n −m + `m = 7− 6 + 3 = 4. As
expected this generates

(1, 1, 1, 0, 1, 0, 1, 0, 1, 0).
0 1 2 3 4 5 6 7 8 9

correct for the first 8 positions. (And then wrong for u8.)
Although the only tap in {2} is 2, we still have to take the width
of F8 to be 4 (or more), to get the first 8 positions correct.



Continuing Example 6.6

Exercise 6.7
Continuing from the example, apply Proposition 6.5 taking n = 8,
m = 6, and F8 and F6 as in Example 6.6. You should get the
LFSR F9 with taps {3, 5} generating

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0).
0 1 2 3 4 5 6 7 8 9

which is the full keystream. The width is now 8− 6 + 3 = 5; since
5 is a tap, this is the minimum possible width for these taps.

Further exercise: append a final bit u10 = 1 and update the LFSR
in two different ways:
I Taking m = 8 using the LFSR of width 4 and taps {2} wrong

in position 8.

Taps {2, 3, 4, 5}, width max(10− 8 + 4, 5) = 6

I Taking m = 7 using the LFSR of width 4 and taps {1, 4}
wrong in position 7.

Taps {4,5,7}, width max(10−7+4,5)=7.

Both give LFSRs generating 11101010001. Which has smaller
width? (Click on for answer revealed above, see also Example 6.8.)
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Berlekamp–Massey algorithm
Let c be least such that uc 6= 0. The algorithm defines LFSRs
Fc ,Fc+1, . . . so that each Fn has width `n and taps Tn and
generates the first n positions of the keystream: u0, . . . , un−1.

• [Initialization] Set Tc = ∅, `c = 0, Tc+1 = ∅ and
`c+1 = c + 1. Set m = c . Set n = c + 1.

• [Step] We have an LFSR Fn with taps Tn of width `n
generating u0, . . . , un−1 and an LFSR Fm generating
u0, . . . , um−1, um.

(a) If Fn generates u0, . . . , un−1, un then set Tn+1 = Tn,
`n+1 = `n. This defines Fn+1 with Fn+1 = Fn. Keep m as it is.

(b) If Fn generates u0, . . . , un−1, un, calculate

g(z) = zn−mgTm(z) + gTn(z)

where, as usual, gTm and gTn are the feedback polynomials.
Define Tn+1 so that g(z) = 1 +

∑
t∈Tn+1

z t . Set

`n+1 = max(`n, n + 1− `n).

If `n+1 > `n, update m to n, otherwise keep m as it is.

Thus m changes if and only if the width increases in step (b).



Example 6.8

We apply the Berlekamp–Massey algorithm to the keystream
(1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1) from Example 6.6 extended by one extra
bit u10 = 1. After initialization we have T0 = ∅, `0 = 0, T1 = ∅,
`1 = 1. Case (a) applies in each step n for n ∈ {2, 4, 5, 9}. The
table below shows the steps when case (b) applies.

n Tn `n m Tm n −m Tn+1 `n+1

1 ∅ 1 0 ∅ 1 {1} 1
3 {1} 1 0 ∅ 3 {1, 3} 3
6 {1, 3} 3 3 {1} 3 {1, 4} 4
7 {1, 4} 4 6 {1, 3} 1 {2} 4
8 {2} 4 6 {1, 3} 2 {3, 5} 5

10 {3, 5} 5 8 {2} 2 {2, 3, 4, 5} 6



Exercise on Example 6.8

Exercise 6.9
I Run the algorithm starting with step 1, in which you should

define T2 = {1}, and finishing with step 6, in which you
should define T7 = {1, 4}.

I Then check that steps 7 and 8 of the algorithm are exactly
what we did in Example 6.6 and Exercise 6.7.

I At step 9 you should find that case (a) applies; check that
step 10 finishes with the LFSR F11 of width `11 = 6 and taps
T11 = {2, 3, 4, 5}, generating u0u1 . . . u10.



Berlekamp–Massey theorem
To prove that the LFSRs defined by running the Berlekamp–Massey
algorithm have minimal possible width we need the following
lemma. The proof is not obvious, but if you think ‘what can I
possibly do using Lemma 6.3’ you should find the main idea.

Lemma 6.10
Let n ≥ `. If an LFSR F of width ` generates the keystream
(u0, u1, . . . , un−1, b) of length n + 1 then any LFSR F ′ generating
the keystream (u0, u1, . . . , un−1, b) has width `′ where
`′ ≥ n + 1− `.
Quiz: The keystream u0u1u2 . . . = 000100110101111 is a
generating cycle of the LFSR of width 4 with taps {3, 4}. Suppose
we flip bit u9 to get 000100110001111. What is a lower bound on
the width of an LFSR generating u0u1u2 . . . u9?

(A) 5 (B) 6 (C) 7 (D) 10
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������ Keystream[{3, 4}, {0, 0, 0, 1}]

������ {0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1}

������ BerlekampMasseyFull[{0, 0, 0, 1, 0, 0, 1, 1, 0, 0}] // TF

�����������������

{3, 0, 1, 1} {4, 4, 0, 1}
{3, 0, 1, 1} {5, 4, 0, 1}
{3, 0, 1, 1} {6, 4, 1, 1}
{3, 0, 1, 1} 7, 4, 1, 1 + z3

{3, 0, 1, 1} 8, 4, 0, 1 + z3 + z4

{3, 0, 1, 1} 9, 4, 1, 1 + z3 + z4

9, 4, 1, 1 + z3 + z4 10, 6, 0, 1 + z3 + z4 + z6

������ Keystream[{3, 4, 6}, {0, 0, 0, 1, 0, 0}, 15]

������ {0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1}



Berlekamp–Massey theorem
To prove that the LFSRs defined by running the Berlekamp–Massey
algorithm have minimal possible width we need the following
lemma. The proof is not obvious, but if you think ‘what can I
possibly do using Lemma 6.3’ you should find the main idea.

Lemma 6.10
Let n ≥ `. If an LFSR F of width ` generates the keystream
(u0, u1, . . . , un−1, b) of length n + 1 then any LFSR F ′ generating
the keystream (u0, u1, . . . , un−1, b) has width `′ where
`′ ≥ n + 1− `.

Lemma 6.3
The word u0u1 . . . un−1 is the output of the LFSR with width ` and
taps T ⊆ {1, . . . , `} if and only if Un(z)gT (z) = h(z) + znr(z) for
some polynomials h(z) and r(z) with deg h < `.

I got lost at the end of the proof by thinking that gT (z) somehow had to
have degree < `. This is wrong: the degree can be `, and
correspondingly ` can be a tap. There is a video on Moodle and a scan of
a correct proof (you just need to amend the end).



Berlekamp–Massey theorem
To prove that the LFSRs defined by running the Berlekamp–Massey
algorithm have minimal possible width we need the following
lemma. The proof is not obvious, but if you think ‘what can I
possibly do using Lemma 6.3’ you should find the main idea.

Lemma 6.10
Let n ≥ `. If an LFSR F of width ` generates the keystream
(u0, u1, . . . , un−1, b) of length n + 1 then any LFSR F ′ generating
the keystream (u0, u1, . . . , un−1, b) has width `′ where
`′ ≥ n + 1− `.
Recall that step n of the Berlekamp–Massey algorithm returns an
LFSR Fn+1 with taps Tn+1 and width `n+1 generating
u0 . . . un−1un.

Theorem 6.11
With the notation above, maxTn+1 ≤ `n+1. Moreover `n+1 is the
least width of any LFSR generating u0, . . . , un−1, un.



Example of Lemma 6.10 and Linear Complexity
The linear complexity of a word u0u1 . . . un−1 is the minimal width
of an LFSR that generates it. By Lemma 6.10 a good way to get a
word of high linear complexity is to take the output of a small
width LFSR and then flip the last bit.

������ ks := Keystream[{2, 5}, {0, 0, 0, 0, 1}, 20]; ks

������ {0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1}

������ ksP = ks; ksP[[20]] = 0; ksP

������ {0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0}

������ BerlekampMassey[ks]

������ 20, 5, 0, 1 + z2 + z5

������ BerlekampMasseyFull[ksP][[-2 ;; -1]] // TF

�����������������

{4, 0, 1, 1} 19, 5, 1, 1 + z2 + z5

19, 5, 1, 1 + z2 + z5 20, 15, 0, 1 + z2 + z5 + z15



Berlekamp–Massey for Integer Sequences
The Berlekamp–Massey algorithm generalizes to arbitrary fields,
including the field of rational numbers: see LFSRs.nb.

Small example: twice Fibonacci sequence: try changing an early term, or the 

characteristic (change final argument from 0 to an odd prime)

������ fs := {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144}; ksTest := 2*fs; ksTest

������ {0, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288}

������ BerlekampMasseyFull[ksTest, 0][[1 ;; 6]] // TF

�����������������

{1, 0, 2, 1} {2, 2, 2, 1}
{1, 0, 2, 1} {3, 2, 2, 1 - z}
{1, 0, 2, 1} 4, 2, 0, 1 - z - z2

{1, 0, 2, 1} 5, 2, 0, 1 - z - z2

{1, 0, 2, 1} 6, 2, 0, 1 - z - z2

{1, 0, 2, 1} 7, 2, 0, 1 - z - z2

Example: number of regions made by joining up all pairs of n points around the circle

������ BerlekampMassey[{1, 2, 4, 8, 16, 31, 57, 99, 163, 256, 386}, 0]

������ 11, 5, 0, 1 - 5 z + 10 z2 - 10 z3 + 5 z4 - z5

������ Keystream[{5, -10, 10, -5, 1}, {1, 2, 4, 8, 16, 31}, 15, 0]

������ {1, 2, 4, 8, 16, 31, 57, 99, 163, 256, 386, 562, 794, 1093, 1471}



Berlekamp–Massey for Integer Sequences
The Berlekamp–Massey algorithm generalizes to arbitrary fields,
including the field of rational numbers: see LFSRs.nb.

Smaller example: triangular numbers starting 1, 3, 6, ...

������ BerlekampMassey[{1, 3, 6, 10, 15, 21, 28, 36}, 0]

������ 8, 3, 0, 1 - 3 z + 3 z2 - z3

������ (1 - z)^3*(1 + 3 z + 6 z^2 + 10 z^3 + 15 z^4 + 21 z^5 + 28 z^6 + 36 z^7) // Expand

������ 1 - 45 z8 + 80 z9 - 36 z10



Linear Complexity

Recall that the linear complexity of a word u0u1 . . . un−1 is the
minimal width of an LFSR that generates it. Modern stream
ciphers aim to generate keystreams with high linear complexity.
Take the m-quadratic stream cipher from Example 8.5. If m = 1
the keystream u0u1 . . . u29 for k = 10101 and k ′ = 101010 is

(1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1).

The table below shows the linear complexity of the first n bits of
the keystream for small n and m.

m\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 2 2 2 2 5 5 5 5 5 5 5 5 5
2 0 2 2 2 2 2 5 5 5 5 5 5 5 5 5
3 0 0 0 4 4 4 4 4 4 6 6 6 6 6 6
4 0 0 0 0 0 7 7 7 7 7 7 7 7 7 8
5 0 0 0 0 5 5 5 5 5 5 5 7 7 7 8

For n = 5 the linear complexity is about n/2: this is the expected
linear complexity of a random sequence of bits.



§7 Linear cryptanalysis

Example 7.1

Let S : F4
2 → F4

2 be the S-box in the Q-block cipher (see Example
9.5 in the main notes), defined by

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

(a) Suppose we look at position 0 of the output by considering
L{0} ◦ S : F4

2 → F2. We have

(L{0} ◦ S)
(
(x0, x1, x2, x3)

)
= L{0}(x2, x3, x0 + x1x2, x1 + x2x3)

= x2

= L{2}
(
(x0, x1, x2, x3)

)
.

Hence L{0} ◦ S = L{2}. By Lemma 4.4,

corr(L{0} ◦ S , LT ) =

{
1 if T = {2}
0 otherwise.



Example 6.1 [continued]

(b) Instead if we look at position 2, the relevant boolean function
is L{2} ◦ S , for which L{2} ◦ S

(
(x0, x1, x2, x3)

)
= x0 + x1x2.

Exercise: show that

corr(L{2} ◦ S , LT ) =


1
2 if T = {0}, {0, 1}, {0, 2}
−1

2 if T = {0, 1, 2}
0 otherwise

.



Example 7.2

For k ∈ F12
2 let ek : F8

2 → F8
2 be the Q-block cipher, as defined in

Example 8.4. Then ek
(
(v ,w)

)
= (v ′,w ′) where

v ′ = w + S
(
v + S(w + k(1)) + k(2)).

Recall that k(1) = (k0, k1, k2, k3) and k(2) = (k4, k5, k6, k7).
Example 7.1 suggests considering corr(L{0} ◦ ek , L{2}). We have

(L{0} ◦ ek)
(
(v ,w)

)
= L{0}

(
(v ′,w ′)

)
= v ′0

L{2}
(
(v ,w)

)
= v2.

Exercise: using that k
(1)
0 = k0, k

(1)
1 = k1, k

(1)
2 = k2 and k

(2)
2 = k6,

check that

v ′0 = v2 + (w1 + k1)(w2 + k2) + k0 + k6.



Example 7.2 [continued]
By definition

corr(L{0} ◦ ek , L{2}) =
1

28

∑
(v ,w)∈F8

2

(−1)v2+(w1+k1)(w2+k2)+k0+k6(−1)v2

=
1

28
(−1)k0+k6

∑
(v ,w)∈F8

2

(−1)(w1+k1)(w2+k2)

= (−1)k0+k6
1

22

∑
w1,w2∈F2

(−1)(w1+k1)(w2+k2)

where the third line follows because the summand for (v ,w) is the
same for all 26 pairs with the same w1 and w2. In∑

w1,w2∈F2
(−1)(w1+k1)(w2+k2), the values of k1 and k2 are

irrelevant.

For instance, if both are 0 we average (−1)w1w2 over all
four (w1,w2) ∈ F2

2 to get 1
2 ; if both are 1 we average

(−1)(w1+1)(w2+1), seeing the same summands in a different order,
and still getting 1

2 . Hence 1
22
∑

w1,w2∈F2
(−1)(w1+k1)(w2+k2) = 1

2 and

corr(L{0} ◦ ek , L{2}) = 1
2(−1)k0+k6
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Attack on the Q-block cipher

We can estimate this correlation from a collection of
plaintext/ciphertext pairs (v ,w), (v ′,w ′) by computing (−1)v

′
0+v2

for each pair. The mean should be close to 1
2(−1)k0+k6 , and the

sign then tells us k0 + k6. There are similar high correlations of 1
2

for output bit 1, and one can usefully ‘tap’ with {2, 5} and {2, 6}
as well as {2} on the input side. Using these one learns k1, k2 and
k3 as well as k1 + k7. (See Question 7 on Problem Sheet 8.)

Exercise 7.3
Given k0 + k6, k1 + k7, k1, k2, k3, how many possibilities are there
for the key in the Q-block cipher?

The attack by differential cryptanalysis required chosen plaintexts.
The attack by linear cryptanalysis works with any observed
collection of plaintext/ciphertext pairs. It is therefore more widely
applicable, as well as more powerful.
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How to Find High Correlations
In the attack on the Q-Block Cipher we saw that the correlation
depended on the key only by a sign. This is because key addition,
as is almost universally the case for block ciphers, was done in Fn

2.

Lemma 7.4
Fix k ∈ Fn

2. Define F : Fn
2 → Fn

2 by F (x) = x + k. Then

corr(LT ◦ F , LU) =

{
(−1)LT (k) if T = U

0 if T 6= U.

Another very useful result gives correlations through the
composition of two functions. The ‘output’ side has to be on the
left, in order to agree with matrix multiplication.

Proposition 7.5

Let F : Fn
2 → Fn

2 and G : Fn
2 → Fn

2 be functions. For
S ,T ⊆ {0, 1, . . . , n − 1},

corr(LS◦G◦F , LT ) =
∑

U⊆{0,1,...,n−1}

corr(LS◦G , LU) corr(LU◦F , LT ).
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Example 7.6

(1) Take G (x0, x1) = (x0, x0x1). The matrix of correlations, with
rows (output taps) and columns (input taps) labelled ∅, {0},
{1}, {0, 1} is 

1 0 0 0
0 1 0 0
1
2

1
2

1
2 −1

2
1
2

1
2 −1

2
1
2

 .

(2) By Lemma 7.4, the matrix for (x0, x1) 7→ (x0 + 1, x1) is
diagonal, with entries 1,−1, 1, 1.

(3) Hence H(x0, x1) = (x0 + 1, x0x1 + x1) = (x0, x0x1) has
correlation matrix

1 0 0 0
0 1 0 0
1
2

1
2

1
2 −1

2
1
2

1
2 −1

2
1
2




1 · · ·
· 1 · ·
· · 1 ·
· · · 1

 =


1 0 0 0
0 −1 0 0
1
2 −1

2
1
2

1
2

1
2 −1

2 −1
2 −1

2

 .



Application of Proposition 7.5 to Q-block cipher
Let F : F3

2 → F3
2 be the S-box in the 3 bit version of the Q-block

cipher, so F
(
(x0, x1, x2)

)
= (x1, x2, x0 + x1x2). The matrix below

shows the correlations,

1 · · · · · · ·
· · 1 · · · · ·
· · · · 1 · · ·
· · · · · · 1 ·
· 1

2 · 1
2 · 1

2 · −1
2

· 1
2 · 1

2 · −1
2 · 1

2

· 1
2 · −1

2 · 1
2 · 1

2

· −1
2 · 1

2 · 1
2 · 1

2


using · for a 0 correlation, with subsets ordered

∅, {0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}.
For example the first four rows show that tapping the output in
positions ∅, {0}, {1}, or {0, 1} gives a linear function.
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2 · 1
2 · 1
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· −1
2 · 1

2 · 1
2 · 1

2


using · for a 0 correlation, with subsets ordered

∅, {0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}.
By taking powers of this matrix we can compute correlations
through any power of F .


