
MT362/462/5462 Cipher Systems: Sheet 1

Attempt every question. Please remember to write your name or student
number. Submit your work through Moodle. Instructions are under ’General
Information’ on the Moodle page. The eight problem sheets are worth 15%
of your final mark.

Question 1(b) is deliberately similar to the first group work problem in
Week 2. The lecturer will be happy to discuss any of the questions in the
office hour or the live Q&A session.

To be submitted by midnight on Friday 9th October.

It is helpful if you indicate questions you did but are uncertain
about, or would like done in the Q&A session.

The Mathematica notebook AlphabetCiphers.nb on Moodle can encrypt
and decrypt using substitution ciphers, and compute frequencies and the
Index of Coincidence. Remember ‘Evaluate Notebook’ to get started.

1. In Example 1.2, Alice agreed to send Bob his exam mark x ∈ {0, 1, . . . 99} by en-
crypting it as the ciphertext (x+k) mod 100. Assume that the key k ∈ {0, 1, . . . 99}
is known to only Alice and Bob and is chosen at random. Eve, the eavesdropper,
learns all messages that Alice sends to Bob. Malcolm, the man-in-the-middle learns
the message and can change it. Following Kerckhoff’s Principle, everyone knows
all this.

The only secret information, known only to Alice and Bob, is the key.

(a) If Eve observes the ciphertext 20, what if anything, can she learn about the
plaintext x?

(b) Suppose Eve believes Bob got 0 with probability 1
5
, and that if not, each mark

between 40 and 79, is equally likely. Let K be the random key and let Y be
the random ciphertext.

(i) If Eve observes the ciphertext 17, so Y = 17, what can she learn about
the key? [Hint: could it be that K = 30?]

(ii) What is P[K = 85|Y = 17]? [Hint: the answer is not 1
100

.]

(iii) What is P[K = 45|Y = 17]?

(iv) Sketch a graph showing P[K = k|Y = 17] as k varies between 0 and 99.

(c) Malcolm, the man-in-the-middle, can modify the ciphertext. Suppose he is
confident that Bob’s mark is between 40 and 79. (He does not know the key.)
Can he trick Bob into thinking he failed?

(d) Suppose that next year Alice sends Bob her own exam mark x′ ∈ {0, 1, . . . , 99}
using the same cryptoscheme, and using the same key k. What can Eve learn?

(e) Suppose the scheme is simplified so that Alice sends x+ k, without reducing
modulo 100. What are some problems with this simplified scheme?

(f) Find a way to modify the scheme to avoid the problem in (c). [Hint: a
cryptosystem may have more ciphertexts than plaintexts.]



2. Decrypt BYIKVXRYVVYGKI, assuming it is the ciphertext output by a Caesar cipher.
What is the key?

3. In the first week you were assigned to a block of four people, identified as Alice,
Bob, Alice′,Bob′. The pairs are {Alice,Bob} and {Alice′,Bob′}. You were then
emailed a substitution cipher key. Each person in a pair has the same key.

(a) Write a plaintext message x of at least 75 words on a subject of your choice,
and encrypt it using your substitution cipher key π. (Keep the spaces please!)
Email the ciphertext eπ(x) to all three people in your block.

(b) Decrypt the message from the other person in your pair. [Hint: do not use
frequency analysis!]

(c) Using frequency analysis, decrypt either of the messages sent to you by a
person not in your pair.

(d) Write up (c), explaining your method. (An annotated printout is fine.) Did
you learn the entire key? If you only looked at one message, why might using
both, but still decrypting only one, have been easier?

4. The ciphertext below is the output of a Vigenère cipher. Each line has length 50.

01234567890123456789012345678901234567890123456789

CQUAJHXHVWGJMRTAJHBPIHTLTHIPRKKYTHWBKUKZCUKWGDZLFZ

UYFLTAJHIPRKKYVHDAVKOZKVUMVHTKWHZVVZULSXGSYRXKULTA

JHVSCLTAGAZPPSUZKWOVPVJPHIKYKQMIADSBNWOWNHUMVKKSGQ

MAJRLAJHQLALZPUNTVYQGZMDYPUNOZVHYA

(a) Compute the Index of Coincidence on the samples of size 20 (or larger if you
prefer) obtained by taking every m-th position in the ciphertext starting with
the first letter C [correction, not W]. in position 0, for each m ∈ {2, 3, 4, 5, 6}.

For example the sample for m = 3 of size 20 is CAXWMABHTPKHKZKDFYTH. To
get these samples in Mathematica, evaluate AlphabeticCiphers.nb; then
StringTake[SplitText[Q5Ciphertext, 3][[1]], {1, 20}].

(b) What does this suggest about the key length?

(c) Determine the key. [Hint: AJH appears starting in positions 3, 15, 55, . . . .]
[Corrected off-by-one error.] What are the final two words of the cipher-
text?

(d) Explain why the Index of Coincidence is largest for m = 4, smallest for m = 3
and m = 5 and in the middle for m = 2 and m = 4. Give a detailed answer
referring to the Caesar shifts that are relevant to each ciphertext sample.

(e) How could you use the positions of AJH to guess the length of the key? [As
you will know, if you did a complete decryption, this is the Kasiski test.]



MT362/462/5462 Cipher Systems: Sheet 2

Attempt at least Questions 1 to 4, and also 5 and 6 if you are an
M.Sc. student. (All students may swap one of the first four questions for
a later optional question.) Please remember to write your name or student
number. Submit your work through Moodle. Instructions are under ‘General
Information’ on the Moodle page. The eight problem sheets are worth 15%
of your final mark.

The lecturer will be happy to discuss any of the questions in the office hour
or the live Q&A session.

To be submitted by midnight on Friday 23rd October. Note you
have a fortnight to do this sheet.

It is helpful if you indicate questions you did but are uncertain
about, or would like done in the Q&A session.

Throughout we use the notation of §3, so K is the keyspace, P the plaintexts
and C the ciphertexts in a cryptosystem, with encryption functions ek : P →
C and decryption functions dk : C → P indexed by keys k ∈ K.

1. The cryptosystem shown below uses three keys from the affine cipher on Z3, each
with probability 1

3
. Suppose that plaintext 1 is sent with probability p and plain-

text 2 is sent with probability 1− p, so plaintext 0 is never sent.
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(a) Recall that e(a,c)(x) = ax + c mod 3. Which keys (a, c) are used in this
cryptosystem?

(b) Find P[Y = 1|X = 1]. (Your answer should not involve p.)

(c) Express P[Y = 1], P[X = 1|Y = 1] in terms of p.

(d) When does the cryptosystem have perfect secrecy with respect to the proba-
bility distribution p0 = 0, p1 = p, p2 = 1− p on plaintexts?

2. Alice and Bob communicate using the numeric one-time pad cryptosystem from
Example 3.5, in which K = P = C = {0, 1, . . . , n−1} and the encryption functions
are defined by ek(x) = (x + k) mod n. Each key k ∈ K is chosen with equal
probability. Let px be the probability distribution on plaintexts: P[X = x] = px.

(a) Show that if x ∈ P and px > 0 then P[Y = y|X = x] = 1
n

for all y ∈ C.
[Note: we need px > 0 since the conditional probability P[Y = y|X = x] is
only defined when P[X = x] > 0.]

(b) Find P[Y = y] for each y ∈ C. [Hint: condition on the plaintext: you may use
the convention that P[Y = y|X = x]P[X = x] is taken as 0 if P[X = x] = 0.
The correct answer can be stated without using x or k.]



(c) Hence show that P[X = x|Y = y] = px for all x ∈ P with px > 0.

(d) What is P[X = x|Y = y] if px = 0? Deduce from this and (c) that the
numeric one-time pad has perfect secrecy.

3. (a) Is there a cryptosystem such that |C| < |P|?
(b) Is there a practical (see Definition 3.9) cryptosystem with perfect secrecy such

that |K| < |C|?
(c) A student writes: ‘since the encryption functions ek are injective, if k 6= k′

then ek(x) 6= ek′(x)’. Is this claim correct? Justify your answer with a proof
or counterexample, as appropriate. If the claim is wrong, can you identify
the misconception?

(d) Give at least three different examples of cryptosystems with perfect secrecy
such that |P| = |K| = |C| = 4. [Hint: Latin squares. Please make it clear
how a Latin square defines a cryptosystem.]

4. In a chosen plaintext attack,you choose a plaintext x. You are thengiven
the corresponding ciphertext ek(x) for the key k.

Explain how to find the key by a chosen plaintext account when the cipher is (a)
a Caesar cipher, (b) a substitution cipher eπ; (c) a Vigenère cipher ek where k
has length exactly 10. Make it clear which plaintexts the attacker should choose.
[Hint: if you write about frequency analysis in (b) you have missed the point.]

5. (M.Sc.) Work with the Shamir secret sharing scheme over F11 with 5 people and
threshold 3 using evaluation points ci = i for i ∈ {1, 2, 3, 4, 5}.
(a) Find the shares for the secret 5 ∈ F11, choosing a polynomial at random.

(b) Alice (Person 1), Bob (Person 2) and Charlie (Person 3) have the shares 7,
5, 3 respectively. The three agree to meet, simultaneously reveal their shares,
and together compute the secret.

(i) What is the secret?

(ii) Show, by giving an explicit example, that if Alice lies about her share to
Bob and Charlie, then she can both learn the secret and leave Bob and
Charlie knowing an incorrect secret.

(iii) Suggest a way to avoid some of the problems in (ii).

6. (M.Sc.) If x ∈ N0 and x < 2` then x has a unique expression as 2`−1x`−1 + · · ·+
2x1 + x0 where each xi is a bit in {0, 1}. We define the `-bit binary form of x to
be x`−1 . . . x1x0. For instance since 11 = 23 + 2 + 1, the 5-bit binary form of 11 is
01101. We write modular addition as �.

For j ∈ {0, 1, . . . , `− 1}, let fj : F`2 → F2 be the Boolean function defined so that
f(x`−1, . . . , x1, x0) is the bit in position j of x`−1 . . . x1x0 � 5 mod 2`.

For example, taking ` = 4, since 6 = 01102 6 � 5 = 11 and 11 = 10112, we have
f3(0110) = 1, f2(0110) = 0, f1(0110) = 1 and f0(0110) = 1.

Express f0, f1, f2, f3 as polynomials in x3, x2, x1, x0. What is the coefficient of the
monomial x0x1x2 in f3?

For general j, what is the monomial with the maximum number of variables in fj?



Optional questions

(?) marks those that are harder than average. M.Sc. students are encouraged to look at
these.

7. This question asks you to prove the converse result to Shannon’s Theorem (Theo-
rem 3.12) stated in Proposition 3.14. Suppose that |P| = |C| = |K|. Let n be the
common value. Show that if each key is used with equal probability and for all
x ∈ P and y ∈ C there is a unique key k such ek(x) = y, then

(a) P[Y = y] > 1
n

for all y ∈ C;
(b) the cryptosystem has perfect secrecy.

8. To define perfect secrecy for a general cryptosystem, we require that

P[X = x|Y = y] = px

for all probability distributions px on the plaintexts and all y ∈ C such that P[Y =
y] > 0. Note that for practical cryptosystems P[Y = y] > 0 always holds, so
this is the usual definition. The aim of this question is to show that without the
practicality assumption, Shannon’s Theorem may fail in various ways.

(a) Show that if the hypothesis ‘for all y ∈ C there exists x ∈ P and k ∈ K such
that ek(x) = y’ is dropped then conclusions (a), (b) and (c) of Theorem 3.12
may fail to hold. (Define perfect secrecy by P[X = x|Y = y] = px whenever
P [Y = y] > 0.)

(b) Show that if the hypothesis ‘P[K = k] > 0 for each k ∈ K’ is dropped then
again (a), (b) and (c) may fail to hold.

(c) Show that there is a (non-practical) cryptosystem with perfect secrecy with
|K| < |C|, so (d) fails to hold.

9. This extends Question 2 on the Group Work for Week 2 on a toy model for the
Vigenère Cipher in which the alphabet is a, b, c, d, shifts are modulo 4, and letters
a and d are common, each with probability 1

3
and letters b and c are rare, each

with probability 1
6
.

(l) In (e) we supposed that in a typical ciphertext, the letters had probabilities
q0, q1, q2, q3. Find with proof a formula for the IOC of a long ciphertext as
the length tends to infinity.

(m) What probability distribution q0, q1, q2, q3 minimizes the IOC just found?
What is this IOC? Proof this is the unique minimum. [Hint: write q2j =
(qj − c)2 + 2cqj − c2 for a suitable c.]

(n) Using (ii) find all keys of length 2 that minimize the IOC of a typical long
ciphertext. (This extends (k) in the Group Work.)

(o) What keys maximize the IOC? (?) Prove your answer is correct using any
standard inequalities of your choice.



10. (?) Prove or disprove by finding a counterexample: in any practical cryptosystem
in which |P| = |C|, each ciphertext is equally likely.

Remark. This is true when |K| = |P| = |C| by Theorem 3.12(d).

11. (?) Consider the cryptosystem obtained from the numeric one-time pad on
{0, 1, . . . , n − 1} by removing the key 0 corresponding to the identity permuta-
tion.

Give a necessary and sufficient condition on the distribution px for x ∈
{0, 1, . . . , n − 1} on plaintexts for there to exist a probability distribution rk for
k ∈ {1, . . . , n− 1} on the n− 1 keys such that each ciphertext is equally likely.

(Suggested by a question in the Q&A session in 2020 Teaching Week 1.)



MT362/462/5462 Cipher Systems: Sheet 3

Attempt at least questions 1 to 4. Question 6 is compulsory for M.Sc.
students. Please remember to write your name or student number. Submit
your work through Moodle. Instructions are under ‘General Information’
on the Moodle page. The eight problem sheets are worth 15% of your final
mark.

The lecturer will be happy to discuss any of the questions in the office hour
or the live Q&A session.

To be submitted by midnight on Friday 30th October.

It is helpful if you indicate questions you did but are uncertain
about, or would like seen done in the plenary session.

1. Consider the affine cipher (see Example 4.2) with q = 151.

(a) Decrypt the ciphertext 138 sent using the key (12, 10).

(b) In a known plaintext and ciphertext Mark learns that e(a,c)(21) = 18. Find all
the possibilities for the key (a, c). Suppose that later he learns that e(a,c)(18) =
21. What is the key?

2. Let q be prime. Suppose that Alice and Bob communicate using the affine cipher
on Zq with keyspace K = {(a, c) : a, c ∈ Zq, a 6= 0}, and that Alice’s plaintext is
x ∈ Zq with probability px.

(a) What is the size |K| of the keyspace?

(b) Show that for each x, y ∈ Zq there are exactly q−1 keys k such that ek(x) = y.

(c) Show that if each key is equally probable then the cryptosystem has perfect
secrecy. Can Eve learn anything about the plaintext from a known ciphertext?

(d) Show that the key can be determined by a chosen plaintext attack using
two plaintexts. Does this contradict perfect secrecy? Does a single plaintext
suffice?

(e) Can Malcolm, the man-in-the-middle, modify a ciphertext without Bob notic-
ing? How might this problem be reduced? [Hint: change P to a subset of Zq.]

3. Show that if K and X are independent random variables, taking values in sets K
and P respectively, then

H(K,X) = −
∑

k∈K

∑

x∈P
P[K = k]P[X = x](log2 P[K = k] + log2 P[X = x]).

Deduce that H(K,X) = H(K) + H(X). [Hint: please explain your steps, taking
care to use sigma notation correctly. The joint entropy H(K,X) is defined in
Definition 5.6.]



4. Alice the Spy Master has just learned that Bob, her field agent, has been uncovered.
She warns him using the one-time pad kept strictly for emergency use.

(a) Eve the Eavesdropper observes the ciphertext xioneh. Find the key if the
plaintext is (i) report, (ii) status (iii) fluffy. Can Eve learn anything
about the plaintext?

(b) Eve then observes yadhpu also sent by Alice.

(i) What, in fact, is the key?

(ii) What are Alice’s two messages?

(c) Finally Eve observes albusa sent by Bob. What port should she guard?

[Hint: the code used in the video is online at repl.it/@mwildon/OneTimePad2.
(Try Google Chrome if it doesn’t work in your first choice of browser.) You can also
use the Mathematica notebook AlphabetCiphers to add and subtract strings:
skip to end for Example 4.8 and this question.]

5. Shannon’s estimate for unicity distance (the length of ciphertext needed to deter-
mine a key when the plaintext is an English message) is H(K)/R, where R is the
per-character redundancy in English.

Given that R ≈ 3.2 bits, what is his estimate for the substitution cipher, when
all keys are equally likely? [Hint: you need to count the number of different
permutations of {a, . . . , z}; then use Example 5.5(2) to find H(K).]

6. (a) (All M.Sc.) Let f : F3
2 → F2 be defined by f(x0, x1, x2) = x1x2. Find all

the correlations corr(f, LT ) for T ⊆ {0, 1, 2} and hence check Theorem 4.7(c)
that

(−1)f =
∑

T⊆{0,1,2}
corr(f, LT )(−1)LT

(b) Let S 4T = {u ∈ S ∪T : u 6∈ S ∩T}. Show that if f is an n-variable Boolean
function then corr(f + LS, LT ) = corr(f, LS4T ).

(c) Let g(x0, x1, x2) = x0 +x1x2. Express (−1)g in the form in (a). [Hint: use (b)
and Theorem 4.7(c).]

7. Let X and Y be random variables taking values in sets X and Y respectively. Let
f : X → Y be a function.

(a) Prove the inequality H
(
f(X) |Y

)
≤ H(X|Y ) used in the ‘extras’ for Part A.

[Hint: one proof uses the Chaining Rule, Lemma 5.9.]

(b) Show that if f is injective then equality holds. Does the converse hold?

8. What is Shannon’s estimate of unicity distance for the Vigenère Cipher with
equiprobable keys of length `? Is it a reliable estimate in this case? Discuss.



MT362/462/5462 Cipher Systems: Sheet 4

Attempt at least questions 1 to 3. Question 4 is compulsory for M.Sc.
students. Please remember to write your name or student number. Submit
your work through Moodle. Instructions are under ‘General Information’
on the Moodle page. The eight problem sheets are worth 15% of your final
mark.

The lecturer will be happy to discuss any of the questions in the office hour
or the live Q&A session.

To be submitted by midnight on Friday 13th November.

It is helpful if you indicate questions you did but are uncertain
about, or would like seen done in the plenary session.

The Mathematica notebook LFSRs.nb used is available from Moodle. By
definition, the LFSR of width ` with taps T , where T ⊆ {1, 2, . . . , `}, has
keystream k0k1k2 . . . such that ks =

∑
t∈T ks−t for all s ≥ `.

1. By Definition 6.8, the period of a keystream is its length until its first repeat. For
instance 00110011 . . . has period 4. Let G be the LFSR of width 5 with taps {4, 5}.

(a) (i) Let k = 10000. Calculate the keystream k0k1k2, . . . , defined by G for k.
What is the period of this keystream?

(ii) Find s such that (ks, ks+1, ks+2, ks+3, ks+4) = 11100.

(iii) Do all binary words of length 5 appear somewhere in the keystream
k0k1k2 . . .?

(iv) How would your answer to (i) change if the key was 11100?

(b) Find a key k′ such that the keystream defined by G for k′ has period 7.

(c) Find all the periods of keystreams for G. What is the lowest common multiple
of the periods?

(d) By Definition 5.8, the period of G is the least m such that Gm = id, the
identity function. What is the period of G?

[You can use your answer to (a) in Question 3.]

2. Let F be the LFSR of width 4 with taps {1, 4}, as shown in the circuit diagram
below; the numbers correspond to the four positions that may be tapped.

⊕1234

(a) Solve the equation F
(
(x0, x1, x2, x3)

)
= (y0, y1, y2, y3) and hence find a for-

mula for F−1.

(b) Draw a circuit diagram for F−1. [Hint: be careful with the directions of the
wires.] According to the strict wording of Definition 6.2, is F−1 an LFSR?



3. Let F be an LFSR of width ` with taps T , so by definition

F
(
(x0, x1, . . . , x`−2, x`−1)

)
= (x1, x2, . . . , x`−1,

∑

t∈T
x`−t).

(a) Show that: F is invertible =⇒ ` ∈ T . [Hint: use the contrapositive.]

(b) Show conversely that if ` ∈ T then F is invertible and give a formula for F−1.

4. (M.Sc.) Let k0k1k2 . . . and k′0k
′
1k
′
2 . . . be keystreams of LFSRs with taps T and T ′

and widths ` and `′, respectively. Let us = ks + k′s for s ∈ N0.

(a) Use annihilators to show that u0u1u2 . . . is a keystream of the LFSR of width
`+ `′ and feedback polynomial gT (z)gT ′(z), as claimed in Corollary 5.5.

[Hint: let κ(z) = k0 + k1z + k2z
2 + · · · and κ′(z) = k′0 + k′1z + k′2z

2 + · · ·
be the power series representing these keystreams. Show that κ(z) + κ′(z)
annihilated by gT (z)gT ′(z).]

(b) Give an example where u0u1u2 . . . is also the keystream of an LFSR of strictly
smaller width than `+ `′.

5. This question generalizes the result in Question 1(d). Suppose that an invertible
LFSR F : F`

2 → F`
2 has keystreams of periods p(1), . . . , p(r).

(a) Suppose that Fm = id. Show using (VUP) that m is divisible by all of
p(1), . . . , p(r). [Hint: if k ∈ F`

2 has keystream of length p, what does (VUP)
say about F s(k) for 1 ≤ s < p?]

(b) Let P be the lowest common multiple of p(1), . . . , p(r). Show that F P is the
identity function id.

(c) Deduce that, as claimed after Definition 6.8, the period of F is the lowest
common multiple of the periods of its keystreams.

6. A de Bruijn sequence of order ` is a cyclic sequence containing every element of
F`
2 exactly once. Thus 00010111 is a de Bruijn sequence of order 3; for instance,

to find 110, take the final two 1s and the initial 0.

(a) Use the LFSR in Example 6.3 to construct a de Bruijn sequence of order 4.

(b) Prove that there exist de Bruijn sequences of every order. (You may assume
there exists an invertible LFSR of period 2` − 1 for every ` ∈ N.)

7. Show that if F is an invertible LFSR then there is a keystream of F whose period
is equal to the period of F and hence that the period of F is the maximum of the
periods of its keystreams, strengthening the result of Q5(c). [Hint: use Lemma
5.4 in the M.Sc. add-on notes; interested people doing MT362/462 will be able to
read §5 without earlier M.Sc. extras.]
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Attempt questions 1 to 3. Question 4 is compulsory for M.Sc. students.
Please remember to write your name or student number. Submit your work
through Moodle. Instructions are under ‘General Information’ on the Moodle
page. The eight problem sheets are worth 15% of your final mark.

The lecturer will be happy to discuss any of the questions in the office hour
or the live Q&A session.

To be submitted by midnight on Monday 23rd November. Note
you have an extra weekend to do this sheet.

It is helpful if you indicate questions you did but are uncertain
about, or would like seen done in the plenary session.

The Mathematica notebook LFSRs.nb used is available from Moodle. By
definition, the LFSR of width ` with taps T , where T ⊆ {1, 2, . . . , `}, has
keystream k0k1k2 . . . such that ks =

∑
t∈T ks−t for all s ≥ `.

1. In 8-bit ASCII, ‘a’ is encoded as the 8-bit binary form of 97, namely 01100001, ‘b’
as the binary form of 98, namely 01100010, and so on.

Fix n ∈ N and consider the cryptosystem with plaintexts P = {a, . . . , z}n and
ciphertexts C = F8n

2 , in which a message of n characters is first converted to 8-bit
ASCII, and then encrypted using the cryptosystem defined in Definition 6.4 with
the LFSR F of width 5 with taps {3, 5}.
Your key is the first 5 bits of the binary key in your email from the lecturer.

(a) Let k0k1k2 . . . be the keystream for your key. What is its period? Show that
k31+s = ks for all s ∈ N0 and deduce that k32m = km for each m ∈ N0.

(b) Encrypt a message (lower-case, no spaces) of at least 25 characters. Send the
sequence of bits to everyone in your block.

[Hint: to do this in Mathematica, after loading and evaluating LFSRs.nb

use EncryptString[{3, 5}, {k0, k1, k2, k3, k4}, "message"] You
can also use StringToASCIIBits["x"] to get the 8 bits for x, and so on.

(c) Decrypt the message from your partner.

(d) Decrypt either of the messages from the other two people in your block. You
must explain your method. [Hint: start by looking at bits 0 and 32 in the
ciphertext. If you do not have a ciphertext to decrypt, use the one in the
Mathematica notebook.]

(e) What is the minimum length of ciphertext needed to determine the key?

2. (a) Suppose that k0k1k2k3k4k5k6k7 is the keystream of an LFSR of width 4. Let
T ⊆ {1, 2, 3, 4} be the taps. Show that

ks = ks−1

{
1 if 1 ∈ T
0 otherwise

+ks−2

{
1 if 2 ∈ T
0 otherwise

+ks−3

{
1 if 3 ∈ T
0 otherwise

+ks−4

{
1 if 4 ∈ T
0 otherwise

for each s ≥ 4. For instance if the taps are {3, 4}, this says ks = ks−1 × 0 +
ks−2 × 0 + ks−3 × 1 + ks−4 × 1.



Deduce that the matrix equation with unknowns b1, b2, b3, b4



k0 k1 k2 k3
k1 k2 k3 k4
k2 k3 k4 k5
k3 k4 k5 k6







b4
b3
b2
b1


 =




k4
k5
k6
k7




has a solution for b1, b2, b3, b4.

(b) The hypothesis in (a) is ‘k0k1k2k3k4k5k6k7 is the keystream of an LFSR of
width 4’. Call this statement P . LetQ be the conclusion, ‘the matrix equation
above has a solution’. By (a), P =⇒ Q. Is the converse true?

(c) Which of the bit sequences 00100011, 00100010, 11100001 and 1101100 is a
keystream of an LFSR of width 4? (In the last you are only given k0k1 . . . k6.)
Justify your answers. Do they change if the LFSR is required to be invertible?

3. Let B0, B1, . . . , Bn−1 be a sequence of bits, each 0 or 1 independently with proba-
bility 1

2
. For b, b′ ∈ {0, 1}, let Mbb′ be the number of s ∈ {0, . . . , n− 2} such that

(Bs, Bs+1) = (b, b′).

(a) Show that the expected value of M00 is E[M00] = (n − 1)/4 and find
E[M01],E[M10],E[M11].

(b) For the sequence below M00 = 4. Write down the statistics M10, M01, M11.

(0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

(c) Perform a χ2-test on M00,M01,M10,M11 to test the sequence in (b) for ran-
domness on pairs of bits. [Hint: use M00 +M01 +M10 +M11 = 32 to find the
number of degrees of freedom. Tables of the χ2 distribution are on the web.]

(d) Does the sequence in (b) pass the Monobit Test in Exercise 7.4?

4. (a) Let u0u1 . . . un−1 ∈ Fn
2 . Let Un(z) = u0 + u1z + · · · + un−1zn−1 be the cor-

responding polynomial. Prove that u0u1 . . . un−1 is the output of the LFSR
with width ` and taps T ⊆ {1, . . . , `} if and only if Un(z)gT (z) = h(z)+znr(z)
for some polynomials h(z) and r(z) with deg h < `.

[Hint: adapt the proof of Lemma 5.4. The proof given in the M.Sc. Week 7
Plenary Session is on Moodle.]

(b) The LFSR of width 3 with taps {2, 3} and the LFSR of width 5 with taps
{2, 4, 5} generate the top two keystreams below. Let u0u1 . . . u9u10 be the
bottom sequence.

1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1
1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0
1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1
0 1 2 3 4 5 6 7 8 9 0

(i) Write down the feedback polynomials f{2,3}(z) and f{2,4,5}(z).

(ii) What is the smallest m such that the LFSR with taps {2, 3} generates
u0u1 . . . um?

(iii) The LFSR with taps {2, 4, 5} generates u0u1 . . . u9u10. Use Proposi-
tion 6.5 to find the feedback polynomial and hence the taps of an LFSR
generating u0u1 . . . u9u10.

(iv) Is there an LFSR of width 5 generating u0u1 . . . u9u10? Justify your an-
swer.



MT362/462/5462 Cipher Systems: Sheet 6

Attempt questions 1 and 2. Questions 3 and 4 are compulsory for
M.Sc. students. Please remember to write your name or student number.
Submit your work through Moodle. Instructions are under ‘General Infor-
mation’ on the Moodle page. The eight problem sheets are worth 15% of
your final mark.

The lecturer will be happy to discuss any of the questions in the office hour
or the live Q&A session.

To be submitted by midnight on Monday 30th November.

It is helpful if you indicate questions you did but are uncertain
about, or would like seen done in the plenary session.

The Mathematica notebook LFSRs.nb used is available from Moodle un-
der Teaching Week 8, as is QuadraticStreamCipher.nb. By definition,
the LFSR of width ` with taps T , where T ⊆ {1, 2, . . . , `}, has keystream
k0k1k2 . . . such that ks =

∑
t∈T ks−t for all s ≥ `.

1. Let (k0, k1, k2, . . .) be a keystream of the LFSR F of width 2 with taps {1, 2}.
Let (k′0, k

′
1, k
′
2, . . .) be a keystream of an LFSR G of width 3 with unknown taps.

The keystreams are multiplied to give (k0k
′
0, k1k

′
1, k2k

′
2, . . .). Suppose you know

the product begins 101100000101.

(a) Explain why the keystreams of F and G have the form 1?11?????1?1, where
? denotes an unknown bit. By considering the possible keystreams produced
by F , deduce the key for F .

(b) By considering the keystream for F explain why the keystream of G is of the
form 1?11?00?01?1. Hence find a possible set of taps and the unique key
for G.

(c) Are the taps you found in (b) unique? Justify your answer.

2. Let F be the Feistel Network for the function f : Fm
2 → Fm

2 so, by definition,
F
(
(v, w)

)
= (w, v + f(w)) for (v, w) ∈ F2m

2 .

(a) Compute F
(
(0001, 0001)

)
in the special case when m = 4 and

f(x0, x1, x2, x3) = (x2, x3, x0 + x1x2, x1 + x2x3) + (1, 1, 1, 1).

(b) In this part your argument should work for general m and f . The Feistel net-
work is used to encrypt a plaintext (v, w) to a ciphertext (v′, w′) = F

(
(v, w)

)
.

(i) Show that w = v′ and express v in terms of v′ and w′.

(ii) Show that (w, v) is the encryption of (w′, v′).

(iii) You have a black box that implements F . That is: given any (v, w), the
box will output the encryption (v′, w′) = F

(
(v, w)

)
. Suppose you are

given (v′, w′). Can the black box be used to find (v, w)? That is, can you
use the black box to decrypt?



3. (M.Sc.) The table below shows the first 14 steps in the Berlekamp–Massey algo-
rithm applied to the sequence

(u0, u1, . . . , u14) = (1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

`n 1 1 2 2 3 3 3 3 3 7 7 7 7 7 7
Tn ∅ ∅ {2} {1, 2} {1} {1} {1} {1} {1} ? {1, 5, 6, 7} ? ? ? ?
m 0 0 2 2 4 4 4 4 4 9 9 9 ? 9

For instance, the LFSR F9 has length `9 = 3 and taps T9 = {1}. Performing step
9 of the algorithm using m = 4 gives the LFSR F10 of length `10 = 7 and taps T10

that you are asked to find in (i). Since the length goes up, m is updated to 9. You
should find that the final LFSR F15 generating all 15 bits has taps {1, 2, 3, 4, 6, 7}.

(i) Verify that case (a) applies for steps 5, 6, 7, 8 and perform step 9 to obtain
the entry marked ? in the column for n = 10.

(ii) Find the five remaining entries marked ?.

(iii) Given that the entire sequence u0, u1, u2, . . . is generated by an LFSR of
width 7, will the taps change in further steps of the Berlekamp–Massey algo-
rithm? Justify your answer.

4. The 2-quadratic stream cipher was defined in Example 8.5. Recall that F is
the LFSR of width 5 with taps {3, 5} and F ′ is the LFSR of width 6 with taps
{2, 3, 5, 6}. Given keys k ∈ F5

2 and k′ ∈ F6
2, the keystream u0u1u2 . . . is defined by

u0 = 0 and us = ksk
′
s + ks−1k′s−1 for each s ∈ N.

Using the attack in this example, the attacker guesses that k is v0v1v2v3v4 and
computes the correlation between the keystream v0v1 . . . v1023 and u0u1 . . . u1023.
(Here u0u1 . . . u1023 is obtained via a chosen plaintext attack, as in Exercise 7.1.)

The keystream for k = 00001 has period 25 − 1 = 31 and has the form
0000100101 . . . ?00001.

(a) What is the bit in position 30, marked ? above, just before the first repeat of
the key 00001?

(b) What are the bits u26u27u28u29u30? [Hint: rather than compute 30 bits, you
could try applying the LFSR ‘in reverse’, thinking of k′30 as k′−1, and so on.]

The table below shows the four guessed keys v0v1v2v3v4 with the highest cor-
relations for several different k and k′. In each case the correlations for the
other 32 guessed keys are close to 0. (Use the Mathematica notebook
QuadraticStreamCipher.nb under Teaching Week 8 if you want to check this.)

k k′ guessed key, correlation

00001 000001 00000, 0.223 00001, 0.242 10000, 0.230 10001, 0.203
00001 000011 00000, 0.230 00001, 0.215 10000, 0.219 10001, 0.211

00111 000001 00000, 0.238 00111, 0.199 10011, 0.199 10100, 0.254
00111 000011 00000, 0.199 00111, 0.219 10011, 0.234 10100, 0.254

2



(c) Explain why in each case there are three ‘fake keys’, with correlation about
1
4
, as well as the correct key k0k1k2k3k4. Predict the three fake keys when

k = 01000 and k′ is unknown.

[Hint: for 1
4

of the positions in the F ′ keystream, k′s = 0 and k′s−1 = 1 and
so us = ks−1. What keystream for F should u0u1 . . . u1023 then be compared
with? You know the key for this keystream from (a). This should give you
one ‘fake’ key.]

5. The stream cipher Trivium has an 80 bit key k0k1 . . . k79 ∈ F80
2 . The key is used,

together with an 80 bit initialization vector v, to generate a keystream u0u1u2 . . ..
The encryption functions ek : Fn

2 → Fn
2 for k ∈ F80

2 are then

ek(x) = (v, y)

where v ∈ F80
2 is the initialization vector and y0 . . . yn−1 is obtained in the usual

way (see Example 6.4) by adding the keystream to the plaintext: thus ys = xs +us

for each s.

(a) Show that anyone knowing the key k can decrypt a Trivium ciphertext (v, y).

In a hypothetical application, a ‘test-and-trace’ app uses an 80 bit Trivium key to
secure its communications. If a user Alice notifies the app that she is infected, the
app encrypts the plaintext message ‘One of your contacts has been infected: you
should self-isolate’ and sends it to all of Alice’s close contacts known to the app.

Assume that it is not possible to extract the key from the app.

(b) Suppose that the app always uses the all-zeros initialization vector. Bob
receives the warning message from the app. Should he believe it?

(c) Suppose that the app chooses a random initialization vector for each message.
Should Bob believe the warning message now?

(d) Suppose that when sending a message to Bob, the app uses the initialization
vector obtained by converting Bob’s unique identifier into an 80-bit vector.
Should Bob believe the warning message now?

As a further feature, and only with the user’s consent, the app may send a message
to a central authority confirming that the user has been required to self-isolate.

(e) How might this be implemented securely?

Remark. The assumption that users cannot extract the key from the app is re-
alistic: smartphones are highly locked down and Android and iOS have specific
measures to protect cryptographic keys. Some aspects of this question were dis-
cussed in the Q&A Session in Week 8: see the answer posted to the Moodle forum.



6. In an attack on a stream cipher using a key of length `, a correct guess at the first
m bits of the key gives a keystream v0v1v2 . . . having average correlation c > 0
with the correct keystream u0u1u2 . . ..

(a) Assuming that different bits are independent, what is P[vs = us]?

(b) Let n ∈ N. If the correlation is computed by comparing v0v1 . . . vn−1 and
u0u1 . . . un−1 then what is the distribution of the correlation statistic?

(c) Show that if c is nearly 0 (as is typical) then n has to be at least 1/c2 for this
correlation attack to be effective.

7. The m-quadratic stream cipher in Example 8.5 has keyspace {(k, k′) : k ∈ F5
2, k
′ ∈

F6
2}. It is used to encrypt plaintexts in F1024

2 .

(a) Show that in the attack in Example 8.5, the expected correlation for a correct
guess of k is 1

2m
. [Hint: use the Piling Up Lemma, Lemma 4.11 in the

(M.Sc.) notes.] How many fake keys are there? [Hint: an upper bound is
enough to know if the attack will work.]

(b) Is the attack effective when m = 3? If so, is it subexhaustive? [Hint: use
Question 4(d).]

(c) Is the attack effective when m = 5? If so, is it subexhaustive?

(d) Find a different correlation attack that breaks the 5-quadratic stream cipher.

Remark. The graphs below show correlations for all 31 non-zero keys taking m = 1,
m = 3 and m = 5. They were produced using the Mathematica notebook
QuadraticStreamCipher.nb available from Moodle.
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8. Prove the Piling-Up Lemma, Lemma 4.11 in the (M.Sc.) notes.
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Attempt questions 1 to 3. Question 3(c) is optional. M.Sc. students
should also attempt question 4. Please remember to write your name or
student number. Submit your work through Moodle. Instructions are under
‘General Information’ on the Moodle page. The eight problem sheets are
worth 15% of your final mark.

The lecturer will be happy to discuss any of the questions in the office hour
or the live Q&A session.

To be submitted by midnight on Monday 7th December.

It is helpful if you indicate questions you did but are uncertain
about, or would like seen done in the plenary session or Q&A.

The Mathematica notebook BlockCiphers.nb is available from Moodle
and can be used to check answers to the questions on the Q-block cipher.

1. Let S : F4
2 → F4

2 be the S-box in the Q-block cipher, defined by S
(
(x0, x1, x2, x3)

)
=

(x2, x3, x0 + x1x2, x1 + x2x3). Recall from Example 9.5 that the Feistel network in
round i of this cipher is

(v(i−1), v(i)) 7→
(
v(i), v(i−1) + S(v(i) + k(i))

)

where k(i) ∈ F4
2 is the round key. The encryption functions ek for k =

(k(1), k(2), k(3)) ∈ F12
2 are defined by ek

(
(v(0), v(1))

)
= (v(3), v(4)).

(a) Encrypt 0000 0000 ∈ F8
2 using the key 0011 0011 0011.

(b) Decrypt the ciphertext 0111 0111 using the key in (a)

(c) Find a key k ∈ F12
2 such that ek(0001 0001) = 0000 0000.

(d) Does the Q-block cipher have the ‘confusion’ property: i.e. does it mix up
nearby bits in a non-linear way?

(e) Does the Q-block cipher have the ‘diffusion’ property: i.e. does it mix up bits
so that every bit of the ciphertext depends on every bit of the key?

2. Let S : F4
2 → F4

2 be the S-box in the Q-block cipher from Question 1.

(a) Let ∆ ∈ F4
2. Show that if ∆2 = 0, i.e. ∆ is of the form (?, ?, 0, ?) then

S(x + ∆) + S(x) =

{
(0,∆3,∆0,∆1) if x2 = 0

(0,∆3,∆0 + ∆1,∆1 + ∆3) if x2 = 1.

(b) Deduce Lemma 10.1(i), that S(x + 1000) = S(x) + 0010 for all x ∈ F4
2.

(c) Using (b) show that ek(x) = ek+1000 0010 1000(x) for all x ∈ F8
2.

(d) change to four rounds so can be consistent with Feistel In Attack 9.5
the attacker encrypts x = 1111 0000 and x∆ = 1111 1000 to ciphertexts z and
z∆. She then guesses the final two rounds keys k(2) and k(3) and decrypts z
and z∆ over the final two rounds to w = 0000 1110 and w∆ = 1000 1101. Is
the attacker’s guess correct?



3. 3DES is the block cipher of block size 64 and keyspace F56
2 × F56

2 × F56
2 with

encryption functions defined by

e(k,k′,k′′)(x) = ek′′
(
dk′
(
ek(x)

))

where ek and dk are the encryption and decryption functions for DES.

(a) Show that there is a meet-in-the-middle attack using multiple chosen plain-
texts that finds the key using about 2112 encryptions/decryptions.

[Hint: see Attack 9.8. A small example of the meet-in-the-middle attack was
seen in the Group Work from Week 9; answers are on Moodle.]

(b) Assume no attack better than (a) exists. Is 3DES secure?

(c) (?) Suggest why the middle map is decryption rather than encryption.

4. (M.Sc.) Again let S : F4
2 → F4

2 be the S-box in the Q-block cipher.

(a) Find all possibilities for S(x + 0010) + S(x) where x ∈ F4
2.

(b) Let Γ = 0000 1000. Let (v, w) ∈ F8
2 be chosen uniformly at random. Let

(v′, w′) and (v′Γ, w
′
Γ) be the encryptions of (v, w) and (v, w) + Γ, respectively

over the first two rounds of the Q-block cipher.

Show that no matter what the key is, (v′, w′) + (v′Γ, w
′
Γ) is equally likely to

be each of the four differences {0010 0000, 0010 0001, 0010 0010, 0010 0011}.
(c) Suggest a subexhaustive attack on the Q-block cipher in which the attacker

first guesses k(3), and then (k(1), k(2)). Make it clear why your attack is
subexhaustive.

(d) Is the attack in (c) an improvement on Attack 10.2, where the attacker guessed
(k(2), k(3)), and then with 16 possibilities for this pair, guessed k(1)?

5. In a cryptosystem based on the AES S-box, a plaintext x ∈ F8
2 is encrypted by a

key (k, k′) ∈ F16
2 to the ciphertext S(x + k) + k′.

(a) Let x = 0000 0000 ∈ F8
2 and let ∆ = 0000 0001. Let y = x + k and let

y∆ = x∆ + k. What is a simple form for y + y∆?

(b) Let z = S(x + k) + k′ and let z∆ = S(x∆) + k′. What is a simple form for
z + z∆?

(c) Lemma 10.8 immediately implies that unless Γ = 0000 0001, the equation
S(w) + S(w + ∆) = Γ has exactly two solutions w ∈ F8

2. What are these
solutions when Γ = z + z∆?

(d) Hence show that, with one exceptional case, the ciphertexts z and z∆ deter-
mine {k, k + ∆}.

(e) Is this attack on the cryptosystem a sign that the AES S-box is weak? Justify
your answer.
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Attempt questions 1 to 4 and 6. M.Sc. students should also attempt
question 7: the final part (?) is optional. Submit your work through Moodle.
The eight problem sheets are worth 15% of your final mark.

The lecturer will be happy to discuss any of the questions in the office hour
or the live Q&A session.

To be submitted by midnight on Wednesday 16th December.

Private keys, and other private information, are written in red.

1. (a) Compute 2257 mod 10007. [Hint: to do this by hand, first compute 22, 24, 28,
216, . . . , 2128 mod 10007 by repeated squaring: note that (2m)2 = 22m.]

(b) Find dlog2 45 mod 139; that is, find m such that 2m ≡ 45 mod 139. [Hint: you
could use the Mathematica notebook PKC.nb to do a brute-force search.]

Remark. Despite the smaller numbers, you should find that (b) is a harder problem
than (a). Correspondingly the exponentiation function m 7→ 2m mod p is ‘one-
way’: easy to compute but hard to invert.

2. Suppose that Bob’s RSA public key is (2279, 17). As Eve you observe the RSA
ciphertext 37 sent to Bob. Find Bob’s private key and hence find the plaintext.

3. Generate an RSA public key (n, a) with n > 2128 and private key (p, q, r). Use the
Mathematica notebook PKC.nb on Moodle and the PowerMod function.

(a) Email your public key to your partner in your block.

(b) Email a message x of your choice, using the RSA Cryptosystem, to your
partner in your block. [Hint: you know their public key when you receive
their email from (a). Your message can be a number between 0 and n− 1, or
if you use the functions in the notebook, an English string.]

(c) Decrypt the message from your partner. [If your partner is uncooperative,
you may use the lecturer as a substitute in (a) and (c).]

(d) Suppose all emails are observed by Eve. What, if anything, can she learn?

(e) Suppose all emails can be modified by Malcolm. What, if anything, can he
learn?

4. Consider the cryptoscheme in which English plaintexts are converted to 8-bit
ASCII (‘a’ ↔ 01100001, ‘b’ ↔ 01100010, and so on, as on Problem Sheet 5)
and then encrypted using RSA with the appropriate public key.

For example ‘hi’ becomes 1101000 1101001 which is the binary form of 13409. If
Alice’s public key is (n, a) then she is sent 13409a mod n. Assume that n ≈ 22048.

(a) Alice is expected an important message ‘yes’ or ‘no’ from Bob. Show that
Eve can decrypt Bob’s ciphertext without knowing Alice’s private key.

(b) Can the problem in (a) occur if Alice and Bob use a symmetric cipher such
as AES where the key is entirely private? How can it be avoided while still
using the RSA cryptosystem?



5. Let (n, a) be Alice’s RSA public key. Suppose that n = pq. Let t = (p− 1)(q− 1).
Show that an attacker who knows n and t can easily find p and q. [Hint: find a
quadratic equation for p with coefficients expressed in terms of n and t.]

6. In Diffie–Hellman Key Exchange, we saw that the eavesdropper Eve knows the
prime p, the base g and ga mod p. Only Alice knows her exponent a. (We write
ga mod p entirely in black because although a is private, ga mod p is public.)

Bob wants to send a message x ∈ {1, . . . , p− 1} to Alice.

(a) Suppose Bob sends xga mod p. Show that Eve can find x.

(b) Explain why Bob can send xgar mod p for any private r of his choice. (This
is not entirely obvious because Bob knows ga mod p but he does not ga and
he does not know a.) Can Alice find x?

(c) Suppose Bob sends xgar mod p and then sends r. Can Alice find x? Can Eve
find x?

(d) Suppose Bob sends xgar mod p and then sends gr mod p. Can Alice find x?
Can Eve find x?

Remark: (d) is the ElGamal cryptoscheme: Alice publishes (g, ga, p) as her public
key, and keeps (g, a, p) as her private key.

7. (M.Sc.) Let ek : F8
2 → F8

2 for k ∈ F12
2 be the encryption maps in the Q-block

cipher. Find corr(L{0} ◦ ek, L{2,5}) and corr(L{0} ◦ ek, L{2,6}). Assuming you have
good estimates for these statistics, and for corr(L{0} ◦ ek, L{2}) = 1

2
(−1)k0+k6 , how

many possibilities are there for k? (?) Find some further high correlations that
give more information about the key.

8. (M.Sc.) Let F : Fn
2 → Fn

2 . Suppose that corr(LU ◦ F,LT ) = c > 0. Let k ∈ Fn
2

and define G : Fn
2 → Fn

2 by G(x) = F (x + k).

(a) Show that corr(LU ◦G,LT ) = (−1)LT (k)c.

An attacker has a collection {(v(j), v′(j)) : 1 ≤ j ≤ q} of chosen plaintext/ciphertext
pairs for a cryptosystem defined by ek(x) = F (x+k). She estimates the correlation

by computing Sj = LU(v′(j)) + LT (v(j)) for each j, and taking C = 1
q

∑q
j=1(−1)Sj .

(b) Let Zj = (−1)Sj . Find P[Zj = 1] and P[Zj = −1].

(c) Show that if q is large then the distribution of C is approximately normal
with mean c and variance 1−c2

q
. [Hint: use the Central Limit Theorem.]

(d) How large must q be for the attacker to be confident of learning LT (k)?

9. A draft of this year’s examination paper (the form examinations will take is still to
be decided) has been posted to Moodle. It is encrypted using AES. The key is the
first 128 bits (or 32 hexadecimal characters) of the SHA-512 hash of the lecturer’s
password. The SHA-256 hash of this password is

170972f840215582a876e057f7b22ff662d77e94526df8e1f57c854ccd29c6c5

What cryptographic assumptions are needed, on AES, the SHA-256 hash func-
tion, the SHA-512 hash function, and the lecturer’s password, to prove that the
examination paper is secure? Which is likely to be the weakest link?


