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I Please take a handout, the preliminary problem sheet, and the
sheet of challenge problems.

I All handouts and problem sheets will be put on the Moodle
page for MT361. Everyone has access to this page. If you are
not yet registered for the course, bookmark this link:
moodle.rhul.ac.uk/course/view.php?id=381

I Lectures are at: Monday 3pm in MFLEC, Tuesday 3pm in
BLT2, Thursday 10am in BLT2.

I There is an additional lecture at Thursday noon for MT4610
and MT5461 in ABLT3. Correction: in week TWO only,
this lecture will be moved to Friday 2pm in C219.

I Office hours: Tuesday 11am, Thursday 2pm and Friday 11am.
(This week as normal.)



Why Coding Theory?

We want to communicate reliably in the presence of noise. With
small amounts of data, we can do this quite easily.

But in the modern world we want to store and process huge
amounts of data.

Think of a ‘bit’ as a single piece of information: on or off, 0 or 1.

I A small QR-code: 441 bits

I Text on first page of handout: 7144 bits

I First 14 pages of handout:

I Compact disc of Beethoven 9th: 700 MB

I Bluray disc of 3 hour film: 50 GB

I Large Hadron Collider data, per second: 300 GB
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Learning Objectives

(A) Examples of codes. Error detection and error correction and
connection with Hamming distance and Hamming balls.
Information rate and the binary symmetric channel.

(B) The Main Coding Theory Problem. Singleton bound and
codes based on Latin squares. Plotkin bound and Hadamard
codes. Hamming and Gilbert–Varshamov bounds.

(C) Linear codes. Generator matrices and encoding. Cosets and
decoding by standard arrays. Parity check matrices and
syndrome decoding. Hamming codes. Dual codes.



Prerequisites

• Basic discrete probability.

• Modular arithmetic in Zp where p is prime. If you are happy
with calculations such as 5 + 4 ≡ 2 mod 7, 5× 4 ≡ 6 mod 7
and 5−1 ≡ 3 mod 7, that should be enough.

• Some basic linear algebra: matrices, vector spaces, subspaces,
row-reduced echelon form. This will be reviewed when we
need it in Part C of the course.



Recommended Reading

[1] Combinatorics: Topics, Techniques, Algorithms. Peter J.
Cameron, CUP, 1994. (Chapter 17 gives a concise account of
coding theory.)

[2] Coding and Information Theory. Richard W. Hamming,
Prentice-Hall, 1980. (Chapters 2, 3 and 11 are relevant to this
course.)

[3] A First Course in Coding Theory. Raymond Hill, OUP, 1986.
(Highly recommended. It is very clear, covers all the 3rd year
course, and the library has several copies.)

[4] Coding Theory: A First Course. San Ling and Chaoping Xing,
CUP, 2004.

[5] The Theory of Error-Correcting Codes. F. J. MacWilliams and
N. J. A. Sloane, North-Holland, 1977. (Mainly for reference.)



Richard W. Hamming

“Mathematics is not merely an idle art form, it is an
essential part of our society.”

R. W. Hamming, 1998

Hamming’s original paper, Error
Detecting and Error Correcting Codes,
Bell Systems Technical Journal, 2 (1950)
147–160, is beautifully written and, for a
mathematics paper, very easy to read. It
is available from www.lee.eng.uerj.

br/~gil/redesII/hamming.pdf.



Main Problem.

Problem 1.1
Alice wants to send a message to Bob. She can communicate with
him by sending him a word formed from symbols taken from some
fixed set. But every time she sends a word, there is a chance that
some of its symbols will be corrupted, so the word that Bob
receives may not be the word that Alice sent. How can Alice and
Bob communicate reliably?

- - -message
encoder

channel
decoder

decoded message

?

noise



Example 1.2

Alice wants to send the message ‘Yes’ or ‘No’ to Bob. The
available symbols are 0 and 1.

Scheme 1. The two decide, in advance, that Alice will send

• 00 for ‘No’,

• 11 for ‘Yes’.

If Bob receives 00 or 11 then he will assume this is the word that
Alice sent, and decode her message. If he receives 01 or 10 then he
knows an error has occurred, but does not know which symbol is
wrong.

Scheme 2. Suppose instead they decide that Alice will send

• 000 for ‘No’,

• 111 for ‘Yes’.

Then Bob can decode Alice’s message correctly, provided at most
one error occurs, by assuming that the symbol in the majority is
correct.

Under either scheme, if two errors occur then when Bob decodes
the received word he gets the wrong message.
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Definitions

Definition 1.3
Let q ∈ N. A q-ary alphabet is a set of q different elements, called
symbols. A word of length n over an alphabet A is a sequence
(x1, x2, . . . , xn) where xi ∈ A for each i .

Definition 1.4
Let A be an alphabet and let n ∈ N. A code over A of length n is
a subset C of An containing at least two words. The elements of C
are called codewords. The size of C is |C |.

Definition 1.5
The binary alphabet of binary digits, or bits, is {0, 1}. A binary
code is a code over {0, 1}.
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Alice and Bob revisited

When writing words we will often omit the brackets and commas.
So e.g. (1, 1, 1) can be written as 111, and so on.

Example 1.2 (continued)

In Scheme 1, Alice and Bob use the binary code

C = {00, 11}

which has length 2 and size 2 and in Scheme 2 they use

D = {000, 111}

which has length 3 and size 2.



Alice and Bob revisited

Example 1.2 (concluded)

Suppose that whenever a bit 0 or 1 is sent down the channel used
by Alice and Bob, there is a probability p that it flips, so a 0
becomes a 1, and a 1 becomes a 0.

Exercise: Why is it reasonable to assume that p < 1/2?

For definiteness we shall suppose that Alice sends ‘Yes’ to Bob:
you should be able to check that we get the same behaviour if
Alice sends ‘No’. Using Scheme 2, Alice sends 111 and Bob
decodes wrongly if and only if he receives 000, 001, 010 or 100.
This event has probability

p3 + 3p2(1− p).

See the preliminary problem sheet for an analysis of Scheme 1.



Binary Symmetric Channel

Definition 1.6
The binary channel in which each transmitted bit flips, so a 0
becomes a 1 and a 1 becomes a 0, independently with
probability p, is called the binary symmetric channel with
cross-over probability p.

The transition probabilities for the binary symmetric channel are
shown in the diagram below.

1 1

0 0

1− p

1− p

p

p



Remarks on the Definition of Codes

Remarks 1.7
The following remarks on Definition 1.4 should be noted.

(1) By Definition 1.4, all codewords in a code have the same
length.

(2) We assume that all our codes have size ≥ 2: if a code has no
codewords, or only one, then it’s useless for communication.

(3) It is very important to realise that the codes in this course are
not secret codes. The set of codewords, and how Alice and
Bob plan to use the code to communicate, should be assumed
to be known to everyone.

(4) The definition of a code does not mention the encoder or
decoder. This is deliberate: the same code might be used for
different sets of messages, and with different decoding
strategies: see Example 1.8.



Using the Same Code in Different Ways

Recall Example 1.2, where in Scheme 2, Alice sent a ‘Yes’ / ‘No’
message to Bob using the code D = {000, 111}. Bob decoded a
received word by assuming that the majority symbol was correct.

Example 1.8

Suppose ALICE wants to send BOB one of the messages ‘Launch
nukes’ or ‘Stand-down’. They decide to use the binary code
D = {000, 111} from Example 1.2, with the encoder

‘Stand-down’
encoded as

7−−−−−−−→ 000

‘Launch nukes’
encoded as

7−−−−−−−→ 111.

Erring on the side of safety, they decide that if Bob receives a
non-codeword (i.e. one of 001, 010, 100, 110, 101, 011), then he will
request retransmission. So the same code is used, but with a
different encoder and a different decoding strategy.



Guessing and Liar Games

Exercise: Alice thinks of a number between 0 and 15. Playing the
role of Bob, how many yes/no questions do you need to ask Alice
to find out her number?

Exercise: Now suppose that Alice is allowed to tell at most one lie
when she answers Bob’s questions. (Or, corresponding more
closely to noise in the channel, suppose that Alice can choose to
mumble in one of her answers so that Bob mishears her answer.)
Repeat the game in the previous exercise. How many questions do
you need?

Variant 1: only questions about the number are allowed. (E.g. is
your number odd?, is your number in the set {2,3,6,7}?, etc.)

Variant 2: any question with a yes/no answer is allowed.

Example 1.9

We will convert some of the possible questioning strategies for Bob
into binary codes of size 16.
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Administration

I From this Tuesday the Tuesday lecture at 3pm will be in
QBLT (Queen’s Building Lecture Theatre).

I Solutions to the preliminary problem sheet will appear on
Moodle by 5pm.



Example 1.9: A Decision Tree for the Guessing Game
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Example 1.9: Codes from the Guessing and Liar Games

When playing the game as Bob, you could use the answers you had
heard so far to help choose the next question.

But to turn a questioning strategy into a code, we need to be able
to write down all the questions in advance.

(1) Let Alice’s number be m = b323 + b222 + b12 + b0, so
m = b3b2b1b0 in binary. Encode m as b3b2b1b0 and ask about b3,
b2, b1, b0. The corresponding code has as its codewords all binary
words of length 4 and the decoder is

0000 7→ 0, 0001 7→ 1, 0010 7→ 2, . . . , 1111 7→ 15.



Example 1.9: A Decision Tree for the Guessing Game

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q1
Is b3 equal to 1?

Q2
Is b2 equal to 1?

Q3
Is b1 equal to 1?

Q4
Is b0 equal to 1?

YESNO

NO

YES

YES

x = b3b2b1b0 in binary



Code from a 9 Question Strategy for the Liar Game
(2) Let Alice’s number be x = b323 + b222 + b12 + b0.
Questioning strategy from Thursday: ask about each bit of Alice’s
number, twice. Then ask about e = b3 + b2 + b1 + b0. The answer
to the final question will determine which (if any) of the first eight
answers was a lie.

In the corresponding code, the number x is encoded as

(b3, b2, b1, b0, b3, b2, b1, b0, e)

where e = b3 + b2 + b1 + b0 mod 2. For example,

0 7→ 0000 0000 0

1 7→ 0001 0001 1

2 7→ 0010 0010 1
...

15 7→ 1111 1111 0.

Exercise: Decode the following received words:

011001100, 110111001, 100110011, 001101010
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Rate of a Code

Definition 1.10
Let C be a code of length n and size M. We define the rate of C
to be (log2M)/n.

Roughly put, the rate of a binary code measures the proportion of
the bits of the codewords that give direct information about the
encoded message. For example, the binary codes {00, 11} and
{000, 111} used by Alice and Bob in Example 1.2 have rates 1/2
and 1/3, respectively.

The code of length 9 used for the guessing game has size 16 so has
rate (log2 16)/9 = 4/9.
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The Square Code
The Square Code on Question 2 of the preliminary sheet is a binary
code of length 8. Its codewords are all binary words of the form

(u1, u2, u3, u4, u1 + u2, u3 + u4, u1 + u3, u2 + u4)

where u1, u2, u3, u4 ∈ {0, 1} and the addition is done modulo 2.

(a) Check that 11000011 is a codeword in the square code. Draw
it as a square diagram.

(b) Suppose Alice sends 11000011 and Bob receives 01000011.
How can Bob work out that Alice sent 11000011?

Exercise: Alice wants to send Bob a number m between 0 and 15.
She writes m in binary as m = 23b3 + 22b2 + 21b1 + 20b0 and then
sends Bob the codeword in the Square Code starting b3b2b1b0 . . .

Imagine you are Bob and you receive 10011001. What do you
think Alice’s number is?

(A) 8 (B) 9 (C) 11 (D) 13.
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Example 1.11: Quick-Response Codes

A Quick-Response code, or QR-code is a 21× 21 grid of small
black and white squares. The squares represent a binary sequence
(black is 1 and white is 0) encoding a short message. If your
mobile phone has a camera, you might be able to use it to decode
the QR-code below.

The Mathematica notebook QRCodes.nb can be used to encode
short messages.



Example 1.11: Quick-Response Codes
The first step in decoding is to ‘subtract’ a masking pattern,
specified by a format string included in two places in the grid.

Most of the data in this QR-code consists of 26× 8 = 208 bits
which (after unmasking) form a single codeword in a
Reed–Solomon code of length 26 over an alphabet of size 28.

The encoder begins by converting each character in the message
into a number between 0 and 44: for example, ‘C’ is sent to 12,
‘D’ to 13, and so on. Each pair of numbers is then converted into
an 11 bit binary word. These words are then concatenated into a
string of 19× 8 = 152 bits which is encoded using the
Reed–Solomon code.
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The encoder begins by converting each character in the message
into a number between 0 and 44: for example, ‘C’ is sent to 12,
‘D’ to 13, and so on. Each pair of numbers is then converted into
an 11 bit binary word. These words are then concatenated into a
string of 19× 8 = 152 bits which is encoded using the
Reed–Solomon code.



QR-Codes

Exercise: Why do you think the format string is included twice?
What is the point of the three squares in the corners? (Including
the white border, these squares occupy 82 × 3 = 192 of the
212 = 441 little squares, so they must be important for some
reason!)

Exercise: You are invited to see how much damage the copy of the
QR-code below in the printed notes can tolerate before decoding
fails.



Example 1.12: Reed–Solomon CD Code

A compact-disc contains information in the form of a sequence of
microscopic pits on a disc that are read by a laser. Here the
compact disc is the channel, and its main purpose is to transmit
information reliably through time, rather than through space.

The pits encode a long sequence of the bits 0 and 1. The encoding
scheme combines two different Reed–Solomon codes. The first
code alone guarantees to correct one error in each block of 128
consecutive bits.

If, however, the errors occur in adjacent bits, as is usual for a
scratch then, mainly because of the clever way in which the two
codes are combined, many more errors can be corrected. Up to
16× 32× 8 = 4096 adjacent bits can be corrupted in a block of
124× 28× 8 = 27776 bits and the compact disc will still be
decoded successfully.



Example 1.13: Australian Railways Telegraph Code

In this code the encoder encodes a message as a list of codewords,
and then each codeword is sent, separately, down the channel.

Ayah Provide locomotive to work

Aybu Return locomotive at once

Azaf Breakdown train left at . . .

Azor Arrange to provide assistance locomotive

Azub A second locomotive will be attached to . . .

In telegraph transmission only upper case were used. So a typical
message might be something like ‘Breakdown train left at Sydney,
provide locomotive to work’, encoded as AZAF SYDNEY AYAH.

Exercise: Most codewords are not English words, although a few
are: ‘Coma’ is an instruction about extra trucks, ‘Cosy’ is an
instruction about loading trucks. Why do you think English words
were usually avoided?



Example 1.14: Mariner 9

The Mariner 9 probe, launched in 1971, took the first pictures of
Mars, ultimately transmitting 7239 pictures at a resolution of
700× 832 pixels. The images were grey-scale, using 64 = 26

different shades of grey.

I The probe did not have the internal memory to store even one
image, so the image had to be transmitted as it was captured.

I The pictures were transmitted back to Earth by sending one
pixel at a time, so we can think of a message as a single
number between 0 and 63.

I The channel could send the two binary digits 0 and 1. The
probability of each bit being flipped in the channel was about
0.05.

I Had each pixel been encoded a 6 bit number, about 26% of
the image would have been wrong.



Codes for Mariner 9

It was acceptable for each pixel to be encoded by up to 32 bits, so
increasing the amount of data to be stored and transmitted by a
factor of 5.

A repetition code where each of the 6 bits needed to specify a grey
level was repeated 5 times would reduce the percentage of
incorrect pixels to less than 4%.

The Hadamard code of length 32 and size 64 actually used could
correct up to 7 errors in each transmitted word. This reduced the
percentage of incorrect pixels to about 0.014%.

The next two slides show one of the Mariner 9 transmissions, as it
might have been received had each shade been encoded as a 6 bit
binary word, and one of the actual images sent using the
Hadamard code.
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Mariner 9 Image: Improvement Due to Error Correction
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The Mariner 9 Code
32 of the 64 Mariner 9 codewords: � = 0 and � = 1. Suppose we
receive the word below. How should we decide which codeword
was sent? Comparing with all 64 codewords takes some time . . .



MT361/MT461/MT5461

Error Correcting Codes

Mark Wildon, mark.wildon@rhul.ac.uk

Administration

I Reminder: this Thursday the extra lecture for MSc/MSci
students is moved to 2pm at Friday in C219.

I All future Tuesday lectures will, like this one, be in QBLT.

I If you left a pair of gloves in my office, they can be collected
from the Maths Office (243). [Also your suggested first weighing for

the coins problem does lead to a three-question strategy.]

I Answers to the Preliminary Sheet are on Moodle. Please take
a copy of Sheet 1. You are welcome to discuss any problem
sheets with me in office hours.
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Part A: Hamming distance and error detection and correction

§2 Hamming Distance and Nearest Neighbour Decoding

Definition 2.1
Let A be an alphabet. Let u, v ∈ An be words of length n. The
Hamming distance between u and v , denoted d(u, v), is the
number of positions in which u and v are different.

Example 2.2

Working with binary words of length 4, we have

d(0011, 1101) = 3

because the words 0011 and 1101 differ in their first three
positions, and are the same in their final position. Working with
words over the alphabet {A,B,C, . . . ,X,Y,Z} we have
d(TALE,TAKE) = 1 and d(TALE,TILT) = 2.



B0(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B1(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B2(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B3(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B4(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Hamming distance

Theorem 2.3
Let A be a q-ary alphabet and let u, v ,w be words over A of
length n.

(i) d(u, v) = 0 if and only if u = v;

(ii) d(u, v) = d(v , u);

(iii) d(u,w) ≤ d(u, v) + d(v ,w).

Exercise: Find all English words v such that

d(WARM, v) = d(COLD, v) = 2.

Check that the triangle inequality holds when u, v , w are WARM,
WALL and COLD, respectively.



Repetition Codes

Definition 2.4 (Repetition codes)

Let n ∈ N and let A be a q-ary alphabet with q ≥ 2. The
repetition code of length n over A has as its codewords all words of
length n of the form

(s, s, . . . , s)

where s ∈ A. The binary repetition code of length n is the
repetition code of length n over the binary alphabet {0, 1}.

Definition 2.5 (Nearest neighbour decoding)

Let C be a code. Suppose that a codeword is sent through the
channel and we receive the word v . To decide v using nearest
neighbour decoding look at all the codewords of C and pick the
one that is nearest, in Hamming distance to v . If there is no
unique nearest codeword to v , then we say that nearest neighbour
decoding fails.



Example 2.6

An internal review of the code in Example 1.8 has uncovered
several deficiencies. The new proposal uses a ternary repetition
code of length 6 over the alphabet {0, 1, 2}. The new encoder is

‘Stand-down’
encoded as

7−−−−−−−→ 000000

‘Stay on your toes’
encoded as

7−−−−−−−→ 111111

‘Launch nukes’
encoded as

7−−−−−−−→ 222222.

Suppose ALICE sends ‘Stand-down’. If BOB receives 001102, then

d(001102, 000000) = 3, d(001102, 111111) = 4, d(001102, 222222) = 5,

so under nearest neighbour decoding, 001102 is decoded as
000000, which in turn BOB will decode as ‘Stand-down’.

I What happens if 000111 is received?

I What if 020222 is received?



Nearest Neighbour Decoding as Part of a Two-step Process

Nearest neighbour decoding is only one step in the decoding
process. To recover the sent word, the decoder must take the
codeword given by nearest neighbour decoding and then undo the
encoder by translating the codeword back into a message.

-
u sent v received

channel
nearest

neighbour

decoder

-
w

undo

encoder

decoded

message
-

?

noise

The decoded message is correct if and only if w = u. This is the
case if and only if u is the unique nearest codeword to v , i.e.

d(u, v) < d(u′, v)

for all codewords u′.
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Nearest Neighbour Decoding: when failure is not an option

In practice it might be essential that the decoder always gives
some result, even if nearest neighbour decoding has failed. Then
the decoder will have to make an arbitrary choice between two or
more codewords that are equally likely to be the sent word.
Mathematically it is much better just to report that nearest
neighbour decoding has failed.



Quiz on Nearest Neighbour Decoding

Let C be the ternary code of length 4 with codewords

0000 0111 0222 1012 1120 1201 2021 2102 2210

The construction of this code using orthogonal Latin squares will
be seen later in the course. It has many interesting properties: in
particular, if u, u′ ∈ C are distinct then d(u, u′) = 3.

Please decode the received words (a) 2222, (b) 1201, (c) 2121
using nearest neighbour decoding. In each case write down one of
the next closest codewords, and determine the minimum number
of errors that must have occurred in the channel if your answer is
not the sent codeword.

(a) 0222, distance 2 from 2021, 2102, 2210, if wrong 2 errors;

(b) 1201, distance 3 from any other codeword, if wrong 3 errors;

(c) 2021, distance 2 from 0111, 1120, 2102, if wrong 2 errors.
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Probabilistic Justification for Nearest Neighbour Decoding

Lemma 2.7
Let C be a binary code of length n used to communicate on a
binary symmetric channel with cross-over probability p. Suppose
that the codeword u ∈ C is sent. If v is a word of length n, then
the probability that v is received pd(u,v)(1− p)n−d(u,v). [corrected
to n − d(u, v) from 1− d(u, v) on 17th January]

In symbols, we write
P[v received | u sent] = pd(u,v)(1− p)n−d(u,v). For example, if C
is the binary repetition code of length 3, then according to
Lemma 2.7,

P[001 received | 111 sent] = p2(1− p)

P[000 received | 111 sent] = p3.

These agree with the calculations in Example 1.2.



Probabilistic Justification for Nearest Neighbour Decoding

Theorem 2.8
Suppose that we use a binary code C of length n to send messages
through the binary symmetric channel with crossover
probability p, and that each codeword in C is equally likely to be
sent. Suppose we receive a binary word v. For each u ∈ C,

P[u sent | v received ] = pd(u,v)(1− p)n−d(u,v)C (v)

where C (v) does not depend on u. Hence P[u sent | v received ] is
maximized by choosing u to be the nearest codeword to v.

Thus, provided we accept that maximizing P[u sent | v received]
is a good idea, we are inevitably led to nearest neighbour decoding.
The syllabus talks only about ‘probability calculations’, so while
interesting, Theorem 2.8 may be regarded as non-examinable.
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Proof of Theorem 2.8 (non-examinable)

By the argument used in Bayes’ Law we have

P[u sent | v received]

= P[u sent and v received]P[v received]

=
P[v sent and u received]

P[u sent]
P[v received].

Now

I P[u sent] = 1/|C |
I P[v sent and u received] = pd(u,v)(1− p)n−d(u,v) by

Lemma 2.7.

So if we define C (v) =
1

P[v received]
then we have

P[u sent | v received ] = pd(u,v)(1− p)n−d(u,v)C (v)

as required.



Example: Different Transmission Probabilities
Suppose that Alice sends 111 with probability 0.999 and 000 with
probability 0.001, over a binary symmetric channel with crossover
probability 0.2. If you receive 000, what do you think Alice sent?

P[111 sent | 000 received]

= P[111 sent and 000 received]P[000 received]

=
P[000 received | 111 sent]

P[111 sent]
P[000 received]

=
(0.2)3 × 0.999

P[000 received]

=
0.007992

P[000 received]

and similarly

P[000 sent | 000 received] =
(0.8)3 × 0.001

P[000 received]
=

0.000512

P[000 received]
.

So even if you receive 000, it is most likely that Alice sent 111. In
fact, it is over 15 times more likely that Alice sent 111 than 000.



Binary Parity Check Codes

Example 2.9 (Parity check codes)

Let n ∈ N and let C be the binary code consisting of all binary
words of length n. Let Cext be the code of length n + 1 whose
codewords are obtained by appending an extra bit to each
codeword in C , so that the total number of 1s in each codeword is
even.

Suppose that a codeword u ∈ Cext is sent through the channel and
the word v is received. If a single bit is corrupted, so d(u, v) = 1,
then v must have an odd number of 1s. Hence v 6∈ Cext and we
detect that an error has occurred.

This shows that if u, u′ ∈ Cext are distinct codewords then
d(u, u′) ≥ 2.
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Example 2.10 (ISBN-10 code)

All recent books have an International Standard Book Number
(ISBN) assigned by the publisher. In this scheme, each book is
assigned a codeword of length 10 over the 11-ary alphabet
{0, 1, 2, . . . , 9,X}.
For example, [5] in the list of recommended reading has ISBN

0-444-85193-3.

• 0 identifies the country of publication;

• 444 identifies the publisher;

• 85193 is the item number assigned by the publisher;

• 3 is the check digit.

The check digit is chosen so that if u1u2u3u4u5u6u7u8u9u10 is an
ISBN then

10∑

j=1

(11− j)uj = 10u1 + 9u2 + · · ·+ 2u9 + u10 ≡ 0 mod 11.

There is one technical point: it might be necessary to take 10 as a
check-digit. In this case the letter X is used to stand for 10 (it is
never used in the main part of an ISBN).



ISBNs continued
We will say that u1u2u3u4u5u6u7u8u9u10 is an ISBN if it satisfies
the check condition above, ignoring the question of whether it was
ever assigned to a book.

Lemma 2.11
If a single error is made when writing down an ISBN, the result is
not an ISBN.

The ISBN code also detects when two unequal adjacent symbols
are swapped. (See Question 5 on Sheet 2.) This is a sort of error
likely to be made by a busy person. However it does not detect all
errors involving two symbols. For example, starting from
0000000000 we can change two symbols to get 1000000001, which
is also an ISBN.

Exercise: In the next section we will see the accepted definitions of
what it means for a code C to be t-error detecting or t-error
correcting. From the examples you have seen so far, how would
you define these terms?
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Administration

I Please take the next installment in the handout (pages 21 to
26).

I Please take Problem Sheet 2.

I Reminder that Problem Sheet 1 is due in by 11am Thursday.



Definitions of t-Error Detecting and t-Error Correctng

Let C be a code of length n over an alphabet A. Let t ∈ N.

Definition. The code C is t-error detecting if . . .

I it can detect when there are precisely t errors.

I it can detect up to t errors.

What do you mean by ’detect’?
A definition should relate to things already defined!

I t errors occuring in the channel will result in a word v 6∈ C
being received.

Perfect, if change to ‘up to t errors’

I for any codewords u, v ∈ C , d(u, v) > t.

Equivalent to accepted definition
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Definitions of t-Error Detecting and t-Error Correctng
Let C be a code of length n over an alphabet A. Let t ∈ N.

Definition. The code C is t-error correcting if . . .

I it can correct precisely t errors.

I it can detect and correct up to t errors.

What do you mean by ‘correct’?

I We can deduce the input from the output containing at most
t errors.

What counts as an allowable way to deduce the input?

I Can detect p-errors and provide enough information for the
errors to be resolved without resending of message.

‘Enough information’ seems a bit vague

I When u is sent and [up to] t errors occur and v is received
such that v 6∈ C then we know which t bits have flipped.

How do we know? (Also this assumes a binary code.)
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What counts as an allowable way to deduce the input?

I Can detect p-errors and provide enough information for the
errors to be resolved without resending of message.

‘Enough information’ seems a bit vague

I When u is sent and [up to] t errors occur and v is received
such that v 6∈ C then we know which t bits have flipped.

How do we know? (Also this assumes a binary code.)



t-Error Detecting and t-Error Correcting Codes

Definition 3.1
Let C be a code of length n over an alphabet A and let t ∈ N. We
say that C is

• t-error detecting if whenever u ∈ C is a codeword, and v is a
word of length n over A such that v 6= u and d(u, v) ≤ t,
then v 6∈ C .

• t-error correcting if whenever u ∈ C is a codeword, and v is a
word of length n over A such that d(u, v) ≤ t, then v is
decoded to u using nearest neighbour decoding.

Equivalently, a code C is t-error detecting if if whenever a
codeword is sent, and between 1 and t errors occur, the received
word is not a codeword, and so the receiver will know that
something has gone wrong in the channel.



t-Error Detecting and t-Error Correcting Codes

Definition 3.1
Let C be a code of length n over an alphabet A and let t ∈ N. We
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word of length n over A such that d(u, v) ≤ t, then v is
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codeword is sent, and between 1 and t errors occur, the received
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something has gone wrong in the channel.



Remarks 3.2

(1) Recall that when there is no unique nearest codeword to u
then nearest neighbour decoding fails. So a code C is t-error
correcting if and only if whenever v is a word within distance
t of a codeword u ∈ C then

d(u, v) < d(u′, v) for all u′ ∈ C with u′ 6= u.

This gives a more abstract way to state the definition of
t-error correcting that does not mention nearest neighbour
decoding.

(2) It may seem a bit odd to say that a code is ‘t-error correcting’
when it is the decoder (be it a human or a computer) that has
to do all the work of decoding. Moreover, we have seen in
Example 1.7 that the same code can reasonably be used with
different decoders. A code that is t-error correcting promises
to be able to correct up to t-errors provided nearest neighbour
decoding is used.



Remarks 3.2 [continued]

(3) In both definitions we have d(u, v) ≤ t, so v is obtained from
u by changing up to t positions. Hence if s < t then a t-error
detecting code is also s-error detecting, and a t-error
correcting code is also s-error correcting.

If instead we required exactly t changes then, by Question 11
on Sheet 1, there would be codes that are 2-error detecting
but not 1-error detecting. This could be confusing in practical
applications. Mathematically, it would lead to theorems with
long-winded hypotheses of the form ‘Suppose C is a code that
is t-error detecting for all t ≤ c , . . . ’. Both are undesirable.



Earlier Examples
We will now show that Definition 3.1 agrees with our findings in
Examples 2.6 and 2.9.

Lemma 3.3
Let n ∈ N. Let C be the repetition code of length n over a q-ary
alphabet A, where q ≥ 2.

(i) C is (n − 1)-error detecting but not n-error detecting.

(ii) If n = 2m + 1 then C is m-error correcting but not
(m + 1)-error correcting.

(iii) If n = 2m then C is (m − 1)-error correcting, but not m-error
correcting.

The proof of part (iii) is left to you in Question 2 of Sheet 2.

Lemma 3.4
Let n ∈ N and let Cext be the binary parity check code of length
n + 1 defined in Example 2.9. Then Cext is 1-error detecting but
not 2-error detecting. It is not 1-error correcting.



ISBNs
We will say that u1u2u3u4u5u6u7u8u9u10 is an ISBN if it satisfies
the check condition

10∑

j=1

(11− j)uj = 10u1 + 9u2 + · · ·+ 2u9 + u10 ≡ 0 mod 11,

ignoring the question of whether it was ever assigned to a book. (If
we need u10 = 10 then put X instead of 10 in the last position.)

Lemma 2.11
If a single error is made when writing down an ISBN, the result is
not an ISBN.

The ISBN code also detects when two unequal adjacent symbols
are swapped. (See Question 5 on Sheet 2.) This is a sort of error
likely to be made by a busy person. However it does not detect all
errors involving two symbols.

Lemma 3.5
The ISBN code is 1-error detecting but not 2-error detecting. It is
not even 1-error correcting.
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Administration

I Please take your work for Sheet 1: surnames A–J in red
folder, K–Z in blue folder.

I Error in Question 4 of Sheet 2: please change {0, 1, 2}7 to
{0, 1, 2}6, so reads

In the ternary repetition code of length 6
(considered in Example 2.6), what is the maximum
distance of a word v ∈ {0, 1, 2}6 from a codeword?

I Error in Question 6 of Sheet 2: please change w to v , so reads

Let C be a t-error correcting code over the alphabet
A. Suppose that you receive the word v ∈ An and,
after some hunting through the code, you find a
codeword u ∈ C such that d(u, v) ≤ t, . . .



§4 Minimum Distance and Hamming Balls

Question 1 on Sheet 2 shows that if C is a code such that
d(u, u′) ≥ 3 for all distinct u, u′ ∈ C , then C is 2-error detecting
and 1-error correcting. This is a special case of a very useful
general result. We need the following definition.

Definition 4.1
Let C be a code. The minimum distance of C , denoted d(C ), is
defined by d(C ) = min{d(u,w) : u,w ∈ C , u 6= w}.

By Definition 1.4, any code has at least two codewords, so the
minimum distance of a code is always well-defined.



Example on Minimum Distance

Example 4.2

Here is an example from Hamming’s original paper (see reference
on page 3 of the printed notes).

Let C be the binary code of length 3 with codewords

001, 010, 100, 111

as seen on Sheet 1, Question 2.

Then d(u,w) = 2 for all distinct u and w in C , so d(C ) = 2. If we
adjoin 000 as another codeword then the minimum distance goes
down to 1 since d(000, 001) = 1.



More Examples of Minimum Distance

It is not hard to find the minimum distance of the codes seen in
the examples so far.

Lemma 4.3
Let n ∈ N.

(i) The minimum distance of any length n repetition code is n.

(ii) The minimum distance of the length n + 1 binary parity check
code Cext in Example 2.9 is 2.

(iii) The minimum distance of the square code is 3.

Exercise: Let C be a code. What do you think is the relationship
between the maximum t for which C is t-error detecting and the
minimum distance of C? Now think about the same question with
‘error detecting’ replaced with ‘error correcting’.



More Examples of Minimum Distance

It is not hard to find the minimum distance of the codes seen in
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Lemma 4.3
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Reminder of Definition 3.1

Definition 3.1
Let C be a code of length n over an alphabet A and let t ∈ N. We
say that C is

• t-error detecting if whenever u ∈ C is a codeword, and v is a
word of length n over A such that v 6= u and d(u, v) ≤ t,
then v 6∈ C .

• t-error correcting if whenever u ∈ C is a codeword, and v is a
word of length n over A such that d(u, v) ≤ t, then v is
decoded to u using nearest neighbour decoding.

We observed in Remark (3.2)(1) that nearest neighbour decoding
successfully decodes v to u if and only if u is the unique closest
codeword to v , i.e.

d(u, v) < d(u′, v) for all u′ ∈ C with u′ 6= u.
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Code

Minimum
distance

Maximum t s.t.
t-error detecting

Maximum t s.t.
t-error correcting

Binary parity check
code of length 5

2 1 none

Ternary repetition code
of length 6

6 5 2

Ternary repetition code
of length 7

7 6 3

Square code 3 2 1{
u1u2u3 u1u2u3 u1u2u3 :

u1, u2, u3 ∈ {0, 1}
} 3 2 1

Code of length 9 in Q3
Sheet 2

3 2 1

Any code with mini-
mum distance ≥ 3 (by
Q1 Sheet 2)

≥ 3 ≥ 2 ≥ 1
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Minimum Distance Controls Error Detection and Correction

Theorem 4.5
Let C be a code with minimum distance d. Let t ∈ N.

(i) C is t-error detecting ⇐⇒ t ≤ d − 1;

(ii) C is t-error correcting ⇐⇒ 2t ≤ d − 1.

It is usually easier to compute the minimum distance of a code
than it is to determine (without using any other results) the
maximum t for which it is t-error detecting or correcting. This
makes the ‘⇐=’ directions in Theorem 4.5 very useful.

Recall that if x ∈ R then bxc is the greatest integer n such that
n ≤ x . For instance b2c = b2 1

2
c = 2.

Corollary 4.6

A code of minimum distance d is (d − 1)-error detecting and
bd−12 c-error correcting.
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Question 4 on Sheet 2

In the ternary repetition code of length 6 (considered in
Example 2.6), what is the maximum distance of a word
v ∈ {0, 1, 2}6 from a codeword?

Clarification: v could be any word, and the ‘distance
of v from a codeword’ means the minimum of
d(v , 000000), d(v , 111111), d(v , 222222).

Maybe a better way to state the question:

Suppose you receive v ∈ {0, 1, 2}6. What is the
maximum number of changes you might need to make to
v to turn v into one of the codewords in the ternary
repetition code?

For example, if v = 001112 then the closest codeword is 111111; 3
changes are needed since d(111111, v) = 3. But there are words
that are even further away from all the codewords.



Table from Hamming’s Original Paper

Corollary 4.6

A code of minimum distance d is (d − 1)-error detecting and
bd−12 c-error correcting.

The table below (taken from Hamming’s original paper) shows the
maximum number of errors a code of small minimum distance can
detect and correct.

d(C ) error detection / correction

1 no detection possible
2 1-error detecting
3 2-error detecting / 1-error correcting
4 3-error detecting / 1-error correcting
5 4-error detecting / 2-error correcting



(n,M , d)-notation

There is a special notation for recording the most important
parameters of a code.

Notation 4.4
If C is a code of length n, size M and minimum distance d , then C
is said to be a (n,M, d)-code.

For example, a repetition code of length n over a q-ary alphabet is
a (n, q, n)-code, and the binary parity check code of length n + 1
in Example 2.6 is a (n, 2n, 2)-code. The square code is a
(8, 16, 3)-code.



Hamming Balls

Definition 4.7
Let A be a q-ary alphabet and let u be a word of length n. The
Hamming ball of radius t about u is

Bt(u) = {v ∈ An : d(u, v) ≤ t}.

An equivalent definition is that Bt(u) consists of all words that can
be obtained from u by changing up to t of its positions. For
example, B1(000) = {000, 100, 010, 001}.



Example 4.8

The Hamming balls about the binary word 0000 are

B0(0000) = {0000}
B1(0000) = {0000, 1000, 0100, 0010, 0001},
B2(0000) = B1(0000) ∪ {1100, 1010, 1001, 0110, 0101, 0011}
B3(0000) = B2(0000) ∪ {1110, 1101, 1011, 0111}

and B4(0000) is the set of all binary words of length 4.

(ii) If u = 1010 then

B0(1010) = {1010},
B1(1010) = {1010, 0010, 1110, 1000, 1011},
B2(1010) = B1(1010) ∪ {0110, 0000, 0001, 1100, 1111, 1001}.

Also B3(1010) consists of all binary words of length 4 except 0101,
and B4(1010) is the set of all binary words of length 4.



B0(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B1(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B2(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B3(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B4(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B0(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B1(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B2(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B3(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



B4(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Nearest Neighbour Decoding for {0000, 1111}

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



0000 Sent

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Blue: Received Words Decoded as 0000

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Red: Received Words Decoded as 1111

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Grey: Nearest Neighbour Decoding Fails

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Lemma on Disjoint Hamming Balls

Lemma 4.9
Let C be a code. If C is t-error correcting then for all distinct
codewords u, u′ ∈ C, the Hamming balls Bt(u) and Bt(u

′) are
disjoint.

Proof: codewords in Bt(u) are decoded to u under nearest
neighbour decoding. Codewords in Bt(u

′) are decoded to u′ under
nearest neighbour decoding. So no word can be in both.

We will use Lemma 4.9 to complete the proof of Theorem 4.5(ii).
We have already proved ‘⇐=’, so only ‘=⇒’ remains.

Theorem 4.5
Let C be a code with minimum distance d. Let t ∈ N.

(i) C is t-error detecting ⇐⇒ t ≤ d − 1;

(ii) C is t-error correcting ⇐⇒ 2t ≤ d − 1.



Summary of Part A
In Part A we have seen the formal definition (Definition 3.1) of
t-error detecting and correcting codes. The examples in §2 and the
results in Lemmas 3.3 and 3.4 show that this definition is a
reasonable one. We then saw other ways of thinking about t-error
correcting codes, using minimum distance (Definition 4.1) and
Hamming balls (Lemma 4.9).

Theorem 4.10
Let C be a code. The following are equivalent

(a) C is t-error correcting;

(b) Nearest neighbour decoding always gives the sent codeword
(without failing), provided at most t errors occur;

(c) If u ∈ C and d(u, v) ≤ t then d(u, v) < d(u′, v) for all
u′ ∈ C such that u′ 6= u;

(d) If u, u′ ∈ C are distinct codewords then the Hamming balls
Bt(u) and Bt(u

′) are disjoint;

(e) The minimum distance of C is at least 2t + 1.



Problem Sheet 2 Question 2
Work will be returned tomorrow in the Tuesday lecture.

2. Let A be a q-ary alphabet where q ≥ 2. Let m ∈ N and let C
be the repetition code of length 2m over A. Prove Lemma 3.3(iii)
that C is (m − 1)-error correcting but not m-error correcting.

Most people gave a good proof that C is (m − 1)-error correcting.
(See Moodle for model answers.)

To show that C is not m-error correcting

I “C is (m− 1)-error correcting so can’t be m-error correcting”.
This is simply wrong.

I “If you change m positions in a codeword then can’t correct”.
This is very vague. Improve to:

I “If we change m positions in a codeword u to get v then
d(u, v) = d(u′, v) = m so nearest neighbour decoding fails.”
Almost right. But it depends how we change u to get v .

Summary: to show that some object does not have a certain
property, one example suffices. Be as specific as possible.
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Problem Sheet 2 Question 6

6. Let C be a t-error correcting code over the alphabet A.
Suppose that you receive the word v ∈ An and, after some hunting
through the code, you find a codeword u ∈ C such that
d(u, v) ≤ t. Show that if u is not the sent codeword then at
least t + 1 errors have occurred in the channel.



Part B: Main Coding Theorem Problem

§5 Main Coding Theorem Problem and Hamming’s Bound

Problem 5.1
The Main Coding Theory Problem is to find codes over a specified
alphabet with

(1) small length;

(2) high minimum distance;

(3) large size.

Remark 5.2
Another desirable property is that there should be an efficient way
to perform nearest neighbour decoding on received words. For
example, the Reed–Solomon code used on compact discs has the
largest possible size for its length and minimum distance. There
are now efficient decoding algorithms, but when it was first
invented, it was impractical because there was no good way to
decode received words.



Hamming’s Packing Bound: Preliminaries

In the next lemma we need binomial coefficients. Recall that the
binomial coefficient

(n
k

)
is the number of ways to choose k objects

from a set of size n. It is given by the formula

(
n

k

)
=

n!

k!(n − k)!
for 0 ≤ k ≤ n.

Lemma 5.3
Let u be a binary word of length n. The number of words in the
Hamming ball Bt(u) of radius t about u is

t∑

k=0

(
n

k

)
.



Decomposition of Hamming Ball about 0101 into Spheres
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Hamming’s Packing Bound

Theorem 5.4 (Hamming’s Packing Bound)

Let C be a binary (n,M, d)-code. If e = bd−12 c then

M ≤ 2n∑e
k=0

(n
k

) .

By Theorem 4.5(ii) that a 1-error correcting code has minimum
distance at least 3. Hamming’s bound therefore implies that a
1-error correcting binary code of length n has size at most
2n/(1 + n). Some values are shown below.

length n 3 4 5 6 7 8 9 10

bound on size M 2 3 5 9 16 28 51 93
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bound on size M 2 3 5 9 16 28 51 93



Hamming’s Packing Bound is Necessary NOT Sufficient
Hamming’s Packing Bound says that if C is a code of length 4 and
minimum distance 3 then |C | ≤ 24/(1 + 4) = 3 1

5
. So |C | ≤ 3. But

there is no way to fit 3 disjoint Hamming balls of radius 1 in
{0, 1}4.

One failed attempt:

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Hamming’s Packing Bound is Necessary NOT Sufficient
Hamming’s Packing Bound says that if C is a code of length 4 and
minimum distance 3 then |C | ≤ 24/(1 + 4) = 3 1

5
. So |C | ≤ 3. But

there is no way to fit 3 disjoint Hamming balls of radius 1 in
{0, 1}4.

Another failed attempt:

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Hamming’s Packing Bound is Necessary NOT Sufficient
Hamming’s Packing Bound says that if C is a code of length 4 and
minimum distance 3 then |C | ≤ 24/(1 + 4) = 3 1

5
. So |C | ≤ 3. But

there is no way to fit 3 disjoint Hamming balls of radius 1 in
{0, 1}4.

It is very important to realise that while Hamming’s bound is
a necessary condition for a binary code of specified length, size
and minimum distance to exist, it is not in general sufficient.



Aq(n, d) Notation

Definition 5.5
Let q ≥ 2 and let n ∈ N, d ∈ N be such that n ≥ d . We denote
by Aq(n, d) the largest size of a code of length n and minimum
distance d over a q-ary alphabet.

Exercise: Convince yourself that Aq(n, d) does not depend on
which q-ary alphabet is used. Working over the q-ary alphabet
{0, 1, . . . , q − 1}, show that there is at least one code of length n
and minimum distance d .

The previous exercise implies that Aq(n, d) is well-defined. We can
now restate Hamming’s Packing Bound as

A2(n, d) ≤ 2n
/ e∑

k=0

(
n

k

)
,

where e = b(d − 1)/2c.



Optimal Binary Codes: Values of A2(n, d)

The table below shows some values of A2(n, d); some of these will
be proved in the following sections. (You are not expected to
memorize any part of this table!) One result visible in the table is
that A2(n, d) = A2(n + 1, d + 1) whenever d is odd: see the
optional questions on Sheet 4.

d A2(2, d) A2(3, d) A2(4, d) A2(5, d) A2(6, d) A2(7, d) A2(8, d)

1 4 8 16 32 64 128 256
2 2 4 8 16 32 64 128
3 2 2 4 8 16 20
4 2 2 4 8 16
5 2 2 2 4
6 2 2 2
7 2 2
8 2



§6 Bounds from Equivalences of Codes

Looking at the first row and the main diagonal in the table you
might conjecture that the following lemma holds.

Lemma 6.1
Let q ≥ 2 and let n ∈ N. Then

(i) Aq(n, 1) = qn;

(ii) Aq(n, n) = q.



Equivalences of Codes

Definition 6.2
Let C and C ′ be codes over a q-ary alphabet A. We say that C
and C ′ are equivalent if one can be obtained from the other by
repeatedly applying the following two operations to all the
codewords:

(a) relabelling the symbols appearing in a fixed position;

(b) shuffling the positions within each codeword.

Exercise: Are {0000, 1100, 1111} and {0000, 1100, 0011}
equivalent?



Exercise: Are {0000, 1100, 1111} and {0000, 1100, 0011} equivalent?

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Exercise: Are {0000, 1100, 1111} and {0000, 1100, 0011} equivalent?

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Why Equivalences are Useful

We are interested in equivalences because, by the following lemma,
equivalent codes have the same distances between codewords.

Lemma 6.3
If u and w are codewords in a code C, and u′ and w ′ are the
corresponding codewords in an equivalent code C ′ obtained by
relabelling and/or shuffling positions then d(u,w) = d(u′,w ′).

Proof.
For binary words this was proved in Question 4 on Sheet 3. The
only shuffles allowed in this question were swaps on two positions,
but any shuffle can be obtained by repeated swaps, so this suffices.
The extension to a general alphabet is routine.

In particular, if C and C ′ are equivalent then C and C ′ have the
same minimum distance. However the converse does not hold.



Example of Equivalences

Example 6.4

Consider the four binary codes

C = {0000, 1100, 1010, 0110}
C ′ = {1010, 0110, 0011, 1111}
D = {0000, 1100, 0011, 1111}
E = {1000, 0100, 0010, 0001}.

All four codes have minimum distance 2. By applying operations
(a) and (b) we will show that C and C ′ are equivalent. No other
two of these codes are equivalent.

Lemma 6.5
A2(5, 3) = 4.

The proof of Lemma 6.5 actually shows something stronger: up to
equivalence there is a unique binary (5, 4, 3)-code, namely the code
{00000, 11100, 00111, 11011} first seen in Question 3 on Sheet 1.



C = {0000, 1100, 1010, 0110}

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



C ′ = {1010, 0110, 0011, 1111}

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



C = {0000, 1100, 1010, 0110}

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



C ′ = {1010, 0110, 0011, 1111}

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



D = {0000, 1100, 0011, 1111}

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



E = {1000, 0100, 0010, 0001}

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Example of Equivalences

Example 6.4

Consider the four binary codes

C = {0000, 1100, 1010, 0110}
C ′ = {1010, 0110, 0011, 1111}
D = {0000, 1100, 0011, 1111}
E = {1000, 0100, 0010, 0001}.

All four codes have minimum distance 2. By applying operations
(a) and (b) we will show that C and C ′ are equivalent. No other
two of these codes are equivalent.

Lemma 6.5
A2(5, 3) = 4.

The proof of Lemma 6.5 actually shows something stronger: up to
equivalence there is a unique binary (5, 4, 3)-code, namely the code
{00000, 11100, 00111, 11011} first seen in Question 3 on Sheet 1.



Weights and A2(8, 5)

The next lemma isolates a result that is useful for Lemma 6.5 and
Theorem 8.7. In it, we say that a binary word u has weight r , and
write wt(u) = r , if exactly r positions of u are equal to 1, and the
rest are equal to 0.

Lemma 6.6
Let u and w be binary codewords of length n. Suppose that
wt(u) = r and wt(w) = s. If r + s ≥ n then

d(u,w) ≤ 2n − (r + s).

In Question 2 of Sheet 4 you are asked to fill in the details of the
proof of the following theorem.

Theorem 6.7
A2(8, 5) = 4.



Quiz: True or False?

Let C be a 1-error correcting binary code of length n and size M.

(0) If R =
⌊ 2n

1 + n

⌋
then M ≤ R.

(1) If n = 5 then M ≤ 6.

(2) If n = 5 then M ≤ 4.

(3) If n = 5 then M ≥ 4.

Let v ∈ {0, 1}n.

(4) There exists u ∈ C such that d(u, v) ≤ 1.

(5) There exists a unique u ∈ C such that d(u, v) ≤ 1.

(6) If u, u′ ∈ C are codewords such that d(u, v) = d(u′, v) = 1
then u = u′.

(7) Suppose that v ∈ C . Then d(v , u′) ≥ 3 for all u′ ∈ C .



Quiz: True or False?
Let C be a 1-error correcting binary code of length n and size M.

(0) If R =
⌊ 2n

1 + n

⌋
then M ≤ R.

True: Hamming’s Packing Bound for a 1-error correcting
code states that M ≤ 2n/(1 + n). We can replace 2n/(1 + n)
with its floor because C has an integer number of codewords.

(1) If n = 5 then M ≤ 6.
True: C has minimum distance at least 3 and so by
Hamming’s Packing Bound

|C | ≤ 25

1 + 5
=

32

6
= 51

3 .

Hence |C | ≤ 5, so |C | ≤ 6. (Or use next question.)

(2) If n = 5 then M ≤ 4.
True: C has minimum distance at least 3 and we saw on
Tuesday that A2(5, 3) ≤ 4. So |C | ≤ 4. (This also does (1).)

(3) If n = 5 then M ≥ 4.
False: {00000, 11111} is 1-error correcting and has size 2.
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(2) If n = 5 then M ≤ 4.
True: C has minimum distance at least 3 and we saw on
Tuesday that A2(5, 3) ≤ 4. So |C | ≤ 4. (This also does (1).)

(3) If n = 5 then M ≥ 4.
False: {00000, 11111} is 1-error correcting and has size 2.
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Quiz: True or False? [Continued]
Let C be a 1-error correcting binary code of length n and size M.
Let v ∈ {0, 1}n.

(4) There exists u ∈ C such that d(u, v) ≤ 1.
False: let C = {0000, 1111}. Let v = 1100. Then there is no
codeword in C within distance 1 of v .

(5) There exists a unique u ∈ C such that d(u, v) ≤ 1.
False: the same example as (4) does it.

(6) If u, u′ ∈ C are codewords such that d(u, v) = d(u′, v) = 1
then u = u′.
True: the Hamming balls of radius 1 about distinct codewords
are disjoint by Lemma 4.9. Hence u = u′. (Or directly: the

words in B1(u) are decoded to u using nearest neighbour decoding,

and the words in B1(u′) are decoded to u′ using nearest heighbour

decoding, so if v ∈ B1(u) ∩ B1(u′) then u = u′.)

(7) Suppose that v ∈ C . Then d(v , u′) ≥ 3 for all u′ ∈ C .
False: take u′ = v , then d(v , u′) = 0. (Sorry: if you got
everything right except this one, have half a prize.)
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(7) Suppose that v ∈ C . Then d(v , u′) ≥ 3 for all u′ ∈ C .
False: take u′ = v , then d(v , u′) = 0. (Sorry: if you got
everything right except this one, have half a prize.)



§7 Codes from Mutually Orthogonal Latin Squares

Definition 7.1
Let q ∈ N and let A be a q-ary alphabet. A Latin square with
entries from A is a q × q array in which every row and column
contains each symbol in A exactly once. We say that q is the order
of the square.

Note that since there are q symbols and each row and column has
length q, it is equivalent to require either

(i) each row and column contains every symbol in A; or

(ii) no symbol appears twice in any row or column of A.



Examples of Latin Squares

Example 7.2

A Latin square of order 4 over the alphabet {0, 1, 2, 3}, constructed
using the addition table for the integers modulo 4, is shown below.

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Convention: It will be convenient to number the rows and columns
of a Latin square over the alphabet A = {0, 1, . . . , q − 1} by the
numbers in A. So if X is the Latin square in Example 7.2 then
X00 = 0, X12 = 3 and X33 = 2.



Mutually Orthogonal Latin Squares

Definition 7.3
Let X and Y be Latin squares over an alphabet A. We say that X
and Y are orthogonal if for each each a, b ∈ A there exist unique
i , j ∈ A such that Xij = a and Yij = b.

Equivalently, X and Y are orthogonal if for all a, b ∈ A there is a
unique position in which X contains a and Y contains b. We shall
abbreviate ‘X and Y are a pair of mutually orthogonal Latin
squares’, as ‘X and Y are MOLs’.

Example 7.4

Two MOLs over the alphabet {0, 1, 2, 3} are shown below.

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

Exercise: Show that there is no pair of MOLs of order 2.



Hunting for MOLs

Remark 7.5
In 1782 Euler posed the following problem: 36 officers belong to six
regiments and hold six different ranks, so that each combination of
rank and regiment corresponds to a unique officer. Can be the
officers be paraded on a 6× 6 parade ground so that in any line
each regiment and rank occurs precisely once? Equivalently, does
there exist a pair of MOLs of order 6? Euler conjectured that the
answer was no, but this was not proved until 1900.

In fact there are pairs of MOLs of all orders other than 2 and 6.
Here we will only prove existence for odd prime orders.

Lemma 7.6
Let q ≥ 3 be prime and let A = {0, 1, . . . , q − 1}. For i , j ∈ A let

Xij = i + j mod q

Yij = 2i + j mod q

Then X and Y are mutually orthogonal Latin squares.



From MOLs to Codes
We now show how to use MOLs to construct a family of 1-error
correcting codes. These codes all have length 4 and minimum
distance 3.

Theorem 7.7
Let A be the alphabet {0, 1, . . . , q − 1}. There is a pair of MOLs
over A of order q ⇐⇒ there is a (4, q2, 3)-code over A.

In lectures we will prove the ‘=⇒’ direction. See Question 1 on
Sheet 5 for the ‘⇐=’ direction.

Example 7.8

Let X and Y be the MOLs in Example 7.4. The corresponding
code has a codeword (i , j ,Xij ,Yij) for every i , j such that
0 ≤ i , j ≤ q − 1. So the codewords are

0000 0111 0222 0333 1012 1103 1230 1321

2023 2132 2201 2310 3031 3120 3213 3302.



Overview of Theorem 7.7

Let X and Y be MOLs and let C be the corresponding code, so

C = {(i , j ,Xij ,Yij) : 1 ≤ i , j ≤ q − 1}.

In words: C has a codeword (i , j , x , y) if and only if the MOLS X
and Y have symbols x and y in position (i , j).

0000 0111 0222 0333 1012 1103 1230 1321

2023 2132 2201 2310 3031 3120 3213 3302.

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

00 11 22 33
12 03 30 21
23 32 01 10
31 10 13 02
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Administration

I Sheet 5, Question 3(a) should read ‘Show that if
u = u1u2 . . . un and v = v1v2 . . . vn are distinct codewords in
C then . . . ’.

I Example 7.8: replace 1 ≤ i , j ≤ q − 1 with 0 ≤ i , j ≤ q − 1.



In Praise of Abstraction

Lemma 7.6
Let q ≥ 3 be prime and let A = {0, 1, . . . , q − 1}. For i , j ∈ A let
Xij = i + j mod q and let Yij = 2i + j mod q. Then X and Y are
mutually orthogonal Latin squares.

I To show that the columns of Y have no repeats we needed:

2i + j = 2i ′ + j mod q =⇒ i = i ′ mod q.

The obvious first step is to subtract off j , so we have 2i = 2i ′

mod q. To finish we can either:
I multiply through by (q + 1)/2 (as in lecture).

I use that 2 is invertible mod q with inverse (q + 1)/2.

I note that since q is prime, Z/qZ is a field, so 2 is invertible.



In Praise of Abstraction

Lemma 7.6
Let q ≥ 3 be prime and let A = {0, 1, . . . , q − 1}. For i , j ∈ A let
Xij = i + j mod q and let Yij = 2i + j mod q. Then X and Y are
mutually orthogonal Latin squares.

I To show that X and Y are MOLS:
I In lecture: if i + j = x , 2i + j = y then, solving the equations,

we get i = y − x , j = 2x − y . So the pair (x , y) appears only
in the position (y − x , 2x − y), taken mod q, and there are no
repeated pairs of symbols.

I If i + j = x , 2i + j = y then

(
1 1
2 1

)(
i
j

)
=

(
x
y

)
.

This equation has a unique solution for i and j because the
matrix is invertible.



Question 1 on Sheet 3: Show that C4 and C5 are not equivalent

Recall that

C4 = {0000, 1100, 0110, 0011}
C5 = {0110, 1100, 1001, 0011}.

It is tempting to make an argument using that three of the
codewords in C4 appear in C5. But this is hard to justify: it is not
true that an equivalence of codes must fix the codewords
common to both codes.

For example, we have seen that

{0000, 1100, 1111},
{0000, 1100, 0011}

are equivalent, but only by an equivalence that sends 0000 in the
first code to either 1100 or 0011 in the second.

Finally, please do not write ‘code’ if you mean ‘codeword’.
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C4 = {0000, 1100, 0110, 0011}
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Question 1, Sheet 3: C4

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



Question 1, Sheet 4: C5

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111



§8 The Singleton Bound and Puncturing a Code

Definition 8.1
Let C be a code of length n ≥ 2 and minimum distance ≥ 2. Let
C ? be the code whose codewords are obtained by removing the
final position from each codeword in C . We say that C ? is
obtained by puncturing C in its final position.

Note that since C has minimum distance ≥ 2, it is impossible for
two codewords in C to become equal when their final position is
removed. So C ? has the same size as C .

Example 8.2

Let C be the binary code whose codewords are all binary words of
length 4 with an even number of 1s. Let C ? be the code obtained
by puncturing C in its final position. Then

C = {0000, 1100, 1010, 0110, 1001, 0101, 0011, 1111}
C ? = {000, 110, 101, 011, 100, 010, 001, 111}

Thus C has minimum distance 2 and C ? has minimum distance 1.



Extra Example using the MOLS code from Example 7.4
Recall that starting from the MOLS

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

00 11 22 33
12 03 30 21
23 32 01 10
31 10 13 02

we obtained a 4-ary (4, 16, 3)-code

0000 0111 0222 0333 1012 1103 1230 1321

2023 2132 2201 2310 3031 3120 3213 3302.

Let u,w ∈ C be distinct. If we puncture u and w twice we get
distinct words, since d(u,w) ≥ 3.

So puncturing C twice, in any two positions, gives the code
containing all q-ary codewords of length 2. For example puncture
in second and final position:

00 01 02 03 11 10 13 12

22 23 20 21 33 32 31 30.
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00 11 22 33
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23 32 01 10
31 10 13 02

we obtained a 4-ary (4, 16, 3)-code

0000 0111 0222 0333 1012 1103 1230 1321

2023 2132 2201 2310 3031 3120 3213 3302.

Let u,w ∈ C be distinct. If we puncture u and w twice we get
distinct words, since d(u,w) ≥ 3.

So puncturing C twice, in any two positions, gives the code
containing all q-ary codewords of length 2. For example puncture
in third and final position:

00 11 22 33 12 03 30 21

23 32 01 10 31 20 13 02.



Singleton Bound

Lemma 8.3
Let C be a code of length n and minimum distance d. The
punctured code C ? has length n − 1 and minimum distance
≥ d − 1.

Theorem 8.4 (Singleton Bound)

If C is a q-ary code of length n and minimum distance d then
|C | ≤ qn−d+1. Hence Aq(n, d) ≤ qn−d+1.



Remarks 8.5

(1) If n = 4 and d = 3 then the Singleton bound gives
Aq(4, 3) ≤ q4−3+1 = q2. The codes constructed by MOLs
achieve the bound. So there is a pair of MOLs of order q if
and only if Aq(4, 3) = q2.

(2) The Reed–Solomon codes constructed in the MSc/MSci
course achieve the Singleton bound. They show that
Aq(n, d) = qn−d+1 whenever q is a prime power and q ≥ n.

(3) The special case of the Singleton bound when d = n is

Aq(n, n) ≤ q.

This was proved in Lemma 6.1(ii) by putting codewords into
pigeonholes according to their first position. A similar
argument can be used to prove the general Singleton bound:
see Questions 3 and 7 [not 6] on Sheet 5.



§9 Hadamard Codes and the Plotkin Bound

Hadamard codes are a family of binary codes that have high
minimum distance and so can detect and correct many errors. We
shall see that, like the codes constructed from MOLs, Hadamard
codes have the largest possible size for their length and minimum
distance.

Hadamard codes are constructed using certain matrices with
entries +1 and −1.

Definition 9.1
Let n ∈ N. A Hadamard matrix of order n is an n × n matrix H
such that each entry of H is either +1 or −1 and HHtr = nI . Here
I is the n× n identity matrix and Htr is the transpose matrix of H.



Example 9.2

If H =

(
1 1
1 −1

)
then H is a Hadamard matrix of order 2. Two

Hadamard matrices of order 4 are shown below; in these matrices
we write + for 1 and − for −1.




+ + + +
+ − + −
+ + − −
+ − − +


 ,




+ + + −
+ + − +
+ − + +
− + + +


 .

Except for the 1× 1 matrices (+1) and (−1), all Hadamard
matrices have even order.

Lemma 9.3
Suppose H is a Hadamard matrix of order n where n ≥ 2. If i ,
k ∈ {1, 2, . . . , n} and i 6= k then row i and row k of H are equal in
exactly n/2 positions.
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From Hadamard Matrices to Codes

The connection with coding theory is as follows.

Theorem 9.4
Suppose that H is a Hadamard matrix of order n ≥ 2. Let B be
the 2n × n matrix defined by

B =

(
H
−H

)
.

The rows of B are the codewords in a (n, 2n, n/2)-code over the
alphabet {+,−}.

We say that any code given by the construction in Theorem 9.4 is
a Hadamard code. These codes can be converted into binary codes
over the usual alphabet of bits {0, 1} by replacing each + with 0
and each − with 1.



Example of a Hadamard Code

Example 9.5

Let

H =




+ + + −
+ + − +
+ − + +
− + + +


 .

The construction in Theorem 9.4 gives the binary code with
codewords

0001 0010 0100 1000

1110 1101 1011 0111.



Example 1.14: Mariner 9

The Mariner 9 probe, launched in 1971, took the first pictures of
Mars, ultimately transmitting 7239 pictures at a resolution of
700× 832 pixels. The images were grey-scale, using 64 = 26

different shades of grey.

I The probe did not have the internal memory to store even one
image, so the image had to be transmitted as it was captured.

I The pictures were transmitted back to Earth by sending one
pixel at a time, so we can think of a message as a single
number between 0 and 63.

I The channel could send the two binary digits 0 and 1. The
probability of each bit being flipped in the channel was about
0.05.

I Had each pixel been encoded using 6 bits, about 26% of the
image would have been wrong.



Codes for Mariner 9

It was acceptable for each pixel to be encoded by up to 32 bits, so
increasing the amount of data to be stored and transmitted by a
factor of 5.

A repetition code where each of the 6 bits needed to specify a grey
level was repeated 5 times would reduce the percentage of
incorrect pixels to less than 4%.

Instead a (32, 64, 16)-Hadamard code was used. Since the
minimum distance is 16, by Theorem 4.5(ii), the code is 7-error
correcting. This reduced the percentage of incorrect pixels to
about 0.014%.

Importantly, there was a way to do nearest neighbour decoding on
received words that was fast even on the primitive computers
available in the 70s.

The next slide shows a Mariner 9 as it might have been received
had each pixel been encoded as a 6 bit binary word, without any
attempt at error correcting.
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incorrect pixels to less than 4%.

Instead a (32, 64, 16)-Hadamard code was used. Since the
minimum distance is 16, by Theorem 4.5(ii), the code is 7-error
correcting. This reduced the percentage of incorrect pixels to
about 0.014%.

Importantly, there was a way to do nearest neighbour decoding on
received words that was fast even on the primitive computers
available in the 70s.

The next slide shows a Mariner 9 as it might have been received
had each pixel been encoded as a 6 bit binary word, without any
attempt at error correcting.



Mariner 9 Image: Using One Word of Length 6 Per Pixel



Mariner 9 Image: Using Hadamard Code of Length 32



The Mariner 9 Code
32 of the 64 Mariner 9 codewords: � = 0 and � = 1. Suppose we
receive the word below. How should we do nearest neighbour
decoding? Comparing with all 64 codewords takes some time . . .



Plotkin Bound

The Singleton bound is often the strongest bound for codes over a
large alphabet, but for a binary (2d ,M, d)-code it only gives the
bound M ≤ 2d+1. The following result leads to a stronger bound
on A2(2d , d).

Theorem 9.6 (Plotkin bound)

Let n, d ∈ N be such that 2d > n. Then

A2(n, d) ≤ 2d

2d − n
.

Exercise: Use the Plotkin bound to prove that A2(9, 6) = 4. Can
the Plotkin bound be used to show that A2(8, 5) = 4?



Hadamard Codes are as Large as Possible

A related bound is attained by Hadamard codes.

Corollary 9.7 (Another Plotkin bound)

If d ∈ N then
A2(2d , d) ≤ 4d .

If there is a Hadamard matrix of order 2d then

A2(2d , d) = 4d .

It is quite easy to show that if there is a Hadamard matrix of
order n then either n = 1, or n = 2 or n is divisible by 4. It is a
major open problem to show that there are Hadamard matrices of
all orders divisible by 4.

There is also a related ‘asymptotic’ Plotkin bound, which states
that A2(n, d) ≤ 2n−2d+1n for all n and d .
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Example of Corollary 9.7

To see how the arguments works we take the Hadamard matrix of
order 8 shown below. (This matrix comes from the ‘doubling’
construction in Question 2 of Sheet 6 by doubling the Hadamard
matrix of order 4 seen on Monday.) Black squares show +1 and
white squares show −1.

Example of Corollary 9.7

To see how the argument works we take the Hadamard matrix of
order 8 shown below. (This comes from the ‘doubling’
construction on Question 2 Sheet 6.) Recall that black squares
show +1 and white squares show �1.



Example of Corollary 9.7

The corresponding code has 16 codewords and minimum
distance 4.

Example of Corollary 9.7

The corresponding code has 16 codewords and minimum
distance 4.
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� ⇥ � ⇥ � ⇥ � ⇥
� � ⇥ ⇥ � � ⇥ ⇥
� ⇥ ⇥ � � ⇥ ⇥ �
� � � � ⇥ ⇥ ⇥ ⇥
� ⇥ � ⇥ ⇥ � ⇥ �
� � ⇥ ⇥ ⇥ ⇥ � �
� ⇥ ⇥ � ⇥ � � ⇥
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⇥ � ⇥ � ⇥ � ⇥ �
⇥ ⇥ � � ⇥ ⇥ � �
⇥ � � ⇥ ⇥ � � ⇥
⇥ ⇥ ⇥ ⇥ � � � �
⇥ � ⇥ � � ⇥ � ⇥
⇥ ⇥ � � � � ⇥ ⇥
⇥ � � ⇥ � ⇥ ⇥ �

There are 8 codewords ending in +1 (black) and 8 codewords
ending �1 (white) so we can take either subset.

There are 8 codewords ending +1 (black) and 8 codewords ending
−1 white, so we can take either set.
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Example of Corollary 9.7

Taking the 8 codewords ending +1 (black) gives this code.
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We then puncture to remove the final constant position. In the
last step of the proof we applied the Plotkin bound to the resulting
code of length 7 and minimum distance 4.

We then puncture to remove the final constant position. In the
last step of the proof we apply the Plotkin Bound to the resulting
code of length 7 and minimum distance 4. (In this example, this
code is as large as possible.)
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§10 Gilbert–Varshamov Bound

Recall from Definition 4.7 that the Hamming ball of radius t about
a binary word u ∈ {0, 1}n was defined by

Bt(u) = {v ∈ {0, 1}n : d(u, v) ≤ t}.

The idea in the next theorem is to construct a code of minimum
distance d in the most näıve way possible: we put in new
codewords until the Hamming balls of radius (d − 1) about
codewords cover {0, 1}n, and so every word is distance ≤ (d − 1)
from some codeword.

Theorem 10.1 (Gilbert–Varshamov bound)

If n, d ∈ N then

A2(n, d) ≥ 2n
∑d−1

k=0

(n
k

) .
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Question 3 Sheet 4

A binary code C of length n is said to be perfect if there exists
e ∈ N such that

{0, 1}n =
⋃

u∈C
Be(u)

where the union is disjoint. (In words: the Hamming balls of radius
e about codewords are disjoint, and every binary word of length n
is in one of these balls.)

(a) Show that if n is odd then the binary repetition code of length
n is perfect.

(b) Show that if C is a perfect binary code of length n with e = 1
then C is 1-error correcting and n = 2m − 1 for some m ∈ N.
Express |C | in terms of m. [You may use any general results
proved earlier in the course.]

(c) (Optional) Show that any perfect binary code has odd
minimum distance.



Part C: Linear codes

§11 Linear Codes and Weights

From now on the alphabet of of bits {0, 1} should be thought of
as Z2, that is, the integers modulo 2. So we have

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0.

Binary words of length n are elements of Zn
2. Given

u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) ∈ Zn
2, we define

(u1, u2, . . . , un) + (v1, v2, . . . , vn) = (u1 + v1, u2 + v2, . . . , un + vn).

Definition 11.1
Let C be a binary code of length n. We say that C is linear if for
all u,w ∈ C we have u + w ∈ C .



Example 11.2

(1) The length 5 code {00000, 11100, 00111, 11011} is linear.

(2) For any n ∈ N, the binary repetition code of length n is a
linear (n, 2, n)-code.

(3) For any n ∈ N, the code of size 2n consisting of all binary
words of length n is a linear (n, 2n, 1)-code.

(4) Let C be all binary words of length 4. As in Example 2.9,
let Cext be the code obtained by adding an extra bit at the
end of each codeword to make the total number of 1s in each
codeword even. Then, Cext is a (5, 16, 2)-code and

Cext = {(u1, u2, u3, u4, u5) ∈ Z5
2 : u1 + u2 + u3 + u4 + u5 = 0}.

We will show that Cext is linear.

Exercise: Show that the Square Code (see Question 2 on the
Preliminary Problem Sheet) is linear.
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(b) Starting from the 2× 2 Hadamard matrix

(
+ +
+ −

)

use (a) to construct Hadamard matrices with orders 4 and 8.
Hence write down the codewords in (i) a binary (4, 8, 2) code
and (ii) a binary (8, 16, 4)-code.

(c) Use nearest neighbour decoding to decode (where possible)
the received words 01010111, 10011110 and 11000000 sent
using the code in (b)(ii).

(d) Use (b)(ii) to show that there is a binary (7, 16, 3)-code.
Deduce from the Hamming Packing Bound that
A2(7, 3) = 16.

(e) Using (b)(ii) and the Plotkin bound, prove that A2(7, 4) = 8.



Sheet 6, Question 2

From Hadamard matrix of order 8 to (8, 16, 4)-code

Example of Corollary 9.7

To see how the argument works we take the Hadamard matrix of
order 8 shown below. (This comes from the ‘doubling’
construction on Question 2 Sheet 6.) Recall that black squares
show +1 and white squares show �1.



Sheet 6, Question 2

From Hadamard matrix of order 8 to (8, 16, 4)-code

Example of Corollary 9.7

The corresponding code has 16 codewords and minimum
distance 4.

� � � � � � � �
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⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ � ⇥ � ⇥ � ⇥ �
⇥ ⇥ � � ⇥ ⇥ � �
⇥ � � ⇥ ⇥ � � ⇥
⇥ ⇥ ⇥ ⇥ � � � �
⇥ � ⇥ � � ⇥ � ⇥
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⇥ � � ⇥ � ⇥ ⇥ �

There are 8 codewords ending in +1 (black) and 8 codewords
ending �1 (white) so we can take either subset.
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From Hadamard matrix of order 8 to (8, 16, 4)-code

Example of Corollary 9.7

The corresponding code has 16 codewords and minimum
distance 4.

� � � � � � � �
� ⇥ � ⇥ � ⇥ � ⇥
� � ⇥ ⇥ � � ⇥ ⇥
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There are 8 codewords ending in +1 (black) and 8 codewords
ending �1 (white) so we can take either subset.

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0

So we have a (8, 16, 4)-code. By taking all the codewords
starting 0 and puncturing the first position we get a (7, 8, 4)-code.
(Or take all codewords ending 1 and puncture in final position, or . . . )

What does this say about A2(7, 4)?



Hamming Distance under Addition

The next lemma shows that Hamming distance behaves well under
addition.

Lemma 11.3
Let u, w be binary words of length n ∈ N. For any binary word
v ∈ Zn

2 we have

d(u,w) = d(u + v ,w + v).

Recall that the weight of a binary word u was defined just before
Lemma 6.6 to be the number of positions of u equal to 1.

Lemma 11.4
Let C be a linear binary code. The minimum distance of C is equal
to the minimum weight of a non-zero codeword of C .



Quiz on Lemma 11.4
To find the minimum distance of a code C we have to think about
d(u,w) for all distinct u,w ∈ C . If C is linear it is much easier to
find

min{wt(u) : u ∈ C , u 6= 0}
and then apply Lemma 11.4.

Recall that the square code has codewords

(u1, u2, u3, u4, u1 + u2, u3 + u4, u1 + u3, u2 + u4)

for u1, u2, u3, u4 ∈ Z2, represented by

u1 u2 u1 + u2
u3 u4 u3 + u4

u1 + u3 u2 + u4

What is the minimum weight of a non-zero codeword?

(a) 1 (b) 2 (c) 3 (d) 4



Parity Check Extensions

The last result in this section generalises the parity check extension
codes seen in Example 2.9 and Example 11.2(2). For an optional
related result see Questions 6 and 7 on Sheet 4.

Definition 11.5
Let C be a binary code of length n. The parity check extension of
C is the code Cext of length n + 1 defined by

Cext = {(u1, . . . , un, un+1) : (u1, . . . , un) ∈ C , u1+· · ·+un+un+1 = 0.}

Theorem 11.6
Let C be a linear binary (n,M, d)-code. Then Cext is a linear
binary code of length n + 1 and size M. The minimum distance of
Cext is d if d is even and d + 1 if d is odd.



Example of Theorem 11.6

Suppose we start with the binary square code S , which is a
(8, 16, 3)-code. To form the parity check extension we take each
codeword

u1 u2 u1 + u2
u3 u4 u3 + u4

u1 + u3 u2 + u4

and append a final bit to make the weight even.

The codewords in
the parity check extension of S can be represented as

u1 u2 u1 + u2
u3 u4 u3 + u4

u1 + u3 u2 + u4 u1 + u2 + u3 + u4

and the minimum distance of the extended code is 4.
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§12 Bases, Generator Matrices and Encoding

In this section we will see an efficient way to encode using a linear
binary code. The next exercise shows the basic idea.

Exercise: Suppose that u(1), . . . , u(k) are codewords in a linear
binary code C . Show that if c1, c2, . . . , ck ∈ Z2, then
c1u(1) + · · ·+ cku(k) is a codeword in C and

c1u(1) + · · ·+ cku(k) =
(
c1, . . . , ck

)



u(1)
...

u(k)


 .

This suggests an encoding strategy where we first convert
messages to binary words of length k , and then encode the binary
word (c1, . . . , ck) as the codeword c1u(1) + · · ·+ cku(k) ∈ C .



Mariner 9

Example 12.1

(For interest only.) The binary (32, 64, 16)-Hadamard code used by
Mariner 9 is linear. The encoder used the idea just outlined, with
the matrix G shown below.




1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




To encode a pixel whose blackness is represented by the number
m ∈ {0, 1, . . . , 63}, write m in binary as b5b4b3b2b1b0 and then
encode it as

(b5, . . . , b1, b0)G .

For example, since 34 is 100010 in binary, 34 is encoded as the
codeword

(1, 0, 0, 0, 1, 0)G = 01010101010101011010101010101010.



Bases

To make this encoding scheme work, it is essential to make a
careful choice of u(1), . . . , u(k).

Definition 12.2
Let C be a linear binary code of length n. We say that words
u(1), . . . , u(k) ∈ Zn

2 are

(a) linearly independent if the only solution to the equation

c1u(1) + · · ·+ cku(k) = 0

with c1, . . . , ck ∈ Z2 is c1 = c2 = . . . = ck = 0.

(b) span C if for every w ∈ C there exist c1, . . . , ck ∈ Z2 such
that

w = c1u(1) + · · ·+ cku(k).

(c) a basis of C if they are linearly independent and span C .



Example 12.3

(1) Let C = {00000, 11100, 00111, 11011}, as in Example 11.2(1)
Then a basis for C is 11100, 00111. If we take

G =

(
1 1 1 0 0
0 0 1 1 1

)
,

the codewords in C are (0, 0)G , (0, 1)G , (1, 0)G and (1, 1)G .

(2) Let Cext be the parity check extension of all binary words of
length 4, considered in Example 11.2(4). Then

10001, 01001, 00101, 00011

is a basis for Cext.

It is very important to note that a linear binary code
usually does not have a unique basis.

Exercise: Find a different basis for Cext.



Adminstration

Please take Problem Sheet 8. Note deadline is Tuesday 19 March.

On Tuesday I intended to write

c1(1, 1, 1, 0, 0) + c2(0, 0, 1, 1, 1) + c3(1, 1, 0, 1, 1) = (0, 0, 0, 0, 0)

and state that this holds when c1 = c2 = c3 = 1. Some of c1, c2,
c3 were written as u1, u2, u3.



What Good is a Basis?

Definition 12.4
Suppose that C is a linear binary code of length n and minimum
distance d . If u(1), . . . , u(k) is a basis of C then we say that C
has dimension k and that C is a [n, k, d ]-code.

Thus a linear binary (n, 2k , d)-code is a [n, k , d ]-code. The codes
in Example 12.3 have parameters [5, 2, 3] and [5, 4, 2], respectively.

The next result connects dimension with the rate of a binary code,
as defined in Definition 1.10.

Theorem 12.5
Let C be a linear binary code having u(1), . . . , u(k) as a basis. For
each w ∈ C there exist unique c1, . . . , ck ∈ Z2 such that

w = c1u(1) + · · ·+ cku(k).

Hence |C | = 2k and the rate of C is k/n.



Quiz on Linear Codes

Let

C = {000, 011, 110, 101}
D = {100, 010, 001, 111}
E = {000, 011}
F = {000, 011, 110}

Which are the linear binary codes?

(1) C only (2) E and F only (3) C and E only (4) E only



Generator Matrices

The matrices used in Example 12.3 are generator matrices, as
defined in the following definition.

Definition 12.6
Suppose that C is a linear binary code of length n having
u(1), . . . , u(k) ∈ Zn

2 as a basis. The k × n matrix




u(1)
...

u(k)




is said to be a generator matrix for C .



Using Row-Operations to Find a Basis

Example 12.7

Let C be the linear code of length 7 spanned by the codewords
1100110, 1011010, 0110011, 0001111. These codewords are not
linearly independent. We can demonstrate this, and find a basis
and generator matrix for C , by applying row operations to the
matrix 



1 1 0 0 1 1 0
1 0 1 1 0 1 0
0 1 1 0 0 1 1
0 0 0 1 1 1 1


 .



Encoding Using Generator Matrices

Example 12.8

Let C be the linear code in Example 12.7. We saw that C has
generator matrix

G =




1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1




so C has dimension 3 and size 23. To encode the number 7 we
write 7 in binary as 111 and take the codeword

(1, 1, 1)




1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


 = (1, 1, 0, 1, 0, 0, 1)

In general, the number 4b2 + 2b1 + b0, written in binary as b2b1b0,
is encoded as

(b2, b1, b2 + b1, b0, b2 + b0, b1 + b0, b0 + b1 + b2).



Sheet 7: all work in green folder. Answers on Moodle.

Sophie Christiansen will unveil a new plaque on the golden postbox
at 11am tomorrow (Tuesday).



Quiz on Generator Matrices

Let C be the linear binary code with generator matrix

G =




0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1




What is the size of C?

(a) 4 (b) 8 (c) 16 (d) 37

What is the minimum distance of C?

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

How would 7 be encoded using the generator matrix G?

(a) 01111 (b) 11100 (c) 10001 (d) 10101



Standard Form for Generator Matrices

Definition 12.9
A generator matrix (

Ik A
)

where Ik is the k × k identity matrix and A is a k × (n− k) matrix
is said to be in standard form.

Theorem 12.10
Let C be a linear binary code of length n and dimension k. Then
C is equivalent, by a permutation of the positions in the
codewords, to a code with a generator matrix in standard form

(
Ik A

)

where A is an k × (n − k)-matrix.



Standard Form Generator Matrix For Square Code
Question 1(c) on Sheet 7 asked for a basis of the square code. The
codewords encoding 1, 2, 4 and 8 give a basis.

8 7→ (1, 0, 0, 0, 1, 0, 1, 0)

4 7→ (0, 1, 0, 0, 1, 0, 0, 1)

2 7→ (0, 0, 1, 0, 0, 1, 1, 0)

1 7→ (0, 0, 0, 1, 0, 1, 0, 1)

The corresponding generator matrix is

G =




1 0 0 0 1 0 1 0
0 1 0 0 1 0 0 1
0 0 1 0 0 1 1 0
0 0 0 1 0 1 0 1




which is in standard form. Note that the square code has 24 = 16
codewords. The codewords in the chosen basis are NOT the whole
code!



§13 Decoding by Standard Arrays

In this section we shall see a way to implement nearest neighbour
decoding for linear codes that exploits their special structure.

Definition 13.1
Let C be a linear binary code of length n. A coset of C is a set of
the form

C + v = {u + v : u ∈ C}
where v ∈ Zn

2.

Note that if v ∈ Zn
2 then, since 0 ∈ C , we have v = 0 + v and so

v ∈ C + v . Hence the coset containing v is C + v .



Example 13.2

Let C be the linear binary code

C = {0000, 1110, 0011, 1101}

obtained by puncturing (see Definition 8.1) the code in
Example 12.3(1) in its final position. If we send the codewords
through a channel that corrupts position 1 every time, then the
received words are

C + 1000 = {1000, 0110, 1011, 0101}.

The other possible one bit errors give cosets

C + 0100 = {0100, 1010, 0111, 1001},
C + 0010 = {0010, 1100, 0001, 1111},
C + 0001 = {0001, 1111, 0010, 1100}.

We also have the coset C + 0000 = C .



Example 13.2
Cosets of C were

C = {0000, 1110, 0011, 1101}
C + 1000 = {1000, 0110, 1011, 0101},
C + 0100 = {0100, 1010, 0111, 1001},
C + 0010 = {0010, 1100, 0001, 1111}.

Suppose that u ∈ C is sent and v ∈ Z4
2 is received such that

v ∈ C + 0010. For example, v = 1100.

I We might be tempted to think that an error had occurred in
position 3.

I But since C + 0001 = C + 0010, we also have v ∈ C + 0001.
So the same argument would suggest that the error is in
position 4.

I And it could be that more errors occurred. For instance
C + 0001 = C + 0010 = C + 1100. So it could be that
u = 0000 and two errors occurred.
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I And it could be that more errors occurred. For instance
C + 0001 = C + 0010 = C + 1100. So it could be that
u = 0000 and two errors occurred.



Cosets are Either Equal or Disjoint

Exercise: Let C be a linear binary code of length n. Show that if
v ∈ Zn

2 then C + v = C + (u + v) for all u ∈ C .

Lemma 13.3
Let C be a linear binary code of length n. If C + v and C + v ′ are
cosets of C then either C + v = C + v ′ or the cosets C + v and
C + v ′ are disjoint.

Exercise: Check that each binary word of length 4 is in a unique
coset of the code in Example 13.2.



Standard Arrays

Definition 13.4
Let C be a linear binary code of length n. A standard array for C
is a table in which each row consists of the codewords in a coset of
C , arranged so that

(i) the first row is C ;

(ii) if the word x appears in the first column then wt(x) ≤ wt(v)
for all v in the row of x .

The first word in each row is said to be a coset leader. To decode
a received word v ∈ Zn

2 by standard array decoding, decode v as
v + x where x is the coset leader for the row containing v .



Standard Arrays

Example 13.5

A standard array for the code C in Example 13.2 is

0000 1110 0011 1101
1000 0110 1011 0101
0100 1010 0111 1001
0010 1100 0001 1111

Note that we could also taken the fourth row to be

0001 1111 0010 1100

with 0001 as the coset leader, since both 0010 and 0001 have
weight 1. The other coset leaders 0000, 1000 and 0100 are
uniquely determined by their cosets.



Justification for Nearest Neighbour Decoding

Theorem 13.6
Let C be a linear binary code of length n. Let v ∈ Zn

2. Suppose
that the row containing v has coset leader x. Then v + x ∈ C and

d(v + x , v) ≤ d(u, v)

for all u ∈ C.

In the proof we used that

d(v + x , v) = wt(x)

d(u, v) = wt(u + v).

So v + x is the unique nearest codeword to v if and only if x is the
unique word of minimum weight in the coset C + v .

This shows that standard array decoding implements nearest
neighbour decoding when there is a unique possible coset leader. If
there are several coset leaders then nearest neighbour decoding
fails.
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neighbour decoding when there is a unique possible coset leader. If
there are several coset leaders then nearest neighbour decoding
fails.



Incomplete Decoding for {0000, 1110, 0011, 1101}

Decoding Strategy: use standard array decoding if the received
word v is in one of the three coset with a unique choice of leader.
If v ∈ C + 0010 = C + 0001 then request retransmission.

0000 1110 0011 1101
1000 0110 1011 0101
0100 1010 0111 1001
0010 1100 0001 1111

Since A2(4, 3) = 2, the largest 1-error correcting code of size 4 has
size 2. This decoding strategy shows that if we are willing to
request transmission (or make a guess) for two of the four possible
errors in one position, then we can use a code of size 4 instead.
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0000 1110 0011 1101
1000 0110 1011 0101
0100 1010 0111 1001
0010 1100 0001 1111

Since A2(4, 3) = 2, the largest 1-error correcting code of size 4 has
size 2. This decoding strategy shows that if we are willing to
request transmission (or make a guess) for two of the four possible
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§14 Parity Check Matrices and Syndrome Decoding

All the linear codes we have seen so far can be defined by linear
equations. For instance, the code Cext consisting of all binary
words of length 5 with evenly many 1s can be defined by

Cext = {(u1, u2, u3, u4, u5) ∈ Z5
2 : u1 + u2 + u3 + u4 + u5 = 0}

and the square code can be defined by

S =

{
(u1, u2, u3, u4, u5, u6, u7, u8) ∈ Z8

2 :
u1 + u2 = u5, u3 + u4 = u6
u1 + u3 = u7, u2 + u4 = u8

}



Definition 14.1
Let C be a linear binary code of length n and dimension k . A
parity check matrix for C is an (n − k)× n matrix H with linearly
independent rows such that for each u ∈ Zn

2 we have

u ∈ C ⇐⇒ uHtr = 0.

Here 0 is the all-zeros word of length n − k .

Example 14.2

(1) The code Cext has parity check matrix

(
1 1 1 1 1

)
.

(2) Let S be the square code. Then S has as a parity check matrix




1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1


 .



Decoding for Square Code Using Parity Check Matrix
To perform the decoding algorithm for the square code seen earlier
in the course, we record which linear equations are not satisfied,
and then try to flip a single bit (or two if necessary) to make all of
them hold.

Exercise: For each of the following received words, decide which of
the four defining equations for the square code fail to hold.
Decode each word by nearest neighbour decoding.

(Flips bits to make all equations hold, but watch out for failure
when two codewords are equally close.)

(i) 10001100 (ii) 11001011 (iii) 11000000 (iv) 10011001

u1 u2 u5
u3 u4 u6

u7 u8



Every Linear Code can be Defined by Linear Equations

Theorem 14.3
Let C be a linear binary code of length n and dimension k. Then
C has a parity check matrix. Moreover, if C has a generator matrix
G in standard form G =

(
Ik A

)
then

(
Atr In−k

)

is a parity check matrix for C .

For example, if G =
(
Ik A

)
is the standard form generator matrix

for the square code, then applying Theorem 14.3 to G , we get the
parity check matrix already found in Example 14.2(2).

H =




1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1


 .



Dual Codes

Definition 14.4
Let C be a linear binary code of length n and dimension k and
let H be a parity check matrix for C . The dual code C⊥ is the
linear binary code of length n and dimension n − k with generator
matrix H.

Example 14.5

Let Cext be as in Example 14.2(1). Then

C⊥ext = {00000, 11111}

is the binary repetition code of length 5, and

{00000, 11111}⊥ = Cext.



Hamming Code Defined by a Parity Check Matrix

Example 14.6

Let

H =




1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1




and let C = {u ∈ Z7
2 : uHtr = 0}. Then C is a linear binary code

with parity check matrix H and generator matrix

G =




1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1


 .

By Lemma 11.4, the minimum distance of C is equal to the
minimum weight of a non-zero codeword. Clearly there are
codewords of weight 3 in C , so to show C has minimum distance
3, it suffices to show there are no codewords of weight 1 or 2. This
can be done using H.

The method used in Example 14.6 to find the minimum distance of
C has an important generalization. This theorem is
non-examinable, and will be skipped if time is pressing.



Minimum Distance from a Parity Check Matrix

Theorem 14.7
Let C be a linear binary code of length n and dimension k. Let H
be a parity check matrix for C . The minimum distance of C is
equal to the minimum r ∈ N such that there exist r linearly
dependent columns of H.



Syndromes

Theorem 14.8
Let C be a linear binary code of length n and dimension k with
parity check matrix H and let v , v ′ ∈ Zn

2. Then v and v ′ are in the
same coset of C ⇐⇒ vHtr = v ′Htr .

This theorem motivates the following definition.

Definition 14.9
Let C be a linear binary code of length n and dimension k with
parity check matrix H. The syndrome of a word v ∈ Zn

2 is defined
to be vHtr ∈ Zn−k

2 .

By Theorem 14.8 we can identify the coset of C containing a word
v ∈ Zn

2 from its syndrome vHtr . So to decode a received word v ,
calculate its syndrome vHtr , and then decode v as v + x where x
is the chosen coset leader for the coset C + v containing v .
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Decoding Square Code using Syndromes

Here is the table from Monday with an extra column showing the
syndromes vHtr computed using the parity check matrix

H =




1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1


 .

Received
word v

Equations
failing

Syndrome
vHtr

Error Closest
codewords

10001100 2 and 3 (0,1,1,0) 00100000 10101100

11001011 1 (1,0,0,0) 00001000 11000011

11000000 3 and 4 (0,0,1,1) 11000000 or
00110000 or
00000011

00000000 and
11110000 and
11000011

10011001 2 and 3 (0,1,1,0) 00100000 10111001



Example 14.10

Let C = {0000, 1110, 0011, 1101} be the code used in
Examples 13.2 and 13.5. Then C has parity check matrix

H =

(
1 1 0 0
0 1 1 1

)
.

By Theorem 14.8, any two words in the same coset of C have the
same syndrome. The map from cosets of C to syndromes is

C 7→ (0, 0, 0, 0)Htr = (0, 0)

C + (1, 0, 0, 0) 7→ (1, 0, 0, 0)Htr = (1, 0)

C + (0, 1, 0, 0) 7→ (0, 1, 0, 0)Htr = (1, 1)

C + (0, 0, 1, 0) 7→ (0, 0, 1, 0)Htr = (0, 1).

Thus all words in C + 1000 = {1000, 0110, 1011, 0101} have
syndrome (1, 0), and if any of the words 1000, 0110, 1011, 0101 is
received, it will be decoded by adding 1000, since this is the unique
coset leader in the coset C + 1000.



Example 14.10 [continued]

Using syndrome decoding we can replace the standard array in
Example 13.5 with the more concise table below.

syndrome chosen coset leader

00 0000
10 1000
01 0010
11 0100

We saw in Section 13 that the main defect of the code C is that
C + 0010 = C + 0001. Correspondingly, the single bit errors 0010
and 0001 have the same syndrome

(0, 0, 1, 0)Htr = (0, 0, 0, 1)Htr = (0, 1).



Syndrome Decoding for Hamming [7,4,3]-code

Example 14.11

Let C , G and H be as in Example 14.6. Let e(i) be the word with
a 1 in position i and 0 in all other positions. The syndrome of e(i)
is e(i)Htr , which is the ith row of Htr .

The columns of H are distinct and non-zero, so by Lemma 13.3
(cosets are disjoint) and Theorem 14.8 (syndromes correspond
to cosets) we have

Z7
2 = C ∪

(
C + e(1)

)
∪ · · · ∪

(
C + e(7)

)

where the union is disjoint.

To decode a received word v , we calculate its syndrome vHtr . If
vHtr is the ith row of Htr then vH = e(i)Htr and, by Theorem
14.8, v ∈ C + e(i). So we decode v as v + e(i).



Example 14.11 [continued]

For example, to use C to send the number 13, we would write 13
as 1101 in binary, and encode it as

(1, 1, 0, 1)G = (1, 0, 1, 0, 1, 0, 1).

Suppose that when we transmit 1010101, an error occurs in
position 6, so 1010111 is received. Then the syndrome of the
received word is

(1, 0, 1, 0, 1, 1, 1)Htr = (0, 1, 1)

which is row 6 of Htr . So we decode by flipping the bit in position
6 to get 1010101. We then read off 1101 from positions 3, 5, 6
and 7.



A 7 Question Strategy from the Hamming Code

Here are the questions for the liar game corresponding to the
Hamming [7, 4, 3]-code.

1. Is your number in {1, 3, 4, 6, 8, 10, 13, 15}?
2. Is it in {1, 2, 5, 6, 8, 11, 12, 15}?
3. Is it in {8, 9, 10, 11, 12, 13, 14, 15}?
4. Is it in {1, 2, 4, 7, 9, 10, 12, 15}?
5. Is it in {4, 5, 6, 7, 12, 13, 14, 15}?
6. Is it in {2, 3, 6, 7, 10, 11, 14, 15}?
7. Is it in {1, 3, 5, 7, 9, 11, 13, 15, 17}?



Questionnaires

Please take the questionnaires seriously. The batch number is
965029. Your course code is either MT361 or MT461 or MT5461.

17. For this course, Library study space met my needs.

18. The course books in the Library met my needs for this course.

19. The online Library resources met my needs for this course.

20. I was satisfied with the Moodle elements of this course.

21. I received feedback on my work within the 4 week norm
specified by College.

Please write any further comments on the back of the form. (In
particular, please answer the old version of Q17: whether you
found the speed too fast, too slow, or about right.)


