
THEORY OF ERROR CORRECTING CODES MT461/MT5461

MARK WILDON

These notes cover the part of the syllabus for MT461/MT5461 that is not
part of MT361. Further installments will be issued as they are ready. All
handouts and problem sheets will be put on the MT361 Moodle page,
marked MSc/MSci.

I would very much appreciate being told of any corrections or possible
improvements to these notes.

You are warmly encouraged to ask questions in lectures, and to talk to
me after lectures and in my office hours. I am also happy to answer
questions about the lectures or problem sheets by email. My email ad-
dress is mark.wildon@rhul.ac.uk.

Lecture times: Monday 3pm (MFLEC), Tuesday 3pm (BLT2) and Thurs-
day 10am (BLT2).

Extra lecture for MT461/MT5461: Thursday noon (ABLT3).

Office hours in McCrea 240: Tuesday 11am, Thursday 2pm and Fri-
day 11am.

Date: Second term 2012/13.

2

OVERVIEW

The extra content on the syllabus for MT5461 is on Reed–Solomon
codes and cyclic codes over finite fields. These codes are examples of
the linear codes that will be covered in Part C of the main lectures.

We will first look at the original definition of Reed–Solomon codes,
and see one efficient decoding algorithm. Then in the second half of
the term we will look at cyclic codes in general, and make the connec-
tion with Reed–Solomon codes. We will end by defining the important
family of BCH codes.

1. REVISION OF FIELDS AND POLYNOMIALS

Most good codes make use of the algebraic structure of finite fields
and polynomial rings. For example, the Reed–Solomon code used on
compact discs has as its alphabet the finite field of order 28. This is a
convenient choice because it means that each symbol fits exactly into a
single 8-bit byte on a computer.

This section should give enough background for most of the course,
but if you have not seen finite fields of prime power order then you will
have to take one or two results on trust towards the end.1 Proofs in this
section are non-examinable. The examination will only require finite
fields of prime order.

FIELDS. A field is a set in which one can add, subtract and multiply
any two elements, and also divide by non-zero elements. Examples of
familiar infinite fields are the rational numbers Q and the real numbers
R. If p is a prime, then the set Fp = {0, 1, . . . , p− 1}, with addition and
multiplication defined modulo p is a finite field: see Theorem 1.3.

Definition 1.1. A field is a set of elements F with two operations, +
(addition) and × (multiplication), and two special elements 0, 1 ∈ F
such that 0 6= 1 and

(1) a + b = b + a for all a, b ∈ F;
(2) 0 + a = a + 0 = a for all a ∈ F;
(3) for all a ∈ F there exists b ∈ F such that a + b = 0;
(4) a + (b + c) = (a + b) + c for all a, b, c ∈ F;

1It is interesting that Golay, who was the first to publish the family of codes that
generalize the Hamming code of length 7, knew only about fields of prime order
when he wrote his first two important papers. See T. M. Thompson, From error
correcting codes through sphere packing to simple groups, Mathematical Association of
America, 1983, page 43.

3

(5) a× b = b× a for all a, b ∈ F;
(6) 1× a = a× 1 = a for all a ∈ F;
(7) for all non-zero a ∈ F there exists b ∈ F such that a× b = 1;
(8) a× (b× c) = (a× b)× c for all a, b, c ∈ F;

(9) a× (b + c) = a× b + a× c for all a, b, c ∈ F.
If F is finite, then we define its order to be its number of elements.

It may be helpful to note that (1)–(4) imply that F is an abelian group
under addition, and that (5)–(8) imply that (F\{0},×) is an abelian
group under multiplication. The final axiom (9) is the distributive law
relating addition and multiplication.

It is usual to write −a for the element b in (4); we call −a the addi-
tive inverse of a. We write a−1 for the element b in (8); we call a−1 the
multiplicative inverse of a. We usually write ab rather than a× b.

Exercise: Show, from the field axioms, that if x ∈ F, then x has a unique
additive inverse, and that if x 6= 0 then x has a unique multiplicative
inverse. Show also that if F is a field then a× 0 = 0 for all a ∈ F.

Exercise: Show from the field axioms that if F is a field and a, b ∈ F are
such that ab = 0, then either a = 0 or b = 0.

We will use the second exercise above many times in the following
sections.

Theorem 1.2. Let p be a prime. The set Fp = {0, 1, . . . , p− 1} with addition
and multiplication defined modulo p is a finite field of order p.

In fact there is a unique (up to a suitable notion of isomorphism) finite
field of any given prime-power order. The smallest field not of prime
order is the finite field of order 4.

Example 1.3. The addition and multiplication tables for the finite field
F4 = {0, 1, α, 1 + α} of order 4 are shown below.

+ 0 1 α 1 + α

0 0 1 α 1 + α
1 1 0 1 + α α
α α 1 + α 0 1

1 + α 1 + α α 1 0

4

× 1 α 1 + α

1 1 α 1 + α
α α 1 + α 1

1 + α 1 + α 1 α

Probably the most important thing to realise is that F4 is not the inte-
gers modulo 4. Indeed, in Z4 = {0, 1, 2, 3} we have 2× 2 = 0, but if
a ∈ F4 and a 6= 0 then a× a 6= 0, as can be seen from the multiplication
table. (Alternatively this follows from the second exercise above.)

POLYNOMIALS. Let F be a field. Let F[x] denote the set of all polyno-
mials

f (x) = a0 + a1x + a2x2 + · · ·+ amxm

where m ∈ N0 and a0, a1, a2, . . . , am ∈ F.

Definition 1.4. If f (x) = a0 + a1x + a2x2 + · · · + amxm where am 6=
0, then we say that m is the degree of the polynomial f (x), and write
deg f = m. We define the degree of the zero polynomial f (x) = 0 to
be −1.

Note that a polynomial is a non-zero constant if and only if it has de-
gree 0. The degree of the zero polynomial is not entirely standardized:
you might also see it defined to be −∞, or left undefined. For this rea-
son we will phrase some results, such as Lemma 1.5 below, so that the
whole issue is avoided.

Polynomials are added and multiplied in the natural way.

Lemma 1.5 (Division algorithm). Let F be a field, let f (x) ∈ F[x] be a non-
zero polynomial and let g(x) ∈ F[x]. There exist polynomials s(x), r(x) ∈
F[x] such that

g(x) = s(x) f (x) + r(x)
and either r(x) = 0 or deg r(x) < deg f (x).

We say that s(x) is the quotient and r(x) is the remainder when g(x) is
divided by f (x). Lemma 1.5 will not be proved in lectures. The impor-
tant thing is that you can find the quotient and remainder in practice.

Exercise: Let f (x) = x3 + x + 1 ∈ F2[x], let g(x) = x5 + x2 + x ∈ F2[x].
Find the quotient and remainder when g(x) is divided by f (x).

For Reed–Solomon codes we shall need the following standard prop-
erties of polynomials.

5

Lemma 1.6. Let F be a field.
(i) If f (x) ∈ F[x] has a ∈ F as a root, i.e. f (a) = 0, then there is a

polynomial g(x) ∈ F[x] such that f (x) = (x− a)g(x).

(ii) If f (x) ∈ F[x] has degree m ∈ N0 then f (x) has at most m distinct
roots in F.

(iii) Suppose that f , g ∈ F[x] are non-zero polynomials such that deg f ,
deg g < k. If there exist distinct c1, . . . , ck ∈ F such that f (ci) =
g(ci) for each i ∈ {1, . . . , k} then f (x) = g(x).

We also need a result on polynomial interpolation that has a surpris-
ingly quick direct proof.

Lemma 1.7 (Polynomial interpolation). Let F be a field. Let

c1, c2, . . . , ck ∈ F

be distinct and let y1, y2, . . . , yk ∈ F. The unique polynomial f (x) ∈ F[x] of
degree < k such that f (ci) = yi for all i is

f (x) =
k

∑
i=1

yi
∏j 6=i(x− cj)

∏j 6=i(ci − cj)
.

Finally, the following result will turn out to control the number of
errors a large class of cyclic codes can detect and correct. A short proof
is given below for interest and logical completeness.

Theorem 1.8. Let F be a field and let c1, . . . , ck ∈ F be distinct. Then the
columns of the k× k matrix 

c1 c2 . . . ck

c2
1 c2

2 . . . c2
k

...
...

ck
1 ck

2 . . . ck
k


are linearly independent.

Proof. Let M be the matrix. The columns of M are linearly independent
if and only if the rows of M are linearly independent, since either con-
dition is equivalent to M having full rank k. Let ri denote row i of M
and suppose that there exist t1, t2, . . . , tk ∈ F such that

t1r1 + t2r2 + · · ·+ tkrk = 0.

Looking at position j on either side of this equation we get

t1cj + t2c2
j + · · ·+ tkck

j = 0.

6

This holds for each j ∈ {1, . . . , k}, so the polynomial

f (x) = t1x + t2x2 + · · ·+ tkxk

has roots at c1, c2, . . . , ck, and also, at 0. But a non-zero polynomial of
degree at most k has at most k roots, by Lemma 1.6(ii). Hence f (x) = 0
and t1 = t2 = · · · = tk = 0. �

2. DEFINITION AND BASIC PROPERTIES OF REED–SOLOMON CODES

In this section we give the original definition of Reed–Solomon codes
over finite fields.2 We will work over the fields Fp of prime degree given
by Theorem 1.2, but it is easy to see that the definition and all the results
extend to a general finite field; this will be assumed in some examples.

Definition 2.1. Let p be a prime and let k, n ∈ N be such that k ≤ n ≤ p.
Let

a1, a2, . . . , an

be distinct elements of Fp. For each polynomial f (x) ∈ Fp[x] we define
a word u(f) ∈ Fn

p by

u(f) = (f (a1), f (a2), . . . , f (an)).

The Reed–Solomon code associated to the parameters p, n, k and the field
elements a1, a2, . . . , an is the length n code over Fp with codewords

{u(f) : f ∈ Fp[x], deg f ≤ k− 1}.

It is worth bearing in mind Remark 1.7(3) from the main lectures:
the parameters p, n, k and the field elements a1, a2, . . . , an are part of
the specification of a Reed–Solomon code, and should be assumed to
be known to everyone. We will write RSp,n,k for the code defined in
Definition 2.1.

For instance, the Reed–Solomon codes used on compact discs have
alphabet the finite field F28 . One has parameters n = 32 and k = 28, the
other n = 28 and k = 24.

2See I. S. Reed and G. Solomon, Polynomial codes over certain finite fields, SIAM 8
(1960) 300–304.

7

Example 2.2. Let p = 5 and let k = 2.
(1) If n = 3 and we take a1 = 0, a2 = 1 and a3 = 2, then the

associated Reed–Solomon code has a codeword

(f (0), f (1), f (2))

for each f (x) ∈ Fp[x] of degree ≤ 1. If f (x) = bx + c then

u(f) = (c, b + c, 2b + c)

so the full set of codewords is

{(c, b + c, 2b + c) : b, c ∈ F5}.

(2) If n = 4 and we take a1, a2, a3 as before, and a4 = 3 then we get
an extension of the code in (1). The set of codewords is

{(c, b + c, 2b + c, 3b + c) : b, c ∈ F5}.
This code has the same size as the previous code, but longer
length, so one might expect it to have better error-detecting and
error-correcting properties.

The next exercise will be subsumed by more general results proved
using the theory developed in Part A of the main course. But it is very
instructive to find a direct proof. (The following exercise is the final part
of Question 9 on Sheet 2.)

Exercise: Let C be the Reed–Solomon code in Example 2.2(2). Show
that if u ∈ C is sent down a noisy channel, and v is received such that
d(u, v) ≤ 2 then either v = u or v 6∈ C. Can the receiver guarantee to
detect if three errors occur?

Possibly you have realised that Hamming distances between code-
words in a code controls how many errors the code can detect and cor-
rect. The next lemma gives a lower bound on these distances for the
Reed–Solomon code.

Lemma 2.3. If f , g ∈ Fp[x] are distinct polynomials of degree ≤ k− 1 then

d(u(f), u(g)) ≥ n− k + 1.

An immediate corollary of Lemma 2.3 is that if f , g are distinct poly-
nomials of degree≤ k− 1 then u(f) 6= u(g). A short counting argument
now proves the next lemma.

Lemma 2.4. The Reed–Solomon code RSp,n,k has size pk.

8

By Lemma 2.3, the minimum distance (as defined in Definition 4.1 of
the main notes) of RSp,n,k is at least n− k+ 1. To prove the next theorem
we will use polynomial interpolation to find two codewords in RSp,n,k
at distance n− k + 1.

Theorem 2.5. The minimum distance of RSp,n,k is n− k + 1.

The Singleton Bound (to be proved in Part B of the main course) states
that a code of length n and minimum distance d over an alphabet of
size p has at most pn−d+1 codewords. By Lemma 2.3 and Theorem 2.5,
the Reed–Solomon codes meet this bound, and so have the largest pos-
sible size for their length and minimum distance.

Corollary 2.6. Let p be a prime. If k, e ∈ N are such that k + 2e ≤ p then
the Reed–Solomon code RSp,k+2e,k is e-error correcting.

We now discuss encoding and decoding for Reed–Solomon codes.
The code RSp,n,k has size pk so it can encode pk different messages.
Given any (b1, b2, . . . , bk) ∈ Fk

p, we can use polynomial interpolation
to find a polynomial f (x) ∈ Fp[x] of degree < k such that f (ai) = bi for
1 ≤ i ≤ k, and so

u(f) = (b1, b2, . . . , bk, . . .).

Hence if we agree to identify messages with Fk
p, then we can use poly-

nomial interpolation to define a suitable encoder. (One advantage of
this encoder is that if a message is received without any errors, then the
message can be read off from the first k positions.)

Decoding is a much trickier issue. We would like to use nearest
neighbour decoding, but the naı̈ve algorithm where we search through
the entire code looking for the nearest codeword is completely imprac-
tical once p and k are large.

For example, the larger Reed–Solomon codes used on compact discs
has k = 28 and alphabet F28 , so has size (28)28 = 2224. Since a cipher is
often considered cryptographically secure if the only attacks require a
hunt through 2128 different keys, the naı̈ve algorithm has no chance.

The original decoder proposed by Reed and Solomon used polyno-
mial interpolation to find all codewords that agreed with the received
word in at least k positions. The nearest one would then be taken as the
sent codeword. (So the decoder implements nearest neighbour decod-
ing.)

9

Example 2.7. Suppose we use the Reed–Solomon code with p = 5,
n = 4 and k = 2 evaluating at a1 = 0, a2 = 1, a3 = 2, a4 = 3, as in
Example 2.2(2). By Corollary 2.6, this code is 1-error correcting. Sup-
pose we receive v = (4, 0, 3, 0).

Given any two positions i and j, it follows from Lemma 1.7 that there is
a unique polynomial g of degree < 2 such that g(ai) = vi and g(aj) = vj.

The table below shows the interpolating polynomials for each pair of
positions and the corresponding codewords. For example, to find f (x)
such that f (0) = 4 and f (2) = 3, we use Lemma 1.7 and get

f (x) = 4
x− 2
0− 2

+ 3
x− 0
2− 0

= 3(x− 2)− x = 2x + 4.

Conditions on f Solution Codeword u(f)

f (0) = 4, f (1) = 0 f (x) = 4 + x (4, 0, 1, 2)
f (0) = 4, f (2) = 3 f (x) = 4 + 2x (4, 1, 3, 0)
f (1) = 0, f (2) = 3 f (x) = 2 + 3x (2, 0, 3, 1)
f (0) = 4, f (3) = 0 f (x) = 4 + 2x (4, 1, 3, 0)
f (1) = 0, f (3) = 0 f (x) = 0 (0, 0, 0, 0)
f (2) = 3, f (3) = 0 f (x) = 4 + 2x (4, 1, 3, 0)

In practice, we would stop as soon as we found the codeword (4, 1, 3, 0)
since d(4130, 4030) = 1, and by Question 6 on Sheet 2, there is at most
one codeword within distance 1 of any given word.

There are (n
k) choices of k positions from n. For example, (32

28) = 35960.
So while a big improvement over the naı̈ve algorithm, polynomial in-
terpolation is still impractical in cases of interest.

3. EFFICIENT DECODING OF REED–SOLOMON CODES

In this section we shall see an efficient algorithm for decoding Reed–
Solomon codes invented by Berlekamp and Welch in 1983.3 As usual
we work with the Reed–Solomon code RSp,n,k where p is prime and n,
k ∈ N, and polynomials are evaluated at a1, a2, . . . , an. Assume that
n = k + 2e, so by Corollary 2.6 the code is e-error correcting.

3L. Welch and E. R. Berlekamp, Error correction for algebraic block codes, U.S.
Patent 4 633 470 (1983).

10

Definition 3.1 (Key Equation). The Key Equation for the received word
(v1, v2, . . . , vn) is

Q(ai) = viE(ai)

where Q(x), E(x) ∈ Fp[x] are non-zero polynomials such that
• deg Q(x) ≤ k + e− 1
• deg E(x) ≤ e.

The polynomial E(x) is called the error locator polynomial.

Here is a small observation that helps to motivate the Key Equation.

Example 3.2. Suppose that u(f) is sent and that a single error occurs in
position j. Then f (ai) = vi at all i 6= j. If we put in an extra term x− aj
to ‘hide’ the error in position j, then the equation

f (x)(x− aj) = vi(x− aj)

holds when we replace x with any ai. So Q(x) = f (x)(x− aj), E(x) =
x − aj is a solution to the Key Equation. Note that f (x) = Q(x)/E(x)
and the root of E(x) tell us which position of v is in error.

The main theorem on the Key Equation is as follows.

Theorem 3.3. Suppose that u(f) is sent and that errors occur in positions
j1, j2, . . . , jt where t ≤ e. Let v be the received word. Then Q(x), E(x) solve
the Key Equation if and only if

(i) E(x) = (x− aj1)(x− aj2) . . . (x− ajt)s(x) for some polynomial s(x)
such that deg s(x) ≤ e− t, and

(ii) Q(x) = E(x) f (x).

Theorem 3.3 characterises all solutions to the Key Equation when at
most e errors occur. However it does not help us to solve it in prac-
tice. For this we proceed by solving linear equations. Unlike the naı̈ve
approach in §2, we only have to solve one system, not (n

e) separate sys-
tems! [misprinted as (n

k) in original version]

Lemma 3.4. Suppose that the word (v1, . . . , vn) is received. The polynomials

Q(x) = Q0 + Q1x + · · ·+ Qk+e−1xk+e−1

E(x) = E0 + E1x + · · ·+ Eexe

in Fp[x] satisfy the Key Equation if and only if

Q0 + aiQ1 + a2
i Q2 + · · ·+ ak+e−1

i Qk+e−1

= vi(E0 + aiE1 + a2
i E2 + · · ·+ ae

i Ee)

11

for each i ∈ {1, . . . , n}. An equivalent condition is that



1 a1 a2
1 · · · ak+e−1

1 −v1 −v1a1 · · · −v1ae
1

1 a2 a2
2 · · · ak+e−1

2 −v2 −v2a2 · · · −v2ae
2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 an a2

n · · · ak+e−1
n −vn −vnan · · · −vnae

n





Q0
Q1
...

Qk+e−1
E0
E1
...

Ee


= 0

The matrix above has n rows and k + 2e + 1 = n + 1 columns. So we
can solve the Key Equation by solving an n× (n + 1) system of linear
equations. Notice that this system always has a non-zero solution.

Example 3.5. We shall use the code of Example 2.2(2) and Example 2.7.
Let p = 5, let k = 2, let e = 1 (so n = 4) and let a1 = 0, a2 = 1, a3 = 2,
a4 = 3. With these parameters, the Key Equation for the polynomials
Q(x) = Q0 + Q1x + Q2x2 and E(x) = E0 + E1x is


1 0 0 4v1 0
1 1 1 4v2 4v2
1 2 4 4v3 3v3
1 3 4 4v4 2v4




Q0
Q1
Q2
E0
E1

 =


0
0
0
0

 .

(1) Suppose we receive the word 4130. (This is the codeword for
f (x) = 4 + 2x.) Then v1 = 4, v2 = 1, v3 = 3, v4 = 0 and we must
solve 

1 0 0 1 0
1 1 1 4 4
1 2 4 2 4
1 3 4 0 0




Q0
Q1
Q2
E0
E1

 =


0
0
0
0

 .

The kernel is two dimensional, spanned by the vectors

(0, 4, 2, 0, 1)t, (4, 2, 0, 1, 0)t.

The first vector gives Q(x) = 4x + 2x2 and E(x) = x, so we decode
using f (x) = Q(x)/E(x) = 4 + 2x to get u(f) = 4130. (The second
vector gives the same answer even more quickly.)

12

(2) Suppose we receive the word 4030. Then v1 = 4, v2 = 0, v3 = 3,
v4 = 0 and we must solve

1 0 0 1 0
1 1 1 0 0
1 2 4 2 4
1 3 4 0 0




Q0
Q1
Q2
E0
E1

 =


0
0
0
0

 .

The kernel is one dimensional spanned by (1, 2, 2, 4, 1)t. So we take
Q(x) = 1 + 2x + 2x2 and E(x) = 4 + x. Polynomial division gives

Q(x)/E(x) = 2x + 4

so we decode using f (x) = 2x + 4 to get u(f) = 4130.

(3) Finally suppose we receive 4020. Then the kernel is one dimen-
sional, spanned by (4, 3, 3, 1, 0)t. So we take Q(x) = 4 + 3x + 3x2 and
E(x) = 1, but Q(x)/E(x) does not have degree ≤ 1, so we are unable
to decode. Since the Key Equation method always works when ≤ e er-
rors occur, we know that ≥ 2 errors have occurred, but we are unable
to correct them.

When more than e errors occur it can also happen that the received
word is decoded incorrectly. For example, this would happen in the
setup of Example 3.4 if we received 4000. Another possibility is that
E(x) does not divide Q(x): in this case we detect an error but are unable
to correct it.

Final remarks: (1) When preparing this section I used §4 of these notes:
http://math.berkeley.edu/~mhaiman/math55/reed-solomon.pdf.

The next section in Haiman’s notes explains a refinement to the Key
Equation method that reduces the problem to solving an e × e system
of equations and then doing a one-off polynomial interpolation. Since e
is usually much less than n (for the codes used on compact discs, n = 28
and n = 32 and e = 4 in both cases) this is a further big improvement.

(2) A MATHEMATICA notebook for solving the Key Equation is avail-
able on Moodle. Unless you really want to do it by hand, I suggest you
use it (or another computer algebra program) to do the computational
questions on problem sheets.

http://math.berkeley.edu/~mhaiman/math55/reed-solomon.pdf

13

Part 2: Cyclic codes

4. CYCLIC CODES

In the second part of the course we will study cyclic codes. In this
section we will introduce cyclic codes and see some examples and a
fast way to encode messages for a general cyclic code. We will then
show that a special class of Reed–Solomon codes are cyclic, and, if time
permits, see a fast decoder for these codes that uses their cyclic struc-
ture. The course ends with BCH-codes; these are the binary cyclic codes
most used in practice.

Cyclic codes are a special type of linear code. In Part C of the main
course we only consider linear codes over the binary alphabet, but all
the results extend to a general finite field. Here we will work over a
finite field Fp of prime order.

Definition 4.1. Let p be prime. A code C over Fp is linear if

(i) for all u ∈ C and a ∈ Fp we have au ∈ C;
(ii) for all u, w ∈ C we have u + w ∈ C.

Here au is the word defined by (au)i = aui and u + v is defined by
(u + w)i = ui + wi. Equivalently, a code C over Fp is linear if C is a
vector subspace of Fn

p.

Exercise: Show that any Reed–Solomon code is linear.

Definition 4.2. Let p be a prime. A code C over Fp is said to be cyclic if
C is linear and

(u0, u1, . . . , un−1) =⇒ (un−1, u0, . . . , un−2) ∈ C.

We say that (un−1, u0, . . . , un−2) is the cyclic shift of (u0, u1, . . . , un−1).

The reason for numbering positions from 0 will be seen shortly. Note
that we can apply the cyclic shift several times over, so a cyclic code is
closed under arbitrarily many cyclic shifts.

Example 4.3.

(1) Let p be prime and let n ∈ N. The repetition code of length n
over Fp is cyclic.

14

(2) Let C be the binary parity check code of length n consisting of all
binary words of length n with evenly many 1s. We may define
C using addition in F2 by

C = {(u0, . . . , un−1) : ui ∈ F2, u0 + · · ·+ un−1 = 0}.
Then C is a cyclic code.

(3) Let D be the binary code with codewords

{000000, 110110, 011011, 101101}.
Exercise: check that D is linear. The shift map acts on D by fix-
ing 000000 and cyclically permuting the other three codewords.
Hence D is cyclic.

There is a very helpful correspondence between codewords in a cyclic
code and polynomials. To see how this might work, consider the code D
in Example 4.3(3) above. If we associate the polynomial

u0 + u1x + u2x2 + u3x3 + u4x4 + u5x5

to the codeword (u0, u1, u2, u3, u4, u5) then we have

000000←→ 0

110110←→ 1 + x + x3 + x4

011011←→ x + x2 + x4 + x5

101101←→ 1 + x2 + x3 + x5.

When we multiply 1 + x + x3 + x4 by x we get x + x2 + x4 + x5, which
is the polynomial corresponding to 011011. So far so good! But when
we multiply x + x2 + x4 + x5 we get x2 + x3 + x5 + x6, which is not the
polynomial we choose to correspond to 101101. Somehow we need to
make x2 + x3 + x5 + x6 correspond to 101101, as well.

Definition 4.4. Let n ∈ N and let p be prime. Let f (x) ∈ Fp[x]. We say
that f (x) corresponds to (u0, u1, . . . , un−1) ∈ Fn

p if, when f (x) is divided
by xn − 1, the remainder is

u0 + u1x + u2x2 + . . . + un−1xn−1.

Note, in particular, that if f (x) = u0 + u1x + u2x2 + · · ·+ un−1xn−1

then, when we divide f (x) by xn − 1, the quotient is 0 and the remain-
der is f (x). So f (x) corresponds to the word (u0, u1, . . . , un−1) ∈ Fn

p.

Exercise: Check that, when n = 6, the polynomial x2 + x3 + x5 + x6 cor-
responds to (1, 0, 1, 1, 0, 1). Find the word corresponding to the polyno-
mial x(1 + x2 + x3 + x5).

15

The following remark should be helpful to people who know about
quotient rings, but should be skipped by everyone else.

Remark 4.5. Definition 4.4 defines a map from Fp[x] to words in Fn
p.

Two polynomials have the same image if and only if they have the same
remainder on division by xn − 1. So the polynomials that map to the
word (u0, u1, . . . , un−1) are exactly the elements of the coset

u0 + u1x + · · ·+ un−1xn−1 + 〈xn − 1〉

in the quotient ring Fp[x]/ 〈xn − 1〉. Thus Definition 4.4 defines a bijec-
tion Fp[x]/〈xn − 1〉 ←→ Fn

p. The rest of this section is summarized in
this footnote.4

Definition 4.4 was made so that the following lemma would hold.

Lemma 4.6. Let p be a prime and let C be a cyclic code over Fp. Let u ∈ C.
(i) Suppose that f (x) ∈ Fp[x] corresponds to u. Then x f (x) corresponds

to the cyclic shift of u, namely (un−1, u0, . . . , un−2).
(ii) If s(x) ∈ Fp[x] then s(x) f (x) corresponds to a codeword in C.

It will often be useful to think of a cyclic code as a set of polynomials
of degree < n, by choosing the obvious polynomial u0 + u1x + · · · +
un−1xn−1 to correspond to the codeword (u0, u1, . . . , un−1).

Definition 4.7. Let p be a prime. Let C be a cyclic code of length n over
the finite field Fp. Think of C as a set of polynomials of degree < n. A
generator polynomial for C is a polynomial g(x) ∈ Fp[x] of degree k < n
such that g(x) divides xn − 1 and

C =
{

f (x)g(x) : f (x) ∈ Fp[x], deg f (x) ≤ n− 1− k
}

.

Example 4.8. Let

C = {0, 1 + x + x3 + x4, x + x2 + x4 + x5, 1 + x2 + x3 + x5

be the polynomial version of the code in Example 4.2(3). We shall show
that g(x) = 1 + x + x3 + x4 is a generator polynomial for C.

4Lemma 4.6 says that multiplication by x in Fp[x]/〈xn− 1〉 corresponds to cyclic
shift in Fn

p. Theorem 4.9 and Theorem 4.10 follow from the fact that I is an ideal in
Fp[x]/〈xn − 1〉 if and only if I is principal and I is generated by an element of the
form g(x) + 〈xn − 1〉 where g(x) divides xn − 1.

16

Exercise: Consider the code over F3

{(a, b, c, a, b, c) : a, b, c ∈ F3}.

Thought of as a set of polynomials, this code becomes

C = {a + bx + cx2 + ax3 + bx4 + cx5 : a, b, c ∈ F3}.

Find a generator polynomial for C.

Theorem 4.9. Let p be prime and let C ⊆ Fp[x] be a cyclic code of length n,
represented by polynomials of degree < n. Then C has a generator polynomial.

The next theorem tells us that we can construct a cyclic code over Fp
of length n using any proper divisor of xn − 1 in Fp[x] as a generator
polynomial. Alternatively, if we know a generator polynomial then it
gives us information about the code.

Theorem 4.10. Let p be a prime, let n ∈ N and let g(x) ∈ Fp[x] be a divisor
of xn − 1. If g(x) has degree r < n then

{g(x), xg(x), . . . , xn−r−1g(x)}.

is a basis for the cyclic code C with generator polynomial g(x).

In particular, Theorem 4.10 implies that a cyclic code of length n with
a generator polynomial of degree r over the finite field Fp has dimension
n− r and size pn−r.

The following example shows how to construct all cyclic codes of
a given length over the finite field Fp, provided we have to hand the
factorization of xn− 1 in Fp. (Finding these factorizations requires finite
field theory beyond the scope of this course: they will be provided if
required in an exam question.)

Example 4.11. In F2[x] we have

x6 − 1 = (1 + x)2(1 + x + x2)2

where the factors 1+ x and 1+ x + x2 are irreducible, i.e. they cannot be
written as products of polynomials of smaller degree.5 The polynomial

5For 1+ x this is clear; if 1+ x+ x2 factorized as the product of two polynomials
of degree 1, it would have a root in F2. But 1 + 0 + 02 = 1 + 1 + 12 = 1.

17

divisors of x6 − 1 are therefore 1, 1 + x, 1 + x + x2 and

(1 + x)2 = 1 + x2,

(1 + x + x2)2 = 1 + x2 + x4,

(1 + x)(1 + x + x2) = 1 + x3,

(1 + x)2(1 + x + x2) = 1 + x + x3 + x4,

(1 + x)(1 + x + x2)2 = 1 + x + x2 + x3 + x4 + x5.

For example, the code with generator polynomial 1 + x is the binary
parity check code of length 6 (as defined in Example 2.9 of the main
course). The code with generator polynomial (1 + x)2(1 + x + x2) was
seen in Example 4.3(3).

Theorem 4.12. Let p be prime and let C be a cyclic code of length n over Fp
with generator polynomial g(x) ∈ Fp[x] of degree r. If g(x) = a0 + a1x +
· · ·+ arxr then the (n− r)× n matrix

G =


a0 a1 a2 . . . ar 0 . . . 0
0 a0 a1 . . . ar−1 ar . . . 0
...

...
...

...
0 0 0 a0 ar−1 ar


is a generator matrix for C.

Let k = n− r. Encoding using this generator matrix, we encode the
binary word (b0, b1, . . . , bk−1) of length k− 1 as

(b0, b1, . . . , bk−1)G

As a polynomial, this codeword is

b0g(x) + b1xg(x) + · · ·+ bk−1xk−1g(x)

= (b0 + b1x + · · ·+ bk−1xk−1)g(x).

So we can encode messages in a cyclic code by polynomial multiplica-
tion. This can be performed even more quickly than matrix multiplica-
tion.

We end this section with a small result showing that most cyclic codes
are 1-error correcting.

Theorem 4.13. Let C be a cyclic binary code of length n with generator poly-
nomial g(x) = a0 + a1x + · · ·+ arxr ∈ F2[x] of degree r ≥ 1. Assume that
a0 6= 0. If xs + 1 is not divisible by g(x) for any i ∈ {2, 3, . . . , n− 1} then C
has minimum distance at least 3.

18

In fact it is unnecessary to assume that a0 6= 0. If a0 = 0 then g(x) is
divisible by x. Since g(x) divides xn− 1, it follows that x divides xn− 1,
which is impossible.

Exercise: There is a refinement of the previous theorem: show that it
suffices to check those xs + 1 such that r divides s. [Hint: if g(x) divides
xs + 1 then, since g(x) divides xn + 1, g(x) divides the greatest common
divisor of xn + 1 and xs + 1. Show that this greatest common divisor is
xt + 1 for some t dividing n.]

5. REED–SOLOMON CODES AS CYCLIC CODES

We now show that a special class of Reed–Solomon codes (as defined
in Definition 2.1) are cyclic codes. For this we need one further general
result. As usual, we state it for the finite fields Fp, but it holds for a
general finite field.

Lemma 5.1. Let p be a prime. There exists an element a ∈ Fp such that the
non-zero elements of Fp are exactly aj for 0 ≤ j ≤ p− 2.

For example, in F7, one can take a = 3, since

30 = 1, 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5.

Such an element a is said to be a primitive root.

Throughout this section, fix a prime p and let k < p. We suppose
that p− 1− k is even and let p− 1− k = 2e. (This agrees with notation
in §3.) Let a ∈ Fp be a primitive root and let RSp,p−1,k be the Reed–
Solomon code where polynomials are evaluated at ai = ai−1 for i ∈
{1, . . . , p− 1}.

Lemma 5.2. The code RSp,p−1,k is cyclic.

It is now very natural to ask for a generator polynomial for RSp,p−1,k.
For this we shall first find a parity check matrix using the generator
matrix found on Sheet 8, Question 4(a).

Theorem 5.3. A parity check matrix for the cyclic Reed–Solomon code RSp,p−1,k
is

H =


1 a a2 · · · ap−2

1 a2 a4 · · · a2(p−2)

...
...

...
1 a2e a4e · · · a2e(p−2)

 .

19

Corollary 5.4. The cyclic Reed–Solomon code RSp,p−1,k has generator poly-
nomial

g(x) = (x− a)(x− a2) . . . (x− a2e).

See Sheet 9 for the example RS5,4,2 where polynomials are evaluated
at 1, 2, 4, 3 ∈ F5.

Remark 5.5. Theorem 5.3 can be used to give an alternative proof that
the minimum distance of the cyclic Reed–Solomon code RSp,p−1,k is at
least p − k = 2e. By Theorem 14.7 in the main notes, the minimum
distance of RSp,p−1,k is equal to the minimum r such that there are r
linearly dependent of the columns of the parity check matrix H. But by
Theorem 1.8, any 2e columns of H are linearly independent.

An easier corollary of Theorem 5.3 is that the syndrome vHtr of a
received word v ∈ Fn

p corresponding to the polynomial k(x) is equal to(
k(a), . . . , k(a2e)

)
.

So one way to decode received words to codewords in RSp,p−1,k would
be to compute syndromes using polynomial evaluation; then a table,
as in page 52 of the main notes, could be used to perform syndrome
decoding.

A much faster and more elegant decoding algorithm for cyclic Reed–
Solomon codes was invented by Berlekamp and Welsh in 1971. As
for the Key Equation decoder in §3, the algorithm implements near-
est neighbour decoding, on the assumption that at most e errors have
occurred.

Theorem 5.6. Let v ∈ Fn
p be a received word with syndrome

vHtr = (S1, . . . , S2e).

Suppose that at most e errors occurred. Then given any A(x), B(x) ∈ Fp[x]
with deg A(x) ≤ e− 1 and deg B(x) ≤ e such that

B(x) = (S1 + S2x + · · ·+ S2ex2e−1)A(x)

where we work modulo x2e, so all powers x2e and higher in this equation are
regarded as 0, the sent codeword can be determined.

Provided at most e errors occurred, such polynomials A(x), B(x) al-
ways exist. They can be found by linear algebra, in a similar way to
Lemma 3.4, or using the Berlekamp–Massey algorithm (this is its origi-
nal application).

20

The final part of this section is based on the excellent account of the
Berlekamp–Welsh decoder in Chapter 11 of [2]. Hill describes a decoder
that can be used on a general (not necessarily cyclic) Reed–Solomon
code; he also gives some refinements that further speed up decoding.

6. A BRIEF LOOK AT BCH CODES

This section may be considered non-examinable, and is included for
interest only. Some knowledge of finite fields of prime power order is
needed: let Fr

2 denote the finite field of order r.

HAMMING CODES AS CYCLIC CODES. We start by giving a more alge-
braic way to construct the Hamming code of length 7. This construction
generalizes to Hamming codes of any length. (See Exercise 7.20 in [4]
in the recommended reading list.) Let a ∈ F8 be a primitive element,
so a7− 1 and every non-zero element of F8 is equal to some power of a.
Let

C = { f (x) ∈ F2[x] : deg f < 7, f (a) = 0}.

Exercise: show from this definition that C is a cyclic code. (We have
defined C as a set of polynomials, so the cyclic shift of f (x) ∈ C should
be defined to be the remainder when x f (x) is divided by x7 − 1.)

An equivalent definition of C is

C = {(b0, b1, . . . , b6) ∈ F7
2 : b0 + b1a + · · ·+ b6a6 = 0}

Lemma 6.1. The code C is equivalent to the Hamming [7, 4, 3]-code by a per-
mutation of its positions.

Proof. We may define the finite field F8 by F8 = F2(a) where a is a root
of the irreducible primitive polynomial

g(x) = x3 + x + 1 ∈ F2[x].

If f (x) ∈ F2[x] is a polynomial such that f (a) = 0 then, since g(x) is the
minimum polynomial of a, g(x) divides f (x). Hence

C = { f (x) ∈ F2[x] : deg f < 7, f (x) is divisible by g(x)}.
Thus C has generator polynomial g(x). Hence, by Theorem 4.12, C has
generator matrix

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .

21

The required equivalence can be found by putting this generator ma-
trix into standard form (G′ below), and comparing with the generator
matrix in Example 14.6 with columns permuted so that it is also in stan-
dard form (G′′ below):

G′ =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 G′′ =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 .

The matrices G′ and G′′ become the same, up to the order of the rows,
if we swap columns 3 and 4 and columns 5 and 6 in G′. Hence C is
equivalent to the Hamming code by a shuffle of positions.6 �

BINARY BCH CODES. BCH codes (named after Bose and Ray-Chaudhuri)
are a generalization of cyclic Hamming codes in which the polynomi-
als corresponding to codewords are required to have roots at several
different powers of the primitive element a ∈ Fr

2.

BCH-codes are the most commonly used binary codes. For example,
the BCH [15,5,7]-code is used to encode the format-string in the QR-
codes in Example 1.11 of the main notes.

Definition 6.2. Let t ∈ N be given and let 2r − 1 > 2t + 1. Let a ∈ F2r

be a primitive root. The BCH-code with design distance 2t + 1 and length
n = 2r − 1 is the binary cyclic code C defined by

C = { f (x) ∈ F2[x] : deg f < n, f (a) = f (a2) = . . . = f (a2t+1) = 0}.

Equivalently, we may define

C = {(u0, u1, . . . , un−1) ∈ Fn
2 : (u0, u1, . . . , un−1)Ktr = 0}

where

K =


1 a a2 . . . an−1

1 a2 a4 . . . a2(n−1)

...
...

...
1 a2t a2(2t) . . . a2t(n−1)


Note that while K behaves like a parity matrix for C, and looks very
like the matrix in Theorem 5.3, it is not a parity check matrix in the

6For the record, the permutation of columns needed to make C equal to the code
in Example 14.6 is: 1 7→ 3, 2 7→ 5, 3 7→ 7, 4 7→ 6, 5 7→ 2, 6 7→ 1, 7 7→ 4. For a bet-
ter approach, which turns out to give a different equivalence, see Question 10 on
Sheet 9. (The group of all permutations of the columns that leaves the Hamming
[7, 4, 3]-code invariant is the simple group PSL(2, F7) of order 168.)

22

strict sense of Definition 14.1 in the main notes, because the entries of K
are not in F2.

Example 6.3. Let r, t ∈ N and let C be the BCH-code of length 2r − 1
with design distance 2t + 1, defined with respect to the primitive root
a ∈ F2r . Think of C as a set of polynomials of degree < 2r − 1.

(1) If r = 3 and t = 1 then we may take a to be a root of x3 + x +
1. Since a2 is also a root of this polynomial, we have f (a) =
f (a2) = 0 if and only if x3 + x + 1 divides f (x). Hence C has
generator polynomial x3 + x + 1 and, by Lemma 6.1, C is equiv-
alent to the Hamming [7, 4, 3]-code.

(2) If r = 3 and t = 2 then, taking a as in (1), we have

C = { f (x) ∈ F2[x] : f (a) = f (a3) = 0, deg f ≤ 6.}

The minimum polynomials of a, a2 and a4 are x3 + x + 1 and the
minimum polynomial of a3 is x3 + x2 + 1. Hence, C has genera-
tor polynomial

(x3 + x + 1)(x3 + x2 + 1) = x6 + x5 + x4 + x3 + x2 + x + 1.

In this case we merely succeed in giving a complicated construc-
tion of the repetition code. Note that the minimum distance of
this code is 7, which is strictly more than the design distance 5.

(3) Let r = 4 and let t = 2. If a is a root of x4 + x + 1; then a is a
primitive root in F4

2. The minimum polynomial of a3 is x4 + x3 +
x2 + x + 1 so the BCH code for these parameters is cyclic with
generator polynomial x8 + x7 + x6 + x4 + 1. By Theorem 4.10
the code is

C = { f (x)(x8 + x7 + x6 + x4 + 1) : f (x) ∈ F2[x], deg f ≤ 6}

and so dim C = 15− 8 = 7. Since the generator polynomial has
weight 5, the code contains words of weight 5. Hence C has min-
imum distance at most 5. It therefore follows from Theorem 6.4
below that C is a 2-error binary [15, 7, 5]-code.

We now give the general result on the size and minimum distance of
binary BCH-codes.

Theorem 6.4. Let C be the binary BCH code of length 2r − 1 and design
distance 2t + 1 defined with respect to the primitive root a ∈ F2r . Then C is a
cyclic code of dimension ≥ n− rt and minimum distance ≥ 2t + 1.

23

Outline proof. The product of the minimum polynomials of ai for 1 ≤
i ≤ 2t + 1 is a generator polynomial for C. Each minimum polynomial
has degree≤ r, since a ∈ Fr

2. Moreover, if f ∈ F2[x] then f (a) = 0 if and
only if f (a2) = 0. Hence the minimum polynomial of a2i is the same
as the minimum polynomial of ai, and so we need only consider odd
powers of a. It follows that g has degree ≤ rt and so, by Theorem 4.12,
the dimension of C is at least n− rt.

To show that the minimum distance of C is at least 2t + 1 it suffices,
by the same argument used in Remark 5.5, to show that no 2t columns
of the matrix K following Definition 5.2 are linearly dependent. Again
this follows from Theorem 1.8.

�

FINAL REMARKS ON BCH-CODES.
(1) More generally, BCH-codes can be defined over an arbitrary fi-

nite field F using a primitive element a in any field extension
of F. Over Fp, taking a to be a primitive root in Fp, the code
with design distance 2t + 1 is the cyclic Reed–Solomon code
RSp,p−1,p−1−2t. (By Theorem 2.5 the minimum distance of this
code is 2t + 1, so in these cases the design distance is exactly the
minimum distance.)

(2) Different choice of the primitive root a will give different BCH-
codes, but it turns out they have the same length and minimum
distance: see Theorem 8.1.9 in [4] in the recommended reading
list.

(3) BCH-codes can be decoded using the Berlekamp–Welsh decoder
see in §5 for cyclic Reed–Solomon codes. See §8.2 of [4] for de-
tails.

We end with a final example that uses several different codes seen in
this course.

Example 6.5. The Hamming code of length 15 is a [15, 11, 3]-code. Gen-
eralizing Example 14.6 in the main notes, it can be defined to be the bi-
nary code whose parity check matrix has all non-zero words of length 4
as its columns. An equivalent code is the binary BCH-code of length 15
and design distance 3.

The Hadamard codes constructed in Question 2 of Sheet 6 are linear:
taking a linear Hadamard (16, 32, 8) and puncturing it in its final posi-
tion gives a [15, 5, 7]-code.

Working with linear codes of length 15 we have the following table of
good codes.

24

1-error correcting (Hamming) size 211 = 2048 [15,11,3]
2-error correcting (BCH) size 27 = 128 [15,7,5]
3-error corr. (punctured Hadamard) size 25 = 32 [15,5,7]

By the exercise below, the Hamming and punctured Hadamard codes
are optimal. The BCH code has the largest possible size of a linear binary
code of length 15 and minimum distance 5, but there is a larger non-
linear code, of size 256. (See Theorem 7.4.5 in Van Lint, Introduction to
coding theory, Springer 1982.)

Exercise: Show from the Hamming Packing Bound that A2(15, 3) = 211.
Use Theorem 11.6 and the Plotkin bound in Corollary 9.7 in the main
notes to show that A2(15, 7) = 25.

	Overview
	1. Revision of fields and polynomials
	Fields
	Polynomials

	2. Definition and basic properties of Reed–Solomon codes
	3. Efficient decoding of Reed–Solomon codes
	4. Cyclic codes
	5. Reed–Solomon codes as cyclic codes
	6. A brief look at BCH codes
	Hamming codes as cyclic codes
	Binary BCH codes
	Final remarks on BCH-codes

