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Please attach your working, with this sheet at the front.

Guidance on notation: graphs may have multiple edges, but may not have
loops. A graph is simple if it has no multiple edges. (!) indicates an optional
question, included for interest only.

1. (a) Show that if two graphs have the same degree sequence then they
have the same number of vertices and the same number of edges. Find two
non-isomorphic graphs with the degree sequence (2, 2, 2, 1, 1).

(b) Find all simple graphs on 4 vertices, up to isomorphism.

2. For each of the sequences below, decide whether or not it is the degree
sequence of a graph. (If it is, give an explicit example, if not, say why not.)

(i) (9, 7, 5, 3, 1), (ii) (3, 2, 2, 1), (iii) (10, 3, 3, 2), (iv) (3, 3, 3, 1).

Do any of your answers change if the graph has to be simple?

3. Let G and G′ be graphs. Suppose that f : V (G) → V (G′) is an iso-
morphism. Let x, y ∈ V (G). Use induction to show that that the distance
between x and y in G is equal to the distance between f(x) and f(y) in G′.

4. (a) Show that the graphs below all have the same degree sequence.

, , .

(b) Show that the first two graphs are isomorphic. Hint: start by finding
a closed path of length 6 in the first.

(c) Show that neither is isomorphic to the third.
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5. Let G be a connected graph with k vertices of odd degree, where k > 0.
Show that the minimum number of trails with mutually distinct edges needed
to cover every edge of G is k/2.

How many continuous pen-strokes are needed to draw the diagram below
if it is forbidden to draw any line segment twice?

6. (a) Show that the complete graph on n vertices has n(n − 1)/2 edges.

(b) Show that if G is a simple graph on 6 vertices which is not connected
then G has at most 10 edges. Can equality occur?

7. (!) Assume that any two people are either friends or enemies. Show that
in a room of 6 people that are either 3 mutual friends, or 3 mutual enemies.
Show also that there are two people who have an equal number of enemies
present in the room.

8. (!) Here are two further results on derangements.

(a) Let ak(n) be the number of permutations of {1, 2, . . . , n} with ex-
actly k fixed points. Use results from lectures to prove that

ak(n) =
n!

k!

(

1 −
1

1!
+

1

2!
− . . . +

(−1)n−k

(n − k)!

)

.

Hence, or otherwise, give a simple expression for a0(n) − a1(n).

(b) Let e(n) be the number of derangements of {1, 2, . . . , n} which are
even permutations, and o(n) the number which are odd permutations. By
evaluating the determinant of the matrix















0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0















in two different ways, show that e(n) − o(n) = (−1)n−1(n − 1). Hint: the
eigenvectors and hence eigenvalues may be found directly; the determinant is
the product of the eigenvalues.
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Please attach your working, with this sheet at the front.

Guidance on notation: graphs may have multiple edges, but may not have
loops. A graph is simple if it has no multiple edges. (!) indicates an optional
question, included for interest only.

1. Which of the graphs shown below have (i) a closed Eulerian trail? (ii) a
closed Hamiltonian path?

, ,

2. Show that the graph below is isomorphic to the complete bipartite graph K4,3.

For which n ∈ N0 does K4,3 have (i) a closed path of length n; (ii) a closed
trail of length n?

3. Use Euler’s formula to give an alternative proof that K3,3 is not planar.
Hint: adapt the proof given in lectures for K5, noting that each face in a planar
drawing of K3,3 must be bounded by at least 4 edges.
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4. Professors Beeblebrox, Catalan, Descartes, Euler, Frobenius, Gauss and
Hamilton go punting. Gauss considers it beneath his dignity to be in the
same punt as anyone except Euler or Frobenius. Euler will tolerate Gauss,
but dislikes Descartes. No-one except Hamilton is willing to share a punt with
Beeblebrox.

(a) Explain the relevance of the graph shown below.

(b) By colouring this graph, or otherwise, determine the minimum num-
ber of punts required. How many possible seating plans are there using this
number of punts?

5. Let G be a planar graph.

(a) Show that it follows from Euler’s formula that G has a vertex of
degree 5 or less. Hint: suppose G has n vertices, e edges, and f faces, and
that all vertices of G have degree 6 or more. Show that e ≥ 3n and f ≤ 2e/3,
and then use Euler’s formula to get a contradiction.

(b) Show by induction on the number of vertices of G that G may be
coloured using 6 colours. Hint: in the inductive step delete from G the vertex
given by (a), along with all the edges to which it belongs.

6. (a) Show that if G is a bipartite graph then every closed path in G has
even length.

(b) Now suppose that G is a connected graph and that every closed path
in G has even length. Fix x ∈ G. Set

A = {y ∈ V (G) : there is a path from x to y of even length},

B = {y ∈ V (G) : there is a path from x to y of odd length}.

Show that A ∪ B = V (G), A ∩ B = ∅ and that if {u, v} is an edge of G then
either u ∈ A and v ∈ B or u ∈ B and v ∈ A. Deduce that G is bipartite.

(c) (!) Show that a connected bipartite graph has a unique bipartition.

7. (!) Let a, b, c ∈ N0 with a ≥ b ≥ c.

(a) Show that (a, b) is the degree sequence of a graph if and only if a = b.

(b) Show that (a, b, c) is the degree sequence of a graph if and only if
a ≤ b + c and a + b + c is even.

(c) State and prove a generalisation to an arbitrary number of vertices.
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Please attach your working, with this sheet at the front.

Guidance on notation: graphs may have multiple edges, but may not have
loops. A graph is simple if it has no multiple edges. A tree is a connected
simple graph with no closed paths. (!) indicates an optional question, included
for interest only.

1. Find all spanning trees in the following graph:
1

2

3

4

5

6

78

.

2. Find the Prüfer codes of the spanning trees in K7 shown below.

1

2

3

4

5 6

7

1

2

3

4

5 6

7

Which spanning trees in K7 have Prüfer codes (1, 1, 1, 1, 1) and (3, 3, 4, 4, 6)?
Which spanning trees in K7 have Prüfer codes of the form (i, j, k, l, m) where
i, j, k, l, m are mutually distinct?

3. The purpose of this question is to give an alternative proof of Theorem 4.2,
that the number of edges in a tree on n vertices is n − 1.

(a) Let T be a tree. Show that if (x0, x1, . . . , xm−1, xm) is a path in T of
greatest possible length then x0 and xm are leaves.

(b) Deduce that every non-empty tree has a leaf.

(c) Use the previous part and induction to prove that a tree on n vertices
has exactly n − 1 edges.

4. Show that a connected simple graph is a tree if and only if there is a
unique path between any two of its vertices.
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5. Let (s1, . . . , sn−2) be the Prüfer code of a tree on {1, 2, . . . , n}. Show that
if vertex j has degree d then j appears exactly d − 1 times in the sequence
(s1, . . . , sn−2). Deduce that the tree has leaves {1, 2, . . . , n}\{s1, . . . , sn−2}.

6. The diagram below shows a network with source s and sink t. Plain
numbers give the capacities, bold numbers one possible flow.

s t

10 4

5

5

5 5

5 4

5 1

5 5

5

5

5

4

10 1

5

4

5

5

5

5

10 5

(a) Check that the bold numbers give a valid flow from s to t.

(b) Apply one iteration of the Ford–Fulkerson algorithm to this flow.

(c) Find, with proof, a maximal flow in this network.

7. Let f be a flow in a network with source s, target t and edge list E. By
summing f(x, y) over all edges (x, y) ∈ E and using conservation of flow show
that

∑

y:(s,y)∈E

f(s, y) =
∑

z:(z,t)∈E

f(z, t).

8. (!) Families with 5, 4, 4 and 2 members plan to go on holiday. They have
at their disposal three cars, each able to seat 4 people, and one motorbike,
which is able to seat 2 people. It is essential that no two members of the same
family travel in the same vehicle. Show that the problem of maximising the
number of people who go on holiday can be formulated as a max-flow problem
in a suitable network.

9. (!) Let un be the average number of leaves in a spanning tree in the
complete graph on {1, 2, . . . , n}.

(a) Find u2 and u3 and check that u4 = 36/16 and u5 = 320/125.

(b) Use Prüfer codes to show that

un = n

(

1 −
1

n

)n−2

Hint: start by finding the probability that vertex 1 is a leaf.

(c) Hence show that

un

n
→

1

e
as n → ∞.
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Guidance on notation: A partition of a natural number n is a sequence of nat-
ural numbers (λ1, . . . , λk) such that λ1 ≥ λ2 ≥ . . . ≥ λk and λ1 + . . . + λk = n.
(") indicates an optional question, included for interest only.

1. Let G be the Petersen graph (shown below).

1

2

3

4

7

5

8

9

6 10

Let H be the subgroup of Sym{1, 2, . . . , 10} consisting of the permutations h
such that

{i, j} is an edge of G ⇐⇒ {h(i), h(j)} is an edge of G.

(a) Find an element of H of order 5.

(b) Find an element of H of order 6. (Hint: The labelling above is con-
sistent with Example 6.3 from lectures.)

(c) (") Find an element of H of order 4. Hence, or otherwise, draw the
Petersen graph in a way that exhibits 4-fold symmetry.

2. A 5-bead necklace is made using red and blue beads. Two necklaces should
be regarded as the same if one is a rotation of the other. Show that 8 different
necklaces can be made. How does this answer change if reflections are also
considered?
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3. An 8-bead necklace is made using c different colours of beads. Two neck-
laces should be regarded as the same if one is a rotation of the other. (Do not
consider reflections.)

(a) Find the number of different necklaces as a polynomial in c.

(b) When c = 2, how many necklaces have exactly 4 beads of each colour?

4. The conjugate of a partition is obtained by reflecting its Young diagram
in its major diagonal. For example (5, 2, 2, 1) has conjugate (4, 3, 1, 1, 1) since

reflects to

.

It is usual to write λ′ for the conjugate of λ.

(a) Show that λ has exactly k parts if and only if k is the the largest part
of λ′.

(b) Show that the number of self-conjugate partitions of n is equal to the
number of partitions of n into distinct odd parts. [Hint: There is a bijective
proof based on straightening ‘hooks’:

9
7

3
1

←→

.]

(c) Find a closed form for the generating function of self-conjugate parti-
tions.

5. (") A paperweight manufacturer wishes to sell regular tetrahedra with
faces painted red, blue and green. (It is not required that all three different
colours are used.) Counting two paperweights as the same if one is a rotation
of the other, how many different models can be sold?

1

4
3

2

Hint: Let X = {1, 2, 3, 4} and let H ≤ Sym(X) be the subgroup of permuta-
tions induced by rotations of the tetrahedron shown above. Start by proving
that H consists of all even permutations of {1, 2, 3, 4}, so

H = {1, (12)(34), (13)(24), (14)(23), (123), . . . , (234)}

where there are in total 8 elements of order 3.


