PRIFYSGOL CYMRU ABERTAWE

 UNIVERSITY OF WALES SWANSEADEGREE EXAMINATIONS 2007

MODULE MAP363

Combinatorics

Time Allowed - 2 hours

There are SIX questions on the paper.
A candidate's best THREE questions will be used for assessment.
No calculators are permitted.
Each question has equal weight. The maximum possible mark is 75/75.

1. Let G be a graph with vertex set V and edge list E.

Define the degree of a vertex $x \in V$. What does it mean to say that $\left(x_{0}, x_{1}, \ldots, x_{m}\right)$ is a trail in G ? What is the length of this trail? When is this trail closed? What does it mean to say that G is connected?

Suppose that G is connected and that all vertices of G have even degree. Show that G has a closed trail of non-zero length. Hence, or otherwise, prove that G has a closed trail passing through all the edges in E.

For $n \in \mathbb{N}$, let K_{n} denote the complete graph with vertex set $\{1,2, \ldots, n\}$. When does K_{n} have a closed trail passing through all its edges?

For each $n \in \mathbb{N}$ determine the minimum number of continuous pen-strokes needed to draw K_{n}.
[4 Marks]
2. (a) Let G be a simple graph. What does it mean to say that G is (i) planar? (ii) a tree?
[4 Marks]
(b) State and prove Euler's formula relating the number of vertices, edges and faces of a simple planar graph. [10 Marks]
[You may assume that a tree on n vertices has precisely $n-1$ edges.]
(c) What is the minimum length of a closed path in the Petersen graph (shown below)?

By counting edges, show that if there is a planar drawing of the Petersen graph with f faces, then $5 f \leq 30$. Hence show that the Petersen graph is not planar.

Find with proof the smallest number of edges that can be removed from the Petersen graph in order to leave a planar graph.
[4 Marks]
3. Let X be a finite subset of \mathbb{N} of size $n \geq 2$.
(a) Let T be a spanning tree in the complete graph on X. What does it mean to say that a vertex of T is a leaf? Define the Prüfer code of T.
(b) Find the spanning tree in the complete graph on the set $\{1,2,3,4,5,6\}$ with Prüfer code $(3,5,4,3)$.
(c) Use Prüfer codes to prove that the number of spanning trees in the complete graph on X is n^{n-2}.

How many of these trees have exactly 2 leaves? [4 Marks]
4. Let N be a network with vertex set V and edge set E. Write $c(x, y)$ for the capacity of the edge $(x, y) \in E$. Let $s \in V$ be the source vertex and let $t \in V$ be the target vertex.
(a) What does it mean to say that f is a flow in N ? Define the value of $f, \operatorname{val} f$. What does it mean to say that f is maximal?

What does it mean to say that (S, T) is a cut of N ? Define the capacity of $(S, T), \operatorname{cap}(S, T)$.
(b) Prove that if f is any flow in N and (S, T) is any cut then $\operatorname{val} f \leq \operatorname{cap}(S, T)$. Show that if equality holds, then the flow f is maximal.
[9 Marks]
(c) Find, with proof, a maximal flow in the network below.
[6 Marks]
(The numbers show the capacity of the edges.)

Now suppose that at most m units may pass through vertex p. Find a formula for the value of the maximal flow in terms of m.
[3 Marks]
5. (a) Let X be a set and let $G \leq \operatorname{Sym}(X)$ be a permutation group. For $g \in G$, let Fix $g=\{x \in X: g(x)=x\}$. Prove that

$$
\frac{1}{|G|} \sum_{g \in G}|\operatorname{Fix} g|
$$

is the number of orbits of G on X.
[12 Marks]
[You may assume the orbit-stabiliser theorem, provided it is clearly stated.]
(b) A 9-bead necklace is made using c different colours of beads. Two necklaces are regarded as the same if one is a rotation of the other. (Reflections should not be considered.) Find the number of different necklaces as a polynomial in c.

If there are two colours, red and blue, find the number of different necklaces which have 6 red beads and 3 blue beads. [4 Marks]
6. Let $n \in \mathbb{N}_{0}$. Define a partition of n.

Prove that if $p(n)$ is the number of partitions of n, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} p(n) x^{n}=\prod_{r=1}^{\infty} \frac{1}{1-x^{r}} \tag{8Marks}
\end{equation*}
$$

Show that the number of partitions of n into odd parts is equal to the number of partitions of n with distinct parts.
[8 Marks]
What is meant by the Young diagram of a partition?
[2 Marks]
Let $m \in \mathbb{N}$. Show that the number of partitions of n with largest part $\leq m$ is equal to the number of partitions of n with at most m parts.
[5 Marks]

