
Answers to specimen paper questions

Most of the answers below go into rather more detail than is really needed.
Please let me know of any mistakes.

Question 1.

(a) The degree of a vertex x is the number of edges to which it belongs.
If G has vertices of degree d1, d2, . . . , dn, where d1 ≥ d2, . . . ,≥ dn then the
degree sequence of G is

(d1, d2, . . . , dn).

We say that G is simple if there is at most one edge between any two of its
vertices.

(b) Theorem (Handshaking Theorem): If G is a graph with degree se-
quence (d1, . . . , dn) then G has exactly 2(d1 + . . . + dn) edges.

Proof : let x1, . . . , xn be the vertices of G, ordered so that deg xi = di. In
the sum d1 + . . . + dn we count each edge twice: an edge {xi, xj} is counted
once in di as an edge leaving xi, and once in dj as an edge leaving xj . So the
total number of edges of G is 2(d1 + . . . + dn).

(c) (i) Yes. The complete bipartite graph K3,3 has (3, 3, 3, 3, 3, 3) as its
degree sequence.

(ii) No. The sum of the degrees is 15. But the Handshaking Theorem
implies that the sum of the degrees of a graph is even.

(iii) Yes. The simple graph shown below has degree sequence (3, 1, 1, 1, 0, 0).
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(iv) No. Suppose G is a simple graph with degree sequence (4, 2, 1, 1, 0).
Let x be the vertex of degree 4. As G is simple and has only 5 vertices,
x must be adjacent to all the other four vertices of G. In particular x is
adjacent to the vertex of degree 0, a contradiction.

Question 2. Correction: in the graph in part (c), the edge running
southwest from vertex y should be deleted.

(a) A closed path is a sequence of vertices (x0, x1, . . . , xm, x0) such that
(i) xi 6= xj if i 6= j;
(ii) xi−1 is adjacent to xi for 1 ≤ i ≤ m;
(iii) xm is adjacent to x0.

A closed path is Hamiltonian if it visits every vertex of G.

The graph G is bipartite if there is a partition of its vertices into subsets A

and B such that if {x, y} is an edge of G then either x ∈ A and y ∈ B, or
x ∈ B and y ∈ A.

(b) Suppose that G has a closed Hamiltonian path. We may order the
vertices in this path so that its initial vertex lies in A. Then, as G is bipartite,
the next vertex must lie in B, the next in A, and so on. The path therefore
has the form

(a1, b1, a2, b2, . . . , an, bn, a1)

where ai ∈ A, bi ∈ B for 1 ≤ i ≤ n. Every vertex in G appears in this list,
so we must have

A = {a1, . . . , an} and B = {b1, . . . , bn}.

In particular, n = |A| = |B|.

(c) (i) A bipartition is indicated by the colouring below.

x

y

z1 z2

z3

z4z5

w
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(ii) Suppose that G has a closed Hamiltonian path. If this path doesn’t
use the edge {x, y} then it is a closed Hamiltonian path in the bipartite graph
above. This contradicts (b) as the sets in the bipartition have different sizes.

Hence the path must use the edge {x, y}. By ordering the vertices we
may assume it starts at x and then goes to y. There are two such paths
which visit vertices z4 and z5, namely

(x, y, z1, z2, z3, z4, z5, x) and (x, y, z3, z4, z5).

Neither of these paths visit vertex w, so neither is Hamiltonian. Hence G

does not have a closed Hamiltonian path.

Question 3.

(a) A subgraph T of G is a spanning tree if (i) it contains all the vertices
of G, and (ii) it is a tree, i.e. it is a connected graph with no closed paths.

(b) Suppose that b is the leaf of T with the smallest label, and that b is
adjacent to vertex s. The first entry in the Prüfer code of T is s. To find the
remaining entries, delete b and the edge {b, s} from T , and then repeat with
the new tree. Stop when only 2 vertices are left.

In the given tree, the smallest numbered leaf is 1, which is attached to 5.
So we start by writing down 5. We then delete 1 and the edge {1, 5}, leaving
the tree below.

2

3
4

5

Now the smallest numbered leaf is 3 which is adjacent to 2. So we write
down 2. We then delete 3 and the edge {2, 3} leaving the tree below.
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Now the smallest numbered leaf is 4, so we write down 2 and delete {2, 4}.
The remaining tree has just two vertices so we stop.

The Prüfer code is therefore (5, 2, 2).

[There are many ways to describe the algorithm; any reasonably clear
explanation along with the right Prüfer code would get full marks.]

(c) If a spanning tree has Prüfer code (a, a, a, a, b) then it must have 5
leaves (since a vertex is a leaf if and only if it doesn’t appear in the code).
At least four of these leaves are attached to a, and they are deleted in the
first 4 steps of the algorithm. This leaves a tree on 3 vertices. This tree must
have the form below, since b is one of its vertices, and b is not a leaf.

ba

The original tree is therefore of the form shown below.

ba

We can choose any number in {1, 2, . . . , 7} for a, and any of the remain-
ing numbers for b. Hence there are 42 trees with Prüfer code of the form
(a, a, a, a, b) where a 6= b.

Question 4.

Let E be the edge set of N and let c(x, y) be the capacity of the edge
(x, y).

(a) A flow in N is an assignment of a real number f(x, y) to each edge
(x, y) of N such that

(i) f(x, y) < c(x, y) for all edges x, y;
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(ii) if x is a vertex of N other than s and t then

∑

y:(x,y)∈E

f(x, y) =
∑

z:(z,x)∈E

f(z, x).

The value of a flow f is the total flow in the edges leaving s, i.e.

val f =
∑

y:(s,y)∈E

f(s, y).

A flow is maximal if its value is as large as possible.

(b) (S, T ) is a cut of N if {S, T} is a partition of the vertices of N such
that s ∈ S and t ∈ T . The capacity of the cut (S, T ) is

cap(S, T ) =
∑

c(x, y)

where the sum is over all edges (x, y) of N such that x ∈ S and y ∈ T .

(c) The value of any flow is bounded above by the total capacity of all
the edges from S to T . Hence if there is a flow whose value is equal to this
total capacity, it must be maximal.

(d) Since only 4 units can leave A and E, it seems reasonable to guess
that the flow shown below will be close to maximal. (The numbers on the
edges show the flow values.)

S T
C
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E F
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4

4

In fact this flow is maximal. To prove this we use part (c). If S =
{S, A, E} and T = {B, C, F, T} then f(x, y) = c(x, y) whenever x ∈ S and
y ∈ T .) There are no edges from T to S. Hence the hypothesis in (c) is
satisfied, and so the flow is maximal.
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[It would also be fine to say that the total capacity of the pipes leaving A

and E (the two neighbours of S) is 8, and so at most 8 units of flow can
leave S.]

Using the new pipe we can increase the flow value by 1.

1
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To prove that this new flow is maximal we again use (c), this time with the
sets S ′ = {S, A, E, C} and T ′ = {B, F, T}.

Question 5

Rotating the hexagon permutes the set X of vertex colourings. For ex-
ample, k sends

to

and so on. By identifying k with this permutation of X we may think of 〈k〉
as a subgroup of Sym(X).

There are 26 colourings in all (choose one colour for each of the six ver-
tices) and all of them are fixed by the identity e.

If a colouring is fixed by k then all its vertices must have the same colour.
So there are 2 such colourings:

and
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There are 4 colourings fixed by k2 (rotation by 120◦): the two above and the
two below.

and

A similar argument shows that there are 23 = 8 vertex colourings fixed by k3

(rotation by 180◦).
Since k4 is the inverse of k2, it fixes the same colourings as k2. Hence k4

fixes 4 colourings. Similarly we deduce that k5 fixes just 2 colourings.

Using the given formula we find that K has

26 + 2 + 22 + 23 + 22 + 2

6
=

84

6
= 14

orbits on Sym(X). Orbits correspond to distinct colourings, so there are 14
ways to colour the hexagon (when we regard two colourings as the same if
one can be rotated into the other).

There are 6 reflections to consider. Three of them, through the mid-points
of opposite edges, fix 23 = 8 colourings, and the other three, through pairs
of opposite vertices, fix 24 = 16 colourings. The number of orbits is

26 + 2 + 22 + 23 + 22 + 2 + 3.23 + 3.24

12
=

84

12
+

3.24

12
= 13.

There are therefore 13 distinct colourings if we also allow reflections.

Question 6

(a) The generating function of f is the power series

f(0) + f(1)x + f(2)x2 + . . . .

(b) Suppose that 15 = 3a + 5b. Subtracting off multiples of 3 from 15
gives 12, 9, 6, 3, none of which is divisible by 5. So if a ≥ 1 then a = 5 and
b = 0. Similarly if b ≥ 1 then b = 3 and a = 0. So f(15) = 2.

Suppose that 14 = 3a+5b. Subtracting off multiples of 3 leaves 11, 8, 5, 2,
of which only 5 is divisible by 5. So a = 3 and b = 1 is the only possibility,
and f(14) = 1. Similarly f(16) = 1.
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Let n ∈ N. The coefficient of xn in

(1 + x3 + x6 + x9 + . . .)(1 + x5 + x10 + x15 + . . .)

is equal to the number of ways to choose a term x3a on the left-hand-side
and a term x5b on the right-hand-side such that 3a + 5b = n. Hence

(1 + x3 + x6 + . . .)(1 + x5 + x10 + . . .) = f(0) + f(1)x + f(2)x2 + . . .

= F (x).

Now sum the geometric series to get

F (x) =
1

(1 − x3)(1 − x5)

as required.

(c) Multiplying through by (1 − x3)(1 − x5) gives

F (x) − x3F (x) − x5F (x) + x8F (x) = 1.

For n ≥ 8, the coefficient of xn on the left-hand-side is

f(n) − f(n − 3) − f(n − 5) + f(n − 8).

The coefficient of xn on the right-hand-side is 0 for all n ≥ 1. Hence

f(n) − f(n − 3) − f(n − 5) + f(n − 8) = 0 for n ≥ 8.
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