PRIFYSGOL CYMRU ABERTAWE
 UNIVERSITY OF WALES SWANSEA

DEGREE EXAMINATIONS 2007

MODULE MAP363

Combinatorics - paper to be sat on 29th May 2007

Time Allowed - 2 hours

There are SIX questions on the paper.
A candidate's best THREE questions will be used for assessment.
No calculators are permitted.
Each question has equal weight. The maximum possible mark is 75/75.

1. Let G be a connected graph with vertex set V and edge list E.

Define the degree of a vertex $x \in V$. What does it mean to say that $\left(x_{0}, x_{1}, \ldots, x_{m}\right)$ is a trail in G ? What is the length of this trail? When is this trail closed? What does it mean to say that G has an Eulerian trail?
[6 Marks]
State without proof a necessary and sufficient condition in terms of vertex degrees for G to have a closed Eulerian trail. [3 Marks]

Using this result, prove that if G has exactly two vertices of odd degree, say x and y, then G has an Eulerian trail. Where must this trail start and finish?
[6 Marks]
Show that G has an even number of vertices of odd degree. [The Handshaking Theorem may be assumed provided it is clearly stated.]
[5 Marks]
For each of the graphs below find with proof the minimum number of continuous pen-strokes required to draw it.

[5 Marks]
2. (a) What is meant by a closed path in a graph? What does it mean to say that a graph is connected? What does it mean to say that a graph is simple? What does it mean to say that a simple graph is a tree?
[5 Marks]
(b) Prove that a tree on n vertices has exactly $n-1$ edges.
[9 Marks]
(c) Show that, up to isomorphism, there are just 2 different trees with 4 vertices.
[4 Marks]
(d) Draw all connected simple graphs on 4 vertices with exactly 4 edges. How many such graphs are there (up to isomorphism)?
[7 Marks]
3. What does it mean to say that a simple graph is planar? What is meant by a face of a planar graph?

State and prove Euler's formula relating the number of vertices, edges and faces of a simple planar graph.
[You may assume the result of $\mathrm{Q} 2(\mathrm{~b})$, that a tree on n vertices has exactly $n-1$ edges.]

Prove that the graph below is not planar.

[7 Marks]
Now let $K_{m, n}$ be the complete bipartite graph on two sets of sizes m and n. Explain why the last result shows that if $m \geq n \geq 3$ then G is not planar.
[4 Marks]
4. Let N be a network with vertex set V and edge set E. Write $c(x, y)$ for the capacity of the edge $(x, y) \in E$. Let $s \in V$ be the source vertex and let $t \in V$ be the target vertex
(a) What is meant by a cut (S, T) of N ? Define the capacity of the cut (S, T).
[3 Marks]
(b) What does it mean to say that f is a flow in N ? Define the value of f. [4 Marks]
(c) Prove the the value of any flow from s to t is less than or equal to the capacity of any cut of N.
[8 Marks]
(d) Find with proof the maximal flow value in the network below.
[10 Marks]

(The numbers show the capacities of the edges.)
5. (a) Let X be a set and let $G \leq \operatorname{Sym}(X)$ be a permutation group acting on X. For $x \in X$ define the orbit of x, Orb x. For $g \in G$ define the fixed point set of g, Fix g. Prove that

$$
\frac{1}{|G|} \sum_{g \in G}|\operatorname{Fix} g|
$$

is the number of orbits of G on X.
[12 Marks]
[You may assume the orbit-stabiliser theorem, provided that it is clearly stated.]
(b) A 6 bead necklace is made using c different colours of beads. Two necklaces should be regarded as the same if one is a rotation of the other. (Reflections should not be considered.) Find the number of different necklaces as a polynomial in c. [9 Marks]

If there are three colours, white, grey and black, find the number of different necklaces which have 2 beads of each colour.
[4 Marks]
6. Let $n \in \mathbb{N}_{0}$. What does it mean to say that $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is a partition of n ?
[3 Marks]
Let $f(n)$ be the number of partitions of n into parts of size 5 and 7 . Prove that

$$
\sum_{n=0}^{\infty} f(n) x^{n}=\frac{1}{\left(1-x^{5}\right)\left(1-x^{7}\right)}
$$

[10 Marks]
What is the smallest number n for which $f(n) \geq 2$?
[5 Marks]
For $n \in \mathbb{N}_{0}$, let $g(n)$ be the number of partitions with parts of sizes 5 and 7 whose sum of parts is at most n. Find the generating function for g.
[7 Marks]

