MT5454 Combinatorics: MSc Mini-project

Attempt Questions 1, 2 and 3 and one of Questions 4, 5, 6.

To be submitted to the Mathematics Office McCrea 243 by 12 noon, Monday 11th January 2016. Put your candidate number but not your name or student number on the top sheet.
Hand-written answers are acceptable but use of $\mathrm{LA}_{\mathrm{EX}}$ is encouraged. Any general results from lectures or Wilf's book generatingfunctionology may be used without proof provided that they are clearly stated.
Each question is worth 25 marks: 4 marks per question will be given for the clarity and readability of your answers.

A set partition of $\{1, \ldots, n\}$ into m sets is a set $\left\{A_{1}, \ldots, A_{m}\right\}$ of m disjoint subsets of $\{1, \ldots, n\}$ such that $A_{1} \cup \ldots \cup A_{m}=\{1, \ldots, n\}$.
For $n, m \in \mathbf{N}_{0}$, define the Stirling Number of the Second Kind $\left\{\begin{array}{c}n \\ m\end{array}\right\}$ to be the number of set partitions of $\{1, \ldots, n\}$ into m sets.
For example, $\left\{\begin{array}{l}3 \\ 2\end{array}\right\}=3$; the relevant set partitions are $\{\{1\},\{2,3\}\},\{\{2\},\{1,3\}\}$, $\{\{3\},\{2,3\}\}$, and $\left\{\begin{array}{l}4 \\ 2\end{array}\right\}=7$. To avoid overcounting, note that $\{\{2\},\{1,3\}\}=\{\{1,3\},\{2\}\}=$ $\{\{3,1\},\{2\}$, and so on.

1. (a) Make a table showing $\left\{\begin{array}{l}n \\ m\end{array}\right\}$ for $0 \leq m \leq n \leq 5$. [Hint: check your answer against sequence A008277 in the Online Encyclopedia of Integer Sequences.]
(b) Find $\left\{\begin{array}{l}n \\ 0\end{array}\right\},\left\{\begin{array}{l}n \\ 1\end{array}\right\}$ and $\left\{\begin{array}{l}n \\ n\end{array}\right\}$ for each $n \in \mathbf{N}_{0}$ and $\left\{\begin{array}{c}n \\ n-1\end{array}\right\}$ for each $n \in \mathbf{N}$. Justify your answers.
(c) Prove that $\left\{\begin{array}{l}n \\ 2\end{array}\right\}=2^{n-1}-1$ for each $n \in \mathbf{N}$.
(d) Let $m, n \in \mathbf{N}$. Show that $m!\left\{\begin{array}{l}n \\ m\end{array}\right\}$ is the number of surjective functions $\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, m\}$. [Hint: what two surjective functions $\{1,2,3,4\} \rightarrow\{1,2\}$ can be defined in a natural way given the set partition $\{\{1,3\},\{2,4\}\}$?]
(e) Using the Principle of Inclusion and Exclusion, or otherwise, prove that

$$
m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}=\sum_{r=0}^{m}(-1)^{r}\binom{m}{r}(m-r)^{n}
$$

for all $m, n \in \mathbf{N}$. [Hint: see Question 9 on Sheet 2 for a step-by-step solution. Bear in mind that the notation is slightly different.]
2. (a) Prove that $\left\{\begin{array}{c}n \\ m\end{array}\right\}=\left\{\begin{array}{c}n-1 \\ m-1\end{array}\right\}+m\left\{\begin{array}{c}n-1 \\ m\end{array}\right\}$ for all $n, m \in \mathbf{N}$.
(b) Let $f_{m}(x)=\sum_{n=0}^{\infty}\left\{\begin{array}{l}n \\ m\end{array}\right\} x^{n}$. Prove that

$$
f_{m}(x)=\frac{x^{m}}{(1-x)(1-2 x) \ldots(1-m x)}
$$

for all $m \in \mathbf{N}$.
3. For $n \in \mathbf{N}_{0}$ let T_{n} denote the right-justified triangular board with k squares in row k for each $k \in\{1,2, \ldots, n\}$. For example T_{4} is shown below.

(a) Prove that $r_{k}\left(T_{n}\right)=r_{k}\left(T_{n-1}\right)+(n-(k-1)) r_{k-1}\left(T_{n-1}\right)$ for all $n, k \in \mathbf{N}$. [Hint: interpret the second summand as the number of ways to place $k-1$ nonattacking rooks on the subboard T_{n-1} of T_{n} obtained by deleting the rightmost column, and then to put one further rook somewhere in this column.]
(b) Use Q2(a) to show that $f_{T_{n}}(x)=\sum_{k=0}^{n}\left\{\begin{array}{c}n+1 \\ n+1-k\end{array}\right\} x^{k}$ for each $n \in \mathbf{N}_{0}$.
(c) Show that $\sum_{r=0}^{n}(-1)^{r} r!\left\{\begin{array}{c}n+1 \\ r+1\end{array}\right\}=0$ for all $n \in \mathbf{N}$. [Hint: use Theorem 6.10.]
4. Give a bijective proof of the result in Q3(b).
5. For $n \in \mathbf{N}_{0}$, let $B_{n}=\sum_{m=0}^{n}\left\{\begin{array}{l}n \\ m\end{array}\right\}$ be the number of set partitions of $\{1, \ldots, n\}$ into any number of sets. (These numbers are called Bell Numbers.)
(a) Write down the values of $B_{0}, B_{1}, B_{2}, B_{3}, B_{4}$.
(b) Using Q1(e), or otherwise, show that $\sum_{n=0}^{\infty} \frac{1}{n!}\left\{\begin{array}{l}n \\ m\end{array}\right\} x^{n}=\left(\mathrm{e}^{x}-1\right)^{m} / m$! for each $m \in \mathbf{N}_{0}$.
(c) Hence show that $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{n!}\left\{\begin{array}{l}n \\ m\end{array}\right\} x^{n} y^{m}=\exp \left(\left(\mathrm{e}^{x}-1\right) y\right)$.
(d) Using (c), or otherwise, find, with proof, a closed form for $\sum_{n=0}^{\infty} B_{n} x^{n} / n$!.
(e) Prove that $\sum_{m=0}^{n}(-1)^{m}\binom{n}{m} B_{n+1-m}=B_{n}$ for each $n \in \mathbf{N}_{0}$.
[Hint: for an 'otherwise' solution to this question you could use the theory in Chapter 3 of generatingfunctionology.]
6. Let $\left\{\begin{array}{c}n \\ m\end{array}\right\}^{\star}$ be the number of set partitions of $\{1,2, \ldots, n\}$ into m sets such that no set contains both k and $k+1$ for any $k \in\{1,2, \ldots, n-1\}$. For example, $\left\{\begin{array}{l}4 \\ 3\end{array}\right\}^{\star}=3$ counts the set partitions $\{\{1,3\},\{2\},\{4\}\},\{\{1,4\},\{2\},\{3\}\},\{\{1\},\{2,4\},\{3\}\}$.
(a) Find $\left\{\begin{array}{l}n \\ 2\end{array}\right\}^{\star}$ and $\left\{\begin{array}{c}n \\ n-1\end{array}\right\}^{\star}$ for each $n \in \mathbf{N}$. Justify your answers.
(b) Find with proof a recurrence analogous to the one in Q2(a) for $\left\{\begin{array}{l}n \\ m\end{array}\right\}^{\star}$.
(c) For each $m \in \mathbf{N}_{0}$, find, with proof, a closed form for $\sum_{n=0}^{\infty}\left\{\begin{array}{l}n \\ m\end{array}\right\}^{\star} x^{n}$.

