MT5454 Combinatorics: MSc Mini-project

Attempt Questions 1, 2 and 3 and one of Questions 4, 5, 6.

To be submitted to the Mathematics Office McCrea 243 by 12 noon, Monday 11th January 2016. Put your candidate number *but not your name or student number* on the top sheet.

Hand-written answers are acceptable but use of IAT_EX is encouraged. Any general results from lectures or Wilf's book *generatingfunctionology* may be used without proof provided that they are clearly stated.

Each question is worth 25 marks: 4 marks per question will be given for the clarity and readability of your answers.

A set partition of $\{1, \ldots, n\}$ into m sets is a set $\{A_1, \ldots, A_m\}$ of m disjoint subsets of $\{1, \ldots, n\}$ such that $A_1 \cup \ldots \cup A_m = \{1, \ldots, n\}$.

For $n, m \in \mathbf{N}_0$, define the Stirling Number of the Second Kind $\binom{n}{m}$ to be the number of set partitions of $\{1, \ldots, n\}$ into m sets.

For example, ${3 \choose 2} = 3$; the relevant set partitions are $\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\}, \{\{3\}, \{2,3\}\}, \text{ and } {4 \choose 2} = 7$. To avoid overcounting, note that $\{\{2\}, \{1,3\}\} = \{\{1,3\}, \{2\}\} = \{\{3,1\}, \{2\}, \text{ and so on.} \}$

- 1. (a) Make a table showing ${n \atop m}$ for $0 \le m \le n \le 5$. [Hint: check your answer against sequence A008277 in the Online Encyclopedia of Integer Sequences.]
 - (b) Find ${n \atop 0}$, ${n \atop 1}$ and ${n \atop n}$ for each $n \in \mathbb{N}_0$ and ${n \atop n-1}$ for each $n \in \mathbb{N}$. Justify your answers.
 - (c) Prove that ${n \choose 2} = 2^{n-1} 1$ for each $n \in \mathbf{N}$.
 - (d) Let $m, n \in \mathbf{N}$. Show that $m! {n \atop m}$ is the number of surjective functions $\{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, m\}$. [*Hint: what two surjective functions* $\{1, 2, 3, 4\} \rightarrow \{1, 2\}$ can be defined in a natural way given the set partition $\{\{1, 3\}, \{2, 4\}\}$?]
 - (e) Using the Principle of Inclusion and Exclusion, or otherwise, prove that

$$m! \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{r=0}^{m} (-1)^r \binom{m}{r} (m-r)^n$$

for all $m, n \in \mathbb{N}$. [Hint: see Question 9 on Sheet 2 for a step-by-step solution. Bear in mind that the notation is slightly different.]

2. (a) Prove that ${n \atop m} = {n-1 \atop m-1} + m {n-1 \atop m}$ for all $n, m \in \mathbb{N}$. (b) Let $f_m(x) = \sum_{n=0}^{\infty} {n \atop m} x^n$. Prove that

$$f_m(x) = \frac{x^m}{(1-x)(1-2x)\dots(1-mx)}$$

for all $m \in \mathbf{N}$.

3. For $n \in \mathbf{N}_0$ let T_n denote the right-justified triangular board with k squares in row k for each $k \in \{1, 2, ..., n\}$. For example T_4 is shown below.

- (a) Prove that $r_k(T_n) = r_k(T_{n-1}) + (n (k-1))r_{k-1}(T_{n-1})$ for all $n, k \in \mathbb{N}$. [Hint: interpret the second summand as the number of ways to place k - 1 nonattacking rooks on the subboard T_{n-1} of T_n obtained by deleting the rightmost column, and then to put one further rook somewhere in this column.]
- (b) Use Q2(a) to show that $f_{T_n}(x) = \sum_{k=0}^n {n+1 \choose n+1-k} x^k$ for each $n \in \mathbf{N}_0$.
- (c) Show that $\sum_{r=0}^{n} (-1)^{r} r! {n+1 \atop r+1} = 0$ for all $n \in \mathbb{N}$. [*Hint: use Theorem 6.10.*]
- 4. Give a bijective proof of the result in Q3(b).
- 5. For $n \in \mathbf{N}_0$, let $B_n = \sum_{m=0}^n {n \\ m}$ be the number of set partitions of $\{1, \ldots, n\}$ into any number of sets. (These numbers are called *Bell Numbers.*)
 - (a) Write down the values of B_0 , B_1 , B_2 , B_3 , B_4 .
 - (b) Using Q1(e), or otherwise, show that $\sum_{n=0}^{\infty} \frac{1}{n!} {n \atop m} x^n = (e^x 1)^m / m!$ for each $m \in \mathbf{N}_0$.
 - (c) Hence show that $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{n!} {n \choose m} x^n y^m = \exp((e^x 1)y).$
 - (d) Using (c), or otherwise, find, with proof, a closed form for $\sum_{n=0}^{\infty} B_n x^n / n!$.
 - (e) Prove that $\sum_{m=0}^{n} (-1)^m {n \choose m} B_{n+1-m} = B_n$ for each $n \in \mathbf{N}_0$.

[*Hint:* for an 'otherwise' solution to this question you could use the theory in Chapter 3 of generatingfunctionology.]

- 6. Let $\binom{n}{m}^{\star}$ be the number of set partitions of $\{1, 2, ..., n\}$ into m sets such that no set contains both k and k+1 for any $k \in \{1, 2, ..., n-1\}$. For example, $\binom{4}{3}^{\star} = 3$ counts the set partitions $\{\{1, 3\}, \{2\}, \{4\}\}, \{\{1, 4\}, \{2\}, \{3\}\}, \{\{1\}, \{2, 4\}, \{3\}\}$.
 - (a) Find $\binom{n}{2}^{\star}$ and $\binom{n}{n-1}^{\star}$ for each $n \in \mathbf{N}$. Justify your answers.
 - (b) Find with proof a recurrence analogous to the one in Q2(a) for ${n \atop m}^*$.
 - (c) For each $m \in \mathbf{N}_0$, find, with proof, a closed form for $\sum_{n=0}^{\infty} {n \choose m}^* x^n$.