A MATRIX TRANSFORM WITH INTERESTING
SPECTRAL BEHAVIOUR

MARK WILDON

The purpose of this note is to give a family of lower-triangular matrices,
having prescribed diagonal entries Ag, ..., A\,—1, and such that their vertical
reflections have eigenvalues A\g and +£+/Az\,—p for 1 <z <n/2.

To explain one motivation, let J(n) be the n x n matrix having 1s on its
anti-diagonal and Os in all other positions. That is, J(n)y, = [z+y = n—1],
where (as ever, unless otherwise specified) we number rows and columns of
matrices and vectors from 0. The vertical reflection of a matrix H is then
HJ(n), and Theorem 1.1 below relates the spectra of H and HJ(n) when
H is lower-triangular. We ask, more generally:

Question. How may the spectra of a lower-triangular matrix H and its
vertical reflection H.J(n) be related?

To give one indication that this question has some depth, in [1] and [2]
a different family of lower-triangular matrices H are considered in which
the eigenvalues of HJ(n) are Ao, —A1,...,(=1)""tA,—1. In §2 below we
study a family of stochastic examples, also related to [1], but given by the
construction in this note.

1. CONSTRUCTION

Fix a field F'. All our matrices will have entries in an extension field of F'.
Given r € N, let K(r) be the r x r lower-triangular matrix all of whose
entries on or below the diagonal are 1. Our matrices are constructed using
parameters m,n, L and v where:

e m,n € N with m < [n/2];
e [ is an m X m lower-unitriangular matrix with entries in F' such
that every entry in the leftmost column of L is 1, i.e. Lo = 1 and
Ly, =1for0<z<m
e v € R™ has leftmost entry 1, i.e. vg = 1.
Given these data, let @, (L, v) be the n x n matrix with the block structure
shown below.
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For example, if n = 10, v = (1,2,3,4) and L is the 4 x 4 Pascal’s Triangle
matrix, then

1
11
12 1
1331
123 4 1

QLv)=11 5 3 4 1 1
1234111
12341111
12341111
1234111111

where - indicates 0 entries implied by the lower-triangular structure of the Q-
matrix. (We use this convention throughout.) Let H,,(L,v) be the transform
of the diagonal matrix Diag(Ag, A1,..., An—1) by Qn(L,v), defined so that
the eigenvector of Hy, (L, v) with eigenvalue A, is column y of @, (L,v). That
is,

H,(L,v) = Qn(L,v)Diag( Ao, AL, - - -, An—1)Qn(L,v) "L

We give an example where H,(L,v) is stochastic in Example 2.2 below.

Theorem 1.1. The eigenvalues of Hp(L,v)J(n) are Ao and £/ Az n—z for
1<z <n.

To prove this theorem it is most convenient to undo the matrix transform,
so that it is applied instead to J(n), by taking the conjugate

Qn(L,v)™? (Hn(L, v)J(n))Qn(L, v)
= Diag(Ao, A1, - -+ Ane1)@n (L, v) LT (n)Qn (L, v).

Observe that @, (L,v)"1J(n)Q,(L,v) is the matrix representing the invo-
lution J(n) in the basis of columns of @, (L,v). In the example above, this

matrix is
1 2 3 4 1 1 1 1 1 1
-o—1
-1 1
-1 2 -1
- =1 3 -6 2
. . . . -1
1 0 -3 -1
-1 -2 -1
-1 -1
-1

Lemma 1.2. The non-zero entries of Qn(L,v) " J(n)Qn(L,v) lie only in
the marked regions in Figure 1.



FIGURE 1. The non-zero entries of the matrix Q,(L,v)"1J(n)Q,(L,v) in
Lemma 1.2 lie in the marked regions. If m = n/2 then the middle section is
empty and the two triangular regions overlap in their top-right and bottom-
left entries, as shown in Figure 2 below; if m = (n + 1)/2 then the middle
section is empty but there is no overlap to consider. The main diagonal and
sub-antidiagonal, both important in the proof of Proposition 1.4, are shown
by thick lines.

Proof. Let ¢ denote column y of Q,,(L,v). Fix y and let ¢ = J¢*). By the
remark before the proof, column y of Q,(L,v)"1J(n)Qn,(L,v) records the
coefficients expressing ¢ as a linear combination of ¢(@,¢® ... ¢~ D We
consider three cases. Note that the second includes columns m and n — m
which lie just outside the middle region in Figure 1.

e If 0 < y < m then since v is constant in positions m,m+1,...,n—1,
we have ¢g = ... = ¢p—m—1. Hence ¢ = coq(o) + v where v is a
linear combination of columns ¢(™~™), ... ¢ Y. There is a linear
combination w of columns ¢, ..., ¢~ @=1) such that coq® +w
agrees with ¢ in positions 0,1,...,n—m—1,n—m,...,n— (y—1).
Since ¢ has the same entry in positions n—y,...,n—1, and the same

holds for ¢(® and all the columns contributing to w, there exists
a € F such that cpq® +w + aq"¥) = ¢. Therefore column y of M

has its only non-zero entries in row 0 and the rows n—m, ..., n—y.
o If m <y <n—mthen ¢¥ =(0,...,0,1,...,1)" where y entries are
zero and the first 1 is in position y. Hence cg = ... = ¢p—y—1 = 1
and ¢,y = ... = ¢y = 0 and so ¢ — ¢ = (0,...,0,1,...,1)

where y entries are 1 and the first 1 is in position n — y. Since
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m < n—y < n—m, we have ¢ —¢ = ¢" ¥ and so ¢ = ¢ —g(n=V),
Hence the non-zero entries in column y are 1 in the top row and —1
in row n — y.

e If n —m < y < n then, as seen in the second case, ¢ — ¢ =
(0,...,0,1,...,1)" where y entries are 1 and the first 1 is in position
n—y. Since y > n—m, we have n—y < m, as shown diagrammatically
below where the bottom numbers show positions:

n—y m—(n—y)  n-m
) N S
¢ —c=0,...0 1. . 1.1T..0D.

n—y m—1lm

Now, arguing as in the first case, there exists a linear combination

w of columns ¢ ¥, ..., ¢V such that ¢© + w agrees with ¢
in positions 0,1,...,m — 1. Moreover, since ¢ has the same entry
(namely 0) in positions m,...,n — 1, there exists 8 € F such that

¢ +w+ Bq"™ = ¢. Therefore column y of M has its only non-zero
entries in row 0 and the rows n —y,...,m — 1, m. U

We now use this lemma to find the characteristic polynomial of the matrix
Diag(Ao; - - - An—1)Qn (L, v) LI (n)Qn(L,v). To make the inductive step as
transparent as possible, we isolate it in the following lemma. The hypotheses
states that the non-zero elements of the matrix M lie in the marked regions
in Figure 2 below. This is the matrix from Figure 1, defined in the extreme
cases n = 2m and n = 2m + 1, with row 0 and column 0 deleted.

I
‘ I
1 \\ |
A I
.
[N I
s I
\\ |
. |
m S
N
,,,,,,,,,, e
m—l—l AN
[N
! ~
| N
~
! N
I N
| ~
n—1 I AN
~
— 3‘ . l§>

FIGURE 2. The matrix M in Lemma 1.3 when n = 2m (left) and there are
2m — 1 rows and columns and n = 2m + 1 (right) when there are 2m rows
and columns.

Lemma 1.3. Let n > 2 and let M be an (n—1) x (n — 1) matriz with rows
and columns labelled by {1,...,n — 1} such that if My, # 0 then one of:

e x=y;



e 1 <x<|n/2] andx+y >n;

e n/2]<xz<n-—1andzx+y<n.
Then the determinant of M agrees with the determinant of the matriz ob-
tained from M by setting to zero all entries My, except the diagonal entries
(those with x = y) and the antidiagonal entries (those with x +y =n).

Proof. If n = 2 then the matrix is 1 x 1 and there is nothing to prove; if
n = 3 then the matrix is 2 x 2 with all entries potentially non-zero and again
there is nothing to prove.

Suppose that n > 4. Let o be a permutation of {1,...,n — 1} such that
H;L;i My (z) # 0. It suffices to show that o(z) € {x,n—x} for all z. By the
hypotheses, {o(1),0(n—1)} = {1,n—1}. Ifo(1) = land o6(n—1) = n—1 we
may delete rows 1 and n — 1 and columns 1 and n — 1 to reach an inductive
case. Otherwise o(1) =n —1 and o(n — 1) = 1 and again we may delete
these rows and columns to reach an inductive case. (]

Proposition 1.4. The matriz Diag(Ao, ..., A—1)Qn(L,v) 1 J(n)Qn(L,v)
A% = Apdnsn)-

=0
Proof. Let N = Diag(\o, - -, A—1)Qn(L,v) L J(n)Qn(L,v) — 2I where I is
the n x n identity matrix. Since the only non-zero entry of M in column 0
is Ap — z in row 0, we have det N = (A9 — z) det M where M is the matrix
obtained from N by deleting row 0 and column 0. By Lemma 1.2, increasing

has characteristic polynomial (z — Xo) [ |

the size m of the matrix L defining @, (L,v) only introduces new positions
where N may be non-zero. Hence we may assume that n = [n/2]. But now,
by Lemma 1.3, we may assume all the entries not on the main diagonal or
sub-antidiagonal of M are zero; equivalently, we are in the case m = 1.

If o is a permutation of {1,...,n — 1} such that Hg;% M5(z) # 0, then
since m = 1 we have {o(z),0(n—x)} = {x,n—xz} for each x. Hence, setting
J ={z:0(x) # x}, we find that

det M= > (~DVI2ITT Aedna

JC{L,...|n/2]} zeJ
This is the expansion of HZL QO(AI)\n_m — 2?), as required. O

Theorem 1.1 follows at once.

2. THE INVOLUTIVE RANDOM WALK

An interesting family of examples is obtained by taking L = B(m) where
B(m) is the m x m Pascal’s Triangle matrix with entries B(m)s, = (Z)
and v = v(m) where v(m), = (7). Thus v(m) is the first m entries in
the bottom row of B(m + 1) and H, (B(m),v) has B(m + 1) as its top-left
(m+ 1) x (m + 1)-submatrix.

For d € Ny and y € Ny with d + y < n, define Ad)\y = Zi:o (Z))‘lﬁk'

Given x < n, let 2T = min(z, m). It follows by a routine computation (see
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[1, Lemma 7.1] for the case y < # < m) that the matrix H,(B(m),v(m))
has entries

0 ifex<y
t T_ .
VAT YN, ify<mand x>y
(1) Ha(Bm),olm),, = WA
Az ify>mandz =y
Ay — Ay+1 ify>mand x> y.

Hence H,,(B(m),v(m)) is non-negative if and only if A\, > 0 for all d,y €
No withd+y <m and A\, > ... > \,—1 > 0. Moreover, all the rows have
sum Ag so the matrix is stochastic if and only if, in addition, A9 = 1. The
vertical reflection H, (B(m),v(m))J(n) is then the transition matrix of a
random walk on {0,1,...,n — 1} in which, starting at =z € {0,1,...,n — 1},
an element y € {0,1,...,n—1} is chosen with probability H, (B(m), v(m))xy
and the walk then steps to x*, where * is the involution on {0,1,...,n — 1}
defined by * = n — 1 — z. This is an instance of the involutive random
walk studied in detail in [1]. In particular, by [1, Theorem 1.3], provided
A1 < 1, the walk is irreducible, recurrent and ergodic with a unique invariant
distribution. By Theorem 1.1 its eigenvalues are 1 and £4/AzAzx41 for
1<z < |n/2|.

Remark 2.1. The m x m matrices B(m)Diag()o, ..., An_1)B(m)~! ap-
pearing in the top-left corner of H, (B(m),v(m)) are studied in [2], also in
the context of stochastic processes. That the entries of Hy, (B(m),v(m)) are
as claimed when y < z < m also follows from [2, Lemma 2.30].

Example 2.2. If m = 3 and n = 6 then the matrices Qg (B(4), (1,4, 6,4))
and H, (B(4), (1,4, 6,4)) are as shown below.

Ao .
. )\0 — )\1 >\1 !
1 - Ao — 2A1 + 2X9 2(A1 — A2) Ao .
3 1 - Ao — 3A1 +3X2 + A3 3()\1 — 2\ + )\3) 3(A2 — A3) A3 .
3 1 1 - A =3 +3x+ A3 3(A1—2X2+2A3) 3(A2a—A3) A3— N\ A
3 1 1 1 Ao — 3A1 + 32+ A3 3()\1 —2Xg + )\3) 3()\2 — /\3) A3— M M —As

As claimed, the entries are non-negative if and only if A\g > Ay > ... > A5 and
in addition, Ag—2A1+X2 > 0, Ay —2X o+ A3 > 0 and A\g—3A1+3X— A3 > 0.
In fact the first of these additional inequalities follows from the final two, so
can be omitted. Moreover, the row sums are all Ao and so Hg(B(4),v(4)) is
stochastic if and only if Ag = 1.

As
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2.1. Eigenvectors when m = 1. When m = 1 the matrix H, (B(1),v(1))
admits the easier definition

Az ify==x

Hyy=qN =M1 ify<z

0 ity > x.
Let P = HJ(n) be the corresponding transition matrix of the involutive
random walk. In this case it is possible to write down the eigenvectors of P

explicitly. For x € {0,1,...,n — 1}, let e(® € R” be the row vector with 1
in position x.

Proposition 2.3. The matrixz P is diagonalizable with eigenvalues 1 and

£/ AeAgit1 for 0 <z < n/2. If v < n/2 then the £/AzA41 eigenspace
contains
Vwr 1 (6@ — e@ DY £ /X, (@D — o),

When n = 2m, there is an eigenvalue —\,, and the —\,,-eigenspace contains
e(m) — e(mfl)

The proof is a fairly routine calculation by considering the action of H
on e® — (1) and is omitted.

2.2. Reversibility when m = 1. There is also an interesting characteri-
sation of when the walk is reversible. To prove it, we require the version of
Kolmogorov’s Criterion, as stated below.

Lemma 2.4. Let P be the transition matriz of a random walk on {0,1,...,n—
1} such that if Py, # 0 then x +y > n — 1. Suppose that P has a unique
invariant distribution. The walk is reversible if and only if

Pfﬂomlpzlrz s Pﬂ?eq&?o - P‘TOIZ—I e 'Przmpzlro

for all distinct xg,x1,...,29—1 € n with £ > 3, such that x; + x;01 > n—1
for all i € n, taking indices modulo £.

Proposition 2.5. The involutive walk with transition matriz P is reversible
if and only if
MAn—1 =X Ap—2 = ... = A1 \1.

Proof. Suppose that the walk is reversible. Let 1 < z < (n—1)/2. Consider
the 3-cyclen—1— x— 2" —n—1and itsreversen—1 — 2* = x — n—1.
Since x + * = n — 1, the positions (z,2*) and (z*,x) are on the anti-
diagonal of P, while the other two relevant positions are strictly below the
anti-diagonal. By (1) and Kolmogorov’s Criterion we have

Mo — Aere1)Aa(1 = A1) = Az = Aog)Aar (1 = Ap).

Simplifying, this becomes Ay Azx+1 = Agy1A+ as required.
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Conversely, suppose that this condition holds whenever 1 < x < n—1. Let
To > T > ... Typ_q = To be a cycle (with distinct vertices). Denote this
cycle by C and let C’ denote the reversed cycle xg — Ty_1 — ... — 11 — ;.
Throughout, all indices are to be regarded modulo p. Using Lemma 2.4, we
may assume that ¢ > 3 and x;_1 + x; > n — 1 for each ¢; it then suffices
to show that the product of transition probabilities is the same for C' and
C'. Let I = {i: x;—1 +2; = n— 1} be the set of indices i of those steps
Ti—1 — x; that contribute A, (rather than Agr — )\a;;“) to the product
for C. Now i’ appears in the analogous set for C’, of those indices ¢’ such
that the step xy11 + xy contributes A, (rather than A« — Ay« 1) to the
product of €', if and only if z; + x4 —n— 1, so if andlonly ifi' —1el
Let I —1 ={i—1:4 € I} be the set of such indices 7'. Observe that if
i € IN(I—1) then the step x;_1 — x; in C is 27 — z;, and the step
Tit1 — x; in C’ is also xf + ;. Therefore C' has a subcycle of length 2,
contrary to our assumption that the vertices are distinct. Hence I and I —1
are disjoint. If i ¢ T U (I — 1) then the step to z; contributes Azx — Agxy1 to
both products. Hence the two products are equal if and only if

[ I O = 2arsn) = [T Ow: = Aae) 1] 2t

el €l—1 el €l—1
Equivalently
T2 Oary = A ) = TTOwr = Az Aar -
el el

Ifi € I then x;_1+x; = n—1, and so z7_; = z;. Therefore a final equivalent

form is
H )‘zi* ()\Ii - )‘Ii+1) = H()‘xi* - )‘zi*—&-l))‘xz"
i€l el
This holds term-by-term, since /\I; Azi+1 = )‘le)\ri- U
We remark that if A\, = r® then the detailed balance equations have

the explicit solution 7, = (r**! —r%)/(r™ — 1) and, as expected from the
theorem just proved, the involutive random walk is reversible. In general
the invariant distribution is © where
An—1(1 = A1)
1— M1
()‘z* — )‘:L'*+1)(1 —Aey1) + (Az — )‘w+1)(1 — )‘z*)Az*Jrl
(1 - )‘z)‘x*+1)(1 - >\x+1)\x*)

ifxz=0

Ty = fo<z<n-1

1—X\

_— fx=n-1.
D P W]

The author’s proof is an explicit calculation most conveniently performed
by computer algebra.

Corollary 2.6. The involutive walk with transition matriz P is reversible
if and only if it has exactly 3 distinct eigenvalues.



Proof. By Theorem 2.5, the walk is reversible if and only if AgA x4 is a
constant, « say. By Theorem 1.1 this is the case if and only if the eigenvalues
of P are 1 and ++/«. O

2.3. Question. It would be interesting to know if these results generalize
to larger m.
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