
IMPARTIAL GAMES WITH ENTAILMENT

This is a much expanded version of the basic theory of entailed games
presented in [1] Chapter 12, pages 396 and 397, with some extra definitions
to do with equality that were possibly not intended by the authors of [1].

1. Standard definitions

We define impartial games inductively as follows: 0 = {} is an impartial
game. If G1, G2, . . . , Gk are impartial games then {G1, G2, . . . , Gk} is an
impartial game, with options G1, G2, . . . , Gk. (Note all the games defined
in this way have finitely many options.) If G,G′ are impartial games with
options G1, G2, . . . , Gk and G′

1, G
′
2, . . . , G

′
k′ respectively, then we define G+

G′ to be the game

{G1 + G′, . . . , Gk + G′, G + G′
1, . . . , G + G′

k}.

According to the usual definitions, an impartial game G is equal to 0 if it
is a P -position (the Previous player wins) and equality is defined by

G = G′ ⇐⇒ G + G′ = 0.

Note that games with different options may well be equal. For example, if
we define (inductively) nimbers to be the games

g? = {0, ?, . . . , (g − 1)?}

for g ∈ N then

{0, ?} = {0, ?, 3?}

as can easily be checked. (A move to 3? is answered by a move to 2?, so the
first player may as well restrict himself to the options 0, ?.)

The following lemma generalizes this example. In it, we define the mini-
mum excluded number of a proper subset A of N0 by

mexA = min(N0\A).

Lemma 1. Let G be a game with options equal to the nimbers a1?, a2?, . . . , ak?.
Then G = a? where a = mex{a1, . . . , ak}.

Proof. Consider the game G+ a?. If b < a then b? is an option of G. Hence
a move in a? to b? can be answered by a move in G to b?. A move in G to
b? can be answered similarly. A move in G to c? where c > a is answered
by moving to a?. So the new game after two moves is a? + a? = 0. Hence
G + a? is a first player loss. �
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2. Entailed games

To allow for entailment we must reduce the options in a sum of games so
that only moves in one particular component are allowed. (So our point of
view is that the definition of an impartial game as a list of options implicitly
includes games with entailment. However, the definitions of addition, and
we will see, equality, must change.)

Definition 2. Suppose that G and G′ are impartial games and that G has
options G1, . . . , Gk. The sum G+G′ with a move in G entailed has options
G1 + G′, . . . , Gk + G′.

For example, 2? + 3? = ? is an N -position (Next person to play wins).
But if a move in 2? is entailed then we have

2? + 3? = {2?, 3?}

so 2? + 3? is a P -position.
We have to be very careful with equality. The definition given above of

equality no longer makes sense for sums of games with entailed components.
(The sum of two games each with entailed components would have to always
be zero, since there are no legal moves, but we surely do not want to claim
that any two games with an entailed component are equal.) There are also
other problems.

For example, since 3? + 2? + 1? is a P -position, the entailed game (3? +
2?) + ? is also a P -position. Is it correct to write 3? + 2? = ?? If so, then
the games (3? + 2?) + 2? and ? + 2? should behave similarly. (We can’t
say ‘are equal’ here, because of the remark in the previous paragraph.) But
the first is an N -position (take the entire entailed heap) and the second is a
P -position (the only legal move loses).

To get around this we will change the definition of equality.

3. Equality for entailed games

Definition 3 (Full set of nim values). The full set of nim values of the
zero game is N0 = {0, 1, 2, . . .}. Suppose that G is an impartial game with
options G1, . . . , Gk, E1, . . . , E`, where the Gi are unentailed, but for each
Ej , the next move must be made in Ej . Let gi be the least value in the full
set of nim values of Gi and let Γj be the full set of nim values of Ej . Then
the full set of nim values of G is the complement in N0 of

{g1, . . . , gk} ∪ Γ1 ∪ · · · ∪ Γ`.

Here gi should be omitted if the full set of nim values of Gi is empty, and
so has no least value.

We shall write N(G) for the full set of nim values of an impartial game
G and n(G)? for the minimum of N(G), taking care only to use n(G) when
N(G) 6= ∅. Extending the usual definition, we call n(G) the nimvalue of
the game G.

Definition 4. Let G and G′ be impartial games. We say that G is equal to
G′, and write G = G′ if N(G) = N(G′).
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Note that if G = {G1, . . . , Gk} is a game without any entailed options
then N(G) is exactly the complement of the set of minimum nim values
n(G1), . . . , n(Gk) of options of G, and n(G) is the minimum excluded number
of the set {n(G1), . . . , n(Gk)}. So for games without entailment, looking only
at the least value of the full set of nim values recovers the usual definition
of equality.

One more result is easy to prove.

Lemma 5. Let G be an impartial game. Then G is a P -position (player to
move loses) if and only if 0 ∈ N(G).

Proof. The lemma is clearly true if G = {} since then N(G) = N0.
Let G have options G1, . . . , Gk and assume inductively that the lemma

holds for all options of G.
Suppose that 0 ∈ N(G). Then, by definition of N(G), none of G1, . . . , Gk

have 0 in their full set of nim values. So, by induction, any option of G is
an N -position (player to move wins), and hence G is a P -position.

Now suppose that 0 6∈ N(G). Again by definition of N(G), there exists
an option Gi of G such that 0 ∈ N(Gi). By induction, Gi is a P -position,
and so G is an N -position. �

Equivalently, G is a first player win if and only if n(G) 6= 0. This agrees
with the usual theory.

4. Examples

(1) We have N(g?) = {g, g + 1, . . .}.
(2) Let G be the game starting with a pile of two counters in which

we can either take both counters or reduce to an entailed pile of
one counter. The full set of nim values of the empty pile is N0 of
which 0 is the least value, and the full set nim values of a pile of one
counter is {1, 2, . . .}. So N(G) = ∅. Note that in any sum G + G′,
the first player must win: if it good to move first in G′ then play to
the entailed pile in G, otherwise make the opponent move first in G′

by taking both counters.

(3) More generally, let G be any game with all unentailed options. Let
G+ have options the same as G with one extra option of playing
to G entailed. This extra option is the same as passing (with the
opponent then forced to play). If G1, . . . , Gk are the options of G
then N(G+) is the complement of

{n(G1) . . . , n(Gk)} ∪N(G).

But by definition, N(G) is the complement of {n(G1), . . . , n(Gk)} so
N(G+) = ∅. So as in (2), the first player will win.

(4) With only finitely many options, any full set of nim values either
contains all but finitely many integers, or is finite. Either of these
possibilities can be achieved. For example, to get N(G) = {0, 1, 4, 5}
make the options of G unentailed piles of sizes 2 and 3 and an entailed
pile of size 6.
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(5) Let G be the strings and coins game with two coins connected by
a string, and one of these coins also connected to the ground. We
show in Example 8 below that N(G) = ∅. Consider the (unentailed)
game {G} which has G as its unique option. Since G has no nim
values, the full set of nim values of {G} is N0.

5. Full set of nim values for a sum of games

We are now ready for the main result.

Theorem 6. Let A,B, . . . , C be impartial games with non-empty full sets
of nim values. Suppose that A has full set of nim values a0, a1, a2, . . ..

(i) The game A + B + · · ·+ C is a P -position if and only if

n(A)? + n(B)? + · · ·+ n(C)? = 0.

(ii) The game A+B + · · · = C is a P -position if and only if there exists
i such that

ai? + n(B)? + · · ·+ n(C)? = 0.

Note that the entailed game is a P -position more often than the unentailed
game, as one would obviously expect. We will only prove (ii), but (i) follows
along similar lines. In the proof, if X ⊆ N0 then X? denotes {m? : m ∈ X}.

Proof. Let A have unentailed options A1, . . . , Ak and entailed options E1, . . . , E`.
Consider the following chain of implications:

A + B + · · ·+ C is an N -position

⇐⇒ Either there exists an unentailed option Ai of A such that
Ai + B + · · ·+ C is a P -position, or there exists an entailed
option Ei of A such that Ei + B + · · ·+ C is a P -position

⇐⇒ Either there exists an unentailed option Ai of A such that
n(B)? + · · · + n(C)? = n(Ai)? or there exists an entailed
option Ei of A such that n(B)? + · · ·+ n(C)? ∈ N(Ei)?

⇐⇒ n(B)? + · · ·+ n(C)? 6∈ N(A)?

⇐⇒ For all j we have aj? + n(B)? + · · ·+ n(C)? 6= 0

Here the second implication uses induction on the sums Ai + B + · · · + C,
and Ei + B + · · · = C, and the third uses the definition of N(A). �

Notice that the condition in the theorem depends only on the full set of
nim values of the games, and not on the games themselves. This justifies
the definition of equality for impartial games with entailment, and shows
that equal games can be freely substituted for one another in sums.

We end with a lemma that deals with the case excluded from Theorem 6.

Lemma 7. Let G be a game with empty full set of nim values. Then G+G′

is an N -position for any impartial game G′.

Proof. By hypothesis, G has options having every nim value 0?, ?, . . .. Play
in G to a game with value n(G′). �
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6. Nimstring example

We shall give the Nimstring rules in a non-standard way so that the game
is obviously an impartial game in the sense defined above.

A Nimstring game consists of a number of coins connected by strings.
Coins can also be connected by strings to the ground. In each move a string
is cut. If cutting a string frees one or more coins then the new game has a
single option: pass and let the opponent play on (if they can).

Example 8.

(i) The empty Nimstring game is 0, with full set of nim values N0.

(ii) The game G with a single coin and one string to the ground has as
its unique option the entailed game {0}. The full set of nim values
of {0} is {1, 2, . . .} so we have N(G) = {0}.

(iii) The game G′ with a single coin and two strings to the ground has G
(unentailed) as its unique option. So N(G′) = {1, 2, . . .}.

(iv) Let T be the game with two coins connected by a string. This
game has the entailed game {0} as its single option. So N(T ) is the
complement of N({0}). Since N({0}) = {1, 2, . . .} this shows that
N(T ) = {0}.

(iv) Let C be the game with two coins connected by a string, with one
coin also connected to the ground. The options of C are the entailed
game {G} and the game T just seen. Now N({G}) = {1, 2, . . .}. So
N(C) is the complement of {0} ∪ {1, 2, . . .}, that is N(C) = ∅.

Observe any Nimstring game having C as a component is, by Lemma 7,
a P -position. In the terminology of [1], C is a loony position, and any move
that creates a new component of C is loony (losing under any circumstance).

Example (ii) shows that in any Nimstring game containing a single coin
connected to the ground, together with some other components, the single
coin is irrelevant (full set of nim values is {0}, so in any winning move
calculation as in Theorem 6, it contributes 0). The same result for two coins
connected by a string follows from Example (iv), and it also true for three
coins in a line connected by two strings.

7. Complimenting moves

Generalizing the examples seen in Nimstring, suppose that G is a game
with unentailed options g1?, . . . , gk? and entailed options {E1}, . . . {E`},
where ` ≥ 1. So if the entailed option {Ej} is chosen then the opponent has
no choice (even if there are other components) but to move to Ej .

Suppose that some Ej has empty full set of nim-values. Then the full set
of nim values of {Ej} is N0 and so the full set of nim values of G is empty.

Now suppose that every Ej has non-empty full set of nim-values. The
full set of nim values of {Ej} is then N0\{n(Ej)}. Hence the full set of nim
values of G is the complement of⋃

j

(N0\{n(Ej)}) ∪ {g1, . . . , gk}.
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Thus
N(G) =

⋂
j

{n(Ej)} ∩ (N\{g1, . . . , gk}).

If there are two entailed options Ej and Ej′ with n(Ej) 6= n(Ej′) then we
see that N(G) = ∅. If all entailed options have the same least nim value g
then we still have N(G) = ∅, except when g 6= gi for all i. In this final case,
N(G) = {g}. Thus G is loony (empty set of nim values) or N(G) = {g}.

In the case where n(E1) = . . . = n(E`) = g and g ∈ {g1, . . . , gk} then
N(G) = ∅, and the unique winning move in the game G+g? is the unentailed
move in G to g?. (By assumption this is an unentailed option.) So even
when G is loony, it may not be correct to play an entailed move.

Example 9. An important special case occurs when the options of G are
the entailed game {g?} and g?. Then N(G) is the complement of

N({g}) ∪ {g}
and since N({g} = N0\{g}, we see that N(G) = ∅. Intuitively: if, as part
of a larger game, it’s good to play to g? in G, then the first player can do
so. Otherwise replacing G with g? must give a first player win, and the first
player can play to the entailed game {g} to force the second player to put
him into the same game with G replaced with g?.

Note that this argument does not show that an entailed move is always
winning.

Example 10. For instance, if G is the strings and coins game with two
coins connected by a string and one of these coins connected to the ground,
then G is a loony position (empty full set of nim values) and the unique
entailed move in G loses.

Example 11. Let G be the game with an entailed option {?} and an un-
entailed option 2?. Then the full set of nim values is the complement of

N({?}) ∪ {2} = {0, 2, 3, . . .}
namely {1}. This agrees with the full set of nim values of {?}. So the
first player cannot do worse by taking the entailed option. For instance,
if we play G + 2?, then it might seem natural to play in G to 2?, leaving
the opponent with the zero game. But if instead the first player takes the
entailed option, on his next turn he plays in ? + 2?, and he can win in this
game instead.

The discussion at the start of this section shows that any Nimstring game
can be analysed just using normal nimvalues, together with a special symbol,
conventionally $, to denote a game with empty full set of nim values.

Example 12. Let G be a Nimstring game with capturable coins c1, . . . , cm
and let Hj be the game with coin cj removed. We may suppose that N(Hj)
is non-empty if and only if j ∈ {1, . . . , `}, where ` < m.

We have seen that N(G) is empty if any entailed option has empty full
set of nim values. Suppose then that ` = m. We have seen that if n(Hj) 6=
n(Hj′) for any distinct j and j′ then the full set of nim values of G is
empty. In the remaining case we have n(H1) = . . . = n(H`). Moreover, we
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know that gi 6= g for any unentailed nimber gi? that is an option of G, and
n(G) = n(H1) = . . . = n(H`).

Note that, as promised, this analysis did not require the full set of nim
values of the options, only their minimum value, or the fact that they were
empty.
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