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1 Introduction

Challenge 1.1. Let n ≥ 1 and let x, y be square matrices with entries in C.
Suppose that xy−yx commutes with x and y. Show that xy−yx is nilpotent;
that is, (xy − yx)r = 0 for some r > 0.

If you solve this problem, you’ll have succeeding in finding the main
idea needed to prove a major result in the theory of Lie algebras. (See
Theorem 5.2.)

Convention 1.2. Vector spaces in this course are always finite-dimensional.
Throughout F will be a field.

Definition 1.3. A Lie algebra over a field F is an F -vector space L together
with a map

[−,−] : L × L → L

satisfying the following properties:

(1) [−,−] is bilinear,

(2) [x, x] = 0 for all x ∈ L; anticommutativity,

(3) [x, [y, z]]+[y, [z, x]]+[z, [x, y]] = 0 for all x, y, z ∈ L; the Jacobi identity.

One says [x, y] is the Lie bracket or commutator of x and y.

Some motivation for this definition will be given later. For now we merely
show that there are some interesting examples.

Example 1.4. Let V be an F -vector space. Let gl(V ) be the vector space of
linear maps V → V . Define [−,−] on gl(V ) by

[x, y] = x ◦ y − y ◦ x

where ◦ is composition of maps. This Lie algebra is known as the general
linear algebra.

Sometimes it is convenient to fix a basis and work with matrices rather
than linear maps. If we do this, we get:

Example 1.4′. Let gln(F ) be the vector space of all n × n matrices with
entries in F . Define the Lie bracket by

[x, y] = xy − yx

where xy is the product of the matrices x and y. As a vector space gln(F )
has as a basis the ‘matrix units’ eij for 1 ≤ i, j ≤ n. When calculating with
this basis, the formula

[eij, ekl] = δjkeil − δilekj

is often useful.
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Example 1.5. Let F = R. Let L = R3 and define [−,−] : R3 → R3 by
[x, y] = x ∧ y, the cross-product of vectors.

Example 1.6. Let V be an F -vector space. Define the Lie bracket on V by
[x, y] = 0 for all x, y ∈ V . Then V is a Lie algebra. Such Lie algebras are
said to be abelian.

Some motivation for Lie algebras (non-examinable)

Lie algebras were discovered by Sophus Lie1 (1842–1899) while he was at-
tempting to classify certain ‘smooth’ subgroups of general linear groups. The
groups he considered are now called Lie groups. He found that by taking the
tangent space at the identity element of such a group, one obtained a Lie
algebra. Questions about the group could be reduced to questions about the
Lie algebra, in which form they usually proved more tractable.

Example 1.7. Let

SL2(R) =

{(

a b
c d

)

: ad − bc = 1

}

.

We ask, given a 2×2 matrix x, when is I +εx ∈ SL2(R)? If we neglect terms
in ε2 we get the statement

I + εx ∈ SL2(R) ⇐⇒ trx = 0;

this defines the Lie algebra sl2(R).

We refer to this kind of argument as an argument by ‘näıve calculus’. The
main disadvantage of the näıve approach is that it doesn’t explain how the
Lie bracket on sl2(R) comes from the group multiplication in SL2(R). For a
short explanation of this, accessible to those who know a small amount about
tangent spaces to manifolds, see Theorem 3.18 in Baker, Matrix Groups.

Example 1.8. Let GLn(R) be the group of invertible n × n matrices with
entries in R. Let S be an element of GLn(R) and let

GS(R) =
{

X ∈ GLn(R) : X tSX = S
}

where xt is the transpose of the matrix x. Then GS(R) is a group. The
associated Lie algebra is

glS(R) =
{

x ∈ gln(R) : xtS + Sx = 0
}

.

1From www-groups.docs.st-and.ac.uk/∼history/Mathematicians/Lie.html: ‘It

was during the year 1867 that Lie had his first brilliant new mathematical idea. It came

to him in the middle of the night and, filled with excitement, he rushed to see his friend

Ernst Motzfeldt, woke him up and shouted:— “I have found it, it is quite simple!”’

History does not record Motzfeldt’s reaction.
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2 Fundamental definitions

Example 2.1. Certain subspaces of gln(F ) turn out to be Lie algebras in
their own right.

(i) Let sln(F ) be the vector subspace of gln(F ) consisting of all matrices
with trace 0. This is known as the special linear algebra.

(ii) Let bn(F ) be the vector subspace of gln(F ) consisting of all upper-
triangular matrices.

(iii) Let nn(F ) be the vector subspace of bn(F ) consisting of all strictly upper-
triangular matrices.

Example 2.1 suggests we should make the following definition.

Definition 2.2. Let L be a Lie algebra. A Lie subalgebra of L is a vector
subspace M ⊆ L such that [M, M ] ⊆ M ; that is, [x, y] ∈ M for all x, y ∈ M .

A Lie subalgebra is a Lie algebra in its own right.

Definition 2.3. Let L be a Lie algebra. An ideal of L is a vector subspace
M ⊆ L such that [L, M ] ⊆ M ; that is, [x, y] ∈ M for all x ∈ L, y ∈ M .

Definition 2.4. The centre of a Lie algebra L is

Z(L) = {x ∈ L : [x, y] = 0 for all y ∈ L} .

If [x, y] = 0 we say that x and y commute, so the centre consists of those
elements which commute with every element of L. So L = Z(L) if and only
if L is abelian.

Example 2.5. An ideal is in particular a subalgebra. But a subalgebra need
not be an ideal. For instance if M = b2(C) and L = gl2(C) then M is a
subalgebra of L, but not an ideal.

Whenever one has a collection of objects (here Lie algebras), one should
expect to define maps between them. The interesting maps are those that
are structure preserving.

Definition 2.6. Let L and M be Lie algebras. A linear map ϕ : L → M is
a Lie algebra homomorphism if

ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L.

A bijective Lie algebra homomorphism is an isomorphism.
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Lemma 2.7. Let ϕ : L → M be a Lie algebra homomorphism. Then ker ϕ
is an ideal of L and im ϕ is a subalgebra of M .

Example 2.8 (The adjoint homomorphism). Let L be a Lie algebra. Define
ad : L → gl(L) by ad x = [x,−]; that is, (ad x)(y) = [x, y] for y ∈ L. Then
ad is a Lie algebra homomorphism.

Suppose that L is a Lie algebra with vector space basis x1, . . . , xn. By
bilinearity, the Lie bracket on L is determined by the Lie brackets [xi, xj ] for
1 ≤ i, j ≤ n. Define constants cijk for 1 ≤ i, j, k ≤ n by

[xi, xj ] =

n
∑

k=1

cijkxk.

The cijk are the structure constants of L with respect to the basis x1, . . . , xn.

Lemma 2.9. The Lie algebras L and M are isomorphic if and only if they
have bases affording the same structure constants.

Structure constants depend on the choice of basis! If two Lie algebras �2

have different structure constants with respect to some chosen bases, they
might still be isomorphic, since a different choice of bases might make the
structure constants equal.

In practice, one specifies structure constants slightly informally.

Example 2.10. Will determine the structure constants of b2(C) with respect
to some chosen basis.

As expected, there are quotient Lie algebras and isomorphism theorems

Lemma 2.11. Let L be a Lie algebra and let I be an ideal of L. The quotient
vector space L/I is a Lie algebra with Lie bracket defined by

[x + I, y + I] = [x, y] + I.

Theorem 2.12 (First isomorphism theorem). Let L and M be Lie algebras
and let ϕ : L → M be a Lie algebra homomorphism. Then ker ϕ is an ideal
of L and L/ ker ϕ ∼= im ϕ.

For example, L/Z(L) ∼= im ad ⊆ gl(L). This shows that, modulo its
centre, any Lie algebra is isomorphic to a subalgebra of some general linear
algebra.

Lemma 2.13 (Second isomorphism theorem). Let I and J be ideals of a Lie
algebra L. Then I + J and I ∩ J are ideals and (I + J)/J ∼= I/(I ∩ J).

2Dangerous bend ahead.
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Some low-dimensional Lie algebras

To get a little more practice at working with Lie algebras we attempt to
classify Lie algebras of small dimension. Depending on how time is going
some of the results below may be omitted.

Any 1-dimensional Lie algebra is abelian, so up to isomorphism, there is
just one 1-dimensional Lie algebra over any given field.

Theorem 2.14. If L is a 2-dimensional non-abelian Lie algebra then L has
a basis x, y such that [x, y] = x. Thus up to isomorphism there are exactly
two 2-dimensional Lie algebras over any given field.

Recall from the first problem sheet that if L is a Lie algebra, then the
derived algebra L′ is the linear span of the brackets [a, b] for a, b ∈ L.

Theorem 2.15. Suppose that L is a 3-dimensional Lie algebra such that L′

is 1-dimensional and L′ is not contained in Z(L). Then L has a basis x, y, z
such that z is central and [x, y] = x.

Lemma 2.16. Suppose that L is a 3-dimensional Lie algebra such that L′ is
2-dimensional. Then L′ is abelian. If x ∈ L\L′ then adx acts on L′ as an
invertible linear transformation.

Theorem 2.17. Suppose that L is a 3-dimensional complex Lie algebra such
that L′ = L. Then L ∼= sl2(C).

Putting these results together with question 5 on sheet 1 and question 4
on sheet 2 will give a classification of all 3-dimensional Lie algebras.

For comparison, the classification of 4-dimensional complex Lie algebras,
while known in principle, is still the subject of ongoing research. In one
description there are 8 ‘one-off’ Lie algebras and 6 infinite families.

3 Solvable Lie algebras

Lemma 3.1. Suppose that I is an ideal of L. Then L/I is abelian if and
only if I contains the derived algebra L′.

Definition 3.2. Let L be a Lie algebra. The derived series of L is the series
with terms

L(1) = L′ and L(k) = [L(k−1), L(k−1)] for k ≥ 2.

Then L ⊇ L(1) ⊇ L(2) ⊇ . . .. We say L is solvable if L(m) = 0 for some m ≥ 1.
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Example 3.3. The 2-dimensional non-abelian Lie algebra is solvable over
any field. So is the Heisenberg algebra. By question 2 on problem sheet 2,
sl2(C) is not solvable.

If L is solvable, then the derived series of L provides us with an ‘approx-
imation’ of L by a finite series of ideals with abelian quotients. This also
works the other way around.

Lemma 3.4. If L is a Lie algebra with ideals

L = I0 ⊇ I1 ⊇ . . . ⊇ Im−1 ⊇ Im = 0

such that Ik−1/Ik is abelian for 1 ≤ k ≤ m, then L(k) ⊆ Ik for 1 ≤ k ≤ m.
Hence L is solvable.

Thus the derived series of a solvable Lie algebra is its fastest descending
series with abelian quotients.

Lemma 3.5. Let L be a Lie algebra.

(a) Suppose L is solvable. Then every subalgebra of L is solvable and every
homomorphic image of L is solvable.

(b) Suppose that L has an ideal I such that I and L/I are both solvable.
Then L is solvable.

(c) If I and J are solvable ideals of L, then I + J is a solvable ideal of L.

Corollary 3.6. Let L be a Lie algebra. There is a unique solvable ideal of L
which contains every solvable ideal of L.

This largest solvable ideal is said to be the radical of L and is denoted
rad L. The radical will turn out to be an essential tool in helping to describe
finite-dimensional Lie algebras.

Definition 3.7. A non-zero Lie algebra L is said to be semisimple if it has
no non-zero solvable ideals, or, equivalently, if radL = 0.

For example, sl2(C) is semisimple. The reason for the word ‘semisimple’
will be revealed shortly.

Lemma 3.8. If L is a Lie algebra, then the factor algebra L/radL is semisim-
ple.

Definition 3.9. A Lie algebra L is simple if it has no ideals other than 0
and itself and it is not abelian.
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The restriction that a simple Lie algebra may not be abelian removes
only the 1-dimensional abelian Lie algebra. Without this restriction, this Lie
algebra would be simple but not semisimple.

We shall prove later (in §7) that a complex Lie algebra is semisimple if
and only if it is a direct sum of simple Lie algebras. So to understand an
arbitrary complex Lie algebra we need to

(i) understand the structure of solvable Lie algebras over C, and

(ii) classify the simple Lie algebras over C.

4 Engel’s theorem and nilpotent Lie algebras

Our first aim is to prove the following.

Theorem 4.1 (Engel’s Theorem). Let V be a vector space. Suppose that L
is a Lie subalgebra of gl(V ) such that every element of L is a nilpotent linear
transformation of V . Then there is a basis of V in which every element of L
is represented by a strictly upper triangular matrix.

To prove Engel’s Theorem, we adapt the strategy used to prove the anal-
ogous result for a single nilpotent linear transformation. Thus the key step
is to find a vector v such x(v) = 0 for all x ∈ L.

Lemma 4.2. Suppose that L is a Lie subalgebra of gl(V ), where V is non-
zero, such that every element of L is a nilpotent linear transformation. Then
there is some non-zero v ∈ V such that x(v) = 0 for all x ∈ L.

There is another way to look at Engel’s theorem, which does not depend
on the Lie algebra L being given to us as subalgebra of some general linear
algebra.

Definition 4.3. The lower central series of a Lie algebra L is the series with
terms

L1 = L′ and Lk = [L, Lk−1] for k ≥ 2.

Then L ⊇ L1 ⊇ L2 ⊇ . . .. We say L is nilpotent if Lm = 0 for some m ≥ 1.

Example 4.4. (i) For n ≥ 1, the Lie algebra of strictly upper triangular ma-
trices nn(F ) is nilpotent. In particular, the Heisenberg Lie algebra is nilpo-
tent.

(ii) A nilpotent Lie algebra is solvable. But a solvable Lie algebra need
not be nilpotent. For example b2(C) is solvable but not nilpotent.
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Lemma 4.5. If L is a Lie algebra then L is nilpotent if and only if L/Z(L)
is nilpotent.

Theorem 4.6 (Engel’s Theorem, second version). A Lie algebra L is nilpo-
tent if and only if for all x ∈ L the linear map adx : L → L is nilpotent.

WARNING: It is very tempting to assume that a Lie subalgebra L of gl(V )
is nilpotent if and only if there is a basis of V in which the elements of L �
are all represented by strictly upper-triangular matrices. The ‘if’ direction is
true, because a subalgebra of a nilpotent Lie algebra is nilpotent. However,
the ‘only if’ direction is false.

5 Lie’s theorem

Lemma 5.1. Let V be an vector space and let L ⊆ gl(V ) be a Lie algebra.
Suppose that there is a basis of V with respect to which every element of L
is represented by an upper-triangular matrix. Then L is solvable.

Thus a necessary condition for L to be triangularisable is that L should
be solvable. Lie’s theorem says that, over C, this necessary condition is also
sufficient.

Theorem 5.2 (Lie’s Theorem). Let V be a complex vector space and let
L ⊆ gl(V ) be a Lie algebra. Suppose that L is solvable. Then there is a
basis of V in which every element of L is represented by an upper-triangular
matrix.

As for Engel’s Theorem, the critical step is to find a common eigenvector
for all the elements of L.

Theorem 5.3. Let V be a complex vector space and let L ⊆ gl(V ) be a
solvable Lie algebra. There exists a non-zero vector v ∈ V such that v is a
common eigenvector for all the elements of L.

Lie’s theorem is the definitive structure theorem on solvable complex Lie
algebras. Some corollaries:

Corollary 5.4. Let V be a complex vector space and let L ⊆ gl(V ) be a
solvable Lie algebra.

(i) If x ∈ L′ then x is a nilpotent endomorphism of V .

(ii) There is a a chain of L-invariant subspaces of V ,

0 = V0 ⊂ V1 ⊂ V2 . . . ⊂ Vn−1 ⊂ Vn = V

such that dim Vk = k.
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Corollary 5.5. Let L be a complex Lie algebra. Then L is solvable if and
only if L′ is nilpotent.

Some further applications of Lie’s Theorem will be made in §6.

6 Some representation theory

Definition 6.1. Let L be a Lie algebra over a field F . A representation of
L is a Lie algebra homomorphism

ϕ : L → gl(V )

where V is a finite-dimensional vector space over F . If ϕ is injective the
representation is said to be faithful.

It is usual just to say V is a representation of L. This is a useful shorthand,
but it puts the emphasis in the wrong place; on its own V is just a vector
space — the important part is the map ϕ.

Example 6.2. Let L be a a Lie algebra over F .
(i) The map ad : L → gl(L) is a representation of L.
(ii) Suppose L is given as a subalgebra of some gl(V ). Then the inclusion

map L → gl(V ) is a representation of L, the natural representation.
(iii) Let V = F and define ϕ : L → gl(V ) by ϕ(x) = 0 for all x ∈ L. This

is the trivial representation.
(iv) By question 3(c) on sheet 1, the Lie algebra R3

∧ has a faithful 3-
dimensional representation.

Definition 6.3. Let ϕ : L → gl(V ) be a representation of a Lie algebra L.
A subrepresentation of V is a subspace W of V such that ϕ(x)(W ) ⊆ W for
all x ∈ L. If V is non-zero and has no non-zero proper subrepresentations
then V is said to be irreducible, or simple.

If ϕ : L → gl(V ) is a representation of a Lie algebra L and W is a
subrepresentation of V , then the quotient vector space V/W becomes a rep-
resentation of L via the map ϕ̄ : L → gl(V/W ) defined by

ϕ̄(x)(v + W ) = ϕ(x)(v) + W.

In the language of representation theory, Theorem 5.3 becomes:

Theorem 6.4. Let L be a solvable complex Lie algebra and let ϕ : L → gl(V )
be a representation of L. Then V is irreducible if and only if dim V = 1.
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Note that the ‘if’ direction is trivial since a 1-dimensional vector space
has no non-trivial proper subspaces. Since it got slightly rushed in lectures,
here is a slightly more careful proof of the equivalence of the ‘only if’ part of
Theorem 6.4 with Theorem 5.3.

Proof. Suppose that Theorem 5.3 holds and let ϕ : L → gl(V ) be a repre-
sentation of the solvable complex Lie algebra L. The image, ϕ(L) ⊆ gl(V ),
is a solvable complex Lie algebra, so by Theorem 5.3, there is a vector v ∈ V
such that ϕ(x)(v) ∈ 〈v〉 for all x ∈ L. Thus 〈v〉 is a 1-dimensional sub-
representation of V . Hence if V is irreducible, we must have V = 〈v〉 and
dim V = 1.

Conversely, assume that Theorem 6.4 is true. Let V be a complex vector
space and let L ⊆ gl(V ) be a solvable Lie algebra. So L has a natural
representation on V , via the inclusion map L → gl(V ). Let U be a non-zero
L-invariant subspace of V of the smallest possible dimension. Then U is an
irreducible subrepresentation of V , so by Theorem 6.4, dim U = 1. Suppose
U = 〈u〉. As U is closed under the action of L, x(u) ∈ 〈u〉 for all x ∈ L.
Thus u is a common eigenvector for the elements of L.

We can now prove Theorem 6.4 and hence Lie’s Theorem. We need the
following two lemmas.

Lemma 6.5. Let ϕ : L → gl(V ) be a representation of a Lie algebra L. If I
is an ideal of L then

ϕ(I)V = 〈ϕ(a)v : a ∈ I, v ∈ V 〉

is a subrepresentation of V .

Lemma 6.6. Let ϕ : M → gl(V ) be an irreducible representation of a Lie
algebra M . If I an ideal of M such that the maps ϕ(x) : V → V are nilpotent
for all x ∈ I then ϕ(I) = 0.

The proof of Theorem 6.4 also needs the solution to Problem 1.1 in the
form stated below.

Lemma 5.0. Let x, y : V → V be linear maps on a complex vector space V .
If xy − yx commutes with x then xy − yx is nilpotent.

For brevity, if ϕ : L → gl(V ) is a representation we may write x · v rather
than ϕ(x)(v). In this form, a representation V is known as an L-module.
Alternatively, one can define an L-module directly as follows.
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Definition 6.7. Suppose that L is a Lie algebra over F . A Lie module for L,
or alternatively an L-module, is an F -vector space V together with a bilinear
map

L × V → V (x, v) 7→ x · v

satisfying the condition

[x, y] · v = x · (y · v) − y · (x · v) for all x, y ∈ L and v ∈ V .

Given an L-module V one recovers the associated the associated repre-
sentation ϕ : L → gl(L) by setting ϕ(x)(v) = x · v for x ∈ L and v ∈ V .

Definition 6.8. Let L be a Lie algebra and let U and V be L-modules. A
linear map θ : U → V is an L-module homomorphism if

θ(x · u) = x · θ(u) for all u ∈ U and x ∈ L.

As usual, an L-module isomorphism is a bijective L-module homomorphism.

Example 6.9. (1) Let 〈x〉 be a 1-dimensional Lie algebra over F . Given
any vector space V over F and any element t ∈ gl(V ), one may define a
representation of 〈x〉 by mapping x to t. The representations where x acts
as the linear maps t and t′ are isomorphic if and only if t and t′ are similar
matrices.

(2) Let L = 〈x, y〉 be the 2-dimensional non-abelian Lie algebra over F ,
with Lie bracket defined by [x, y] = x. For any α ∈ F , the adjoint represen-
tation of L is isomorphic to the representation ϕα defined by

ϕ(x) =

(

0 1
0 0

)

, ϕ(y) =

(

−1 α
0 0

)

.

Lemma 6.10. Let θ : U → V be a homomorphism of modules for a Lie
algebra L.

(i) ker θ is an L-submodule of U and im θ is an L-submodule of V .
(ii) The quotient map U → U/ ker θ is an L-module homomorphism
(iii) The vector space isomorphism U/ ker θ → im θ which maps u+ker θ ∈

U/ ker θ to θ(u) is an L-module homomorphism.

By this lemma, all the usual isomorphism theorems hold for L-modules.
The Jordan-Hölder theorem also holds, with essentially the same proof as for
representations of associative algebras.

Lemma 6.11 (Schur’s Lemma). Let L be a complex Lie algebra and let U
and V be irreducible L-modules.

(i) An L-module homomorphism θ : U → V is either 0 or an isomorphism.
(ii) A linear map θ : V → V is an L-module homomorphism if and only

if θ = λ1V for some λ ∈ C.
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Representations of sl2(C)

Recall that sl2(C) has basis e, f, h where

e =

(

0 1
0 0

)

, f =

(

0 0
1 0

)

, h =

(

1 0
0 −1

)

and that the Lie bracket is determined by [e, f ] = h, [h, e] = 2e, [h, f ] = −2f .
Consider the vector space C[X, Y ] of polynomials in two indeterminants

X, Y with complex coefficients. Let Vd be the subspace of homogeneous
polynomials of degree d, so V0 is the vector space of constant polynomials,
and for d ≥ 1, Vd has basis Xd, Xd−1Y, . . . , Y d. This means that Vd has
dimension d + 1.

Lemma 6.12. Let ϕd : sl2(C) → gl(Vd) be defined by

ϕd(e) = X
∂

∂Y
, ϕd(f) = Y

∂

∂X
, ϕd(h) = X

∂

∂X
− Y

∂

∂Y
.

and linear extension. Then ϕd is a representation of sl2(C).

Theorem 6.13. The representations Vd are irreducible.

In fact the Vd give all the irreducible (finite-dimensional) representations
of sl2(C). To prove this it will be convenient to use the language of modules.
The following lemma is critical.

Lemma 6.14. Let V be an sl2(C)-module.
(i) Let v be an h-eigenvector with h · v = λv. If e · v is non-zero then it

is an h-eigenvector with eigenvalue λ + 2. If f · v is non-zero then it is an
h-eigenvector with eigenvalue λ − 2.

(ii) There is a h-eigenvector v ∈ V such that e · v = 0. Such a vector v is
said to be a highest-weight vector.

We can now prove the statement following Theorem 6.13. In fact it is no
harder to prove something slightly stronger.

Theorem 6.15. Let V be an sl2(C)-module. Let v ∈ V be a highest weight
vector with h · v = λv. Then λ ∈ N0 and the submodule of V generated by v
is isomorphic to Vλ.

Definition 6.16. A module V for a Lie algebra L is said to be completely
reducible if V can be written as a direct sum of irreducible L-modules.

Fact 6.17. Modules for sl2(C) are completely reducible.

This fact is a special case of Weyl’s Theorem, which states that if L is
any complex semisimple Lie algebra then representations of L are completely
reducible. An important corollary of Fact 6.17 is that an sl2(C)-module is
determined, up to isomorphism, by the set of eigenvalues of h.
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7 Semisimple Lie algebras

The aim of this section is to prove that if L is a complex semisimple Lie
algebra then L is a direct sum of simple Lie algebras.

We first prove a criterion for a complex Lie algebra to be solvable.

Lemma 7.1. Let V be a complex vector space and let L ⊆ gl(V ) be a Lie
algebra. If L is solvable then tr(xy) = 0 for all x ∈ L and y ∈ L′.

In fact this necessary condition is also sufficient. The proof needs a small
result from linear algebra.

Lemma 7.2. Let V be a complex vector space and let t : V → V be a linear
map. Suppose that t has minimal polynomial

f(X) = (X − λ1)
a1 . . . (X − λr)

ar ,

where the λi are pairwise distinct. Let the corresponding primary decompo-
sition of V as a direct sum of generalised eigenspaces be

V = V1 ⊕ . . . ⊕ Vr,

where Vi = ker(t − λi1V )ai. Then, given any µ1, . . . , µr ∈ C, there is a
polynomial p(X) such that

p(t) = µ11V1
+ µ21V2

. . . + µr1Vr
.

The proof of this lemma is not likely to be examined and will probably
not be dwelt on in lectures.

Proof. Suppose we could find a polynomial p(X) ∈ C[X] such that

p(X) ≡ µi mod (X − λi)
ai .

Take v ∈ Vi = ker(t−λi1V )ai . By our supposition, f(X) = µi+a(X)(X−λi)
ai

for some polynomial a(X). Hence

p(t)v = µi1Vi
v + a(X)(t − λi)

aiv = µiv,

as required.
The polynomials (X−λ1)

a1 . . . , (X−λr)
ar are coprime. We may therefore

apply the Chinese Remainder Theorem, which states that in these circum-
stances the map

C[X] →

r
⊕

i=1

C[X]

(X − λi)ai

p(X) 7→ (p(X) mod (X − λ1)
a1 , . . . , f(X) mod (X − λr)

ar)

is surjective, to obtain a suitable f(X).
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Theorem 7.3. Let V be a complex vector space and let L ⊆ gl(V ) be a Lie
algebra. If tr(xy) = 0 for all x ∈ L and y ∈ L′ then L is solvable.

To apply this theorem to an abstract Lie algebra we use the adjoint
representation.

Definition 7.4. Let L be a complex Lie algebra. The Killing form on L is
the symmetric bilinear form defined by

κ(x, y) = tr(ad x ◦ ad y) for x, y ∈ L.

Theorem 7.5 (Cartan’s First Criterion). The complex Lie algebra L is solv-
able if and only if κ(x, y) = 0 for all x ∈ L, y ∈ L′.

Example 7.6. (1) Will determine the Killing form of the 2-dimensional
non-abelian Lie algebra.

(2) Suppose that I is an ideal of a Lie algebra L. Write κI for the Killing
form on I, considered as a Lie algebra in its own right. Then κI(x, y) =
κ(x, y) for all x, y ∈ I.

Lemma 7.7. Let I be an ideal of a Lie algebra L. Set

I⊥ = {y ∈ L : κ(x, y) = 0 for all x ∈ I} .

Then I⊥ is an ideal of L and I ∩ I⊥ is solvable.

Theorem 7.8 (Cartan’s Second Criterion). The complex Lie algebra L is
semisimple if and only if its Killing form κ is non-degenerate.

Corollary 7.9. If L is a complex semisimple Lie algebra then L has ideals
I1 . . . , Ir such that each Ij is a simple Lie algebra and L = I1 ⊕ . . . ⊕ Ir.

8 The root space decomposition

In this section we explore the structure of complex semisimple Lie algebras.

Definition 8.1. Let L be a complex Lie algebra. If x ∈ L is such that
ad x : L → L is diagonalisable, we say that x is semisimple. A subalgebra
H of L is said to be a Cartan subalgebra if (i) all the elements of H are
semisimple and (ii) H is abelian, and H is maximal with these properties.

This definition is convenient for our purposes and fairly easy to work with.
It is not the one originally given by Cartan (see page 80 of Humphrey’s book),
but it can be shown to be equivalent to it when L is semisimple. Perhaps
surprisingly, the requirement that H be abelian is redundant: see question 1
on problem sheet 7.
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Example 8.2. Let L = sl3(C) and let H be the 2-dimensional Lie subalgebra
of L consisting of diagonal matrices. Suppose h ∈ H has diagonal entries
a1, . . . , an. Then for i 6= j,

[h, eij ] = (ai − aj)eij .

Thus the eij for i 6= j are simultaneous eigenvectors for the elements of ad H.
So in the basis

{eij : i 6= j} ∪ {eii − ei+1 i+1 : 1 ≤ i < n}

of L, the maps ad h for h ∈ H are represented by a diagonal matrices. This
shows that H consists of semisimple elements.

We can record the eigenvalues of ad H on the simultaneous eigenvector eij

by a function λij : H → C, defined by

[h, eij] = λij(h)eij .

Here λij(h) = ai−aj. So in fact, λij ∈ H⋆, the dual space of linear maps from
H to C. Let Lλij

be the space of all ad H eigenvectors where the eigenvalues
of elements of adH are given by λij; that is,

Lλij
= {x ∈ L : [h, x] = λij(h)x for all h ∈ H} .

Here one can check that Lλij
= 〈eij〉. So, as a vector space (or more precisely,

as a representation of H), L decomposes as

L = H ⊕
⊕

i6=j

Lλij

It follows from this decomposition that H is not contained in any larger
abelian subalgebra of H, so H is a Cartan subalgebra of L.

We now show that the way sl3(C) decomposes is typical of the general
behaviour.

Lemma 8.3. Let L be a complex Lie algebra and let H be an abelian Lie
subalgebra of L consisting of semisimple elements. For α ∈ H⋆ set

Lα = {x ∈ L : [h, x] = α(h)x for all h ∈ H} .

Then each Lα is an ad H-invariant vector subspace of L and there is a finite
subset Φ ⊆ H⋆\{0} such that

L = L0 ⊕
⊕

α∈Φ

Lα.
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Definition 8.4. Keep the hypotheses of the previous lemma. If α ∈ H⋆ is
non-zero and Lα 6= 0 then α is a root of H . The subspace Lα is the root
space associated to α. The decomposition of L given by the lemma is known
as the root space decomposition of L with respect to H .

The next example illustrates why the root space decomposition is most
useful when H is a Cartan subalgebra of L.

Example 8.5. Let L = sl3(C). Let K be the span of the single element h =
e11−e22. The root space decomposition of L with respect to K is just the direct
sum decomposition of L into eigenspaces for adh, considered in question 2
of problem sheet 6. This decomposition may be refined by extending K to the
Cartan subalgebra H of Example 8.2.

Basic properties of the root space decomposition

Until the end of this section, let L be a complex semisimple Lie algebra, let
H be a Cartan subalgebra of L and let Φ be the set of roots of H . Let κ be
the Killing form on L.

Lemma 8.6. Suppose that α, β ∈ H⋆. Then

(i) [Lα, Lβ] ⊆ Lα+β.

(ii) If α + β 6= 0, then κ(Lα, Lβ) = 0.

(iii) The restriction of κ to L0 is non-degenerate.

Since H is abelian, H is contained in L0. For semisimple Lie algebra
something much better is true.

Theorem 8.7. Let L be a complex semisimple Lie algebra. If H is a Cartan
subalgebra of L then H = L0. An equivalent formulation is that H is self-
centralising; that is,

H = {x ∈ L : [H, x] = 0} .

There will not be time to prove this theorem in lectures. (One proof is
given on page 36 of Humphreys.)

Subalgebras isomorphic to sl2(C)

We now associate to each root α ∈ Φ a Lie subalgebra of L isomorphic to
sl2(C).

17



Theorem 8.8. Suppose that α ∈ Φ and that x is a non-zero element in Lα.
Then −α is a root and there exists y ∈ L−α such that 〈x, y, [x, y]〉 is a Lie
subalgebra of L isomorphic to sl2(C).

We denote this subalgebra by sl(α). We fix once and for all a standard
basis of each sl(α) so that sl(α) = 〈eα, fα, hα〉 where eα ∈ Lα, fα ∈ L−α,
hα = [eα, fα] and α(hα) = 2.

Lemma 8.9. Given h ∈ H, let θh be the map θh ∈ H⋆ defined by

θh(k) = κ(h, k) for all k ∈ H.

The map h 7→ θh is a vector space isomorphism between H and H⋆.

In particular, associated to each root α ∈ Φ there is a unique element
tα ∈ H such that

κ(tα, k) = α(k) for all k ∈ H.

Lemma 8.10. Let α ∈ Φ. If x ∈ Lα and y ∈ L−α, then [x, y] = κ(x, y)tα.
In particular, hα = [eα, fα] ∈ 〈{tα}〉.

We are now in a position to apply the results of §6 on the representation
theory of sl2(C).

Lemma 8.11. Let α ∈ Φ be a root. We may regard L as an sl(α)-module
via restriction of the adjoint representation.

(i) The eigenvalues of sl(α) acting on L are integers.

(ii) Let β be a root and let

U =
⊕

c

Lβ+cα,

where the sum is over all c ∈ C such that β + cα ∈ Φ. Then U is an
sl(α)-submodule of L.

The sl(α)-submodule considered in this lemma is the α-root string through
β. The dimension of U is the length of the root string.

Theorem 8.12. Let α ∈ Φ. The root spaces L±α are 1-dimensional. More-
over, the only multiples of α which lie in Φ are ±α.

Theorem 8.13. Suppose that α, β ∈ Φ and β 6= ±α.
(i) β(hα) ∈ Z.

(ii) There are integers r, q ≥ 0 such that β + kα ∈ Φ if and only if k ∈ Z

and −r ≤ k ≤ q. Moreover, r − q = β(hα).

(iii) If α + β ∈ Φ, then [eα, eβ] is a non-zero scalar multiple of eα+β.

(iv) β − β(hα)α ∈ Φ.

This essentially determines all the structure constants of L.
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Cartan subalgebras as inner product spaces

Lemma 8.14. If h ∈ H and h 6= 0, then there exists a root α ∈ Φ such that
α(h) 6= 0. The set Φ of roots spans H⋆.

Recall that if θ ∈ H⋆ then there is an element tθ ∈ H is chosen so that
κ(tθ, x) = θ(x) for all x ∈ L. By Lemma 8.10, if α is a root then tα lies in
the span of hα. The next lemma gives a stronger result.

Lemma 8.15. Let α ∈ Φ.

(i) tα =
hα

κ(eα, fα)
and hα =

2tα
κ(tα, tα)

;

(ii) κ(tα, tα)κ(hα, hα) = 4.

We may define a bilinear form (−,−) on H⋆ by

(θ, ϕ) = κ(tθ, tϕ) for θ, ϕ ∈ H⋆

The following lemma gives a more convenient way to work with (−,−).

Lemma 8.16. Let α, β be roots. Then
2(β, α)

(α, α)
= β(hα), the eigenvalue of

hα acting on the root space Lβ.

There will probably not be time to prove the following theorem in lectures.
(No new ideas are required, but the calculations are a little fiddly. See §8.5
of Humphreys for a proof.)

Theorem 8.17. Let α1, . . . , αℓ be a basis of H⋆ consisting of roots. The real
subspace spanned by the αi contains all the roots, and so does not depend on
the choice of basis. Call this space E. The restriction of (−,−) to E is a
real valued inner product.

The next theorem summarises some important results we have proved.

Theorem 8.18. The roots Φ have the following properties.

(i) Φ spans E.

(ii) If α ∈ Φ then −α ∈ Φ but no other scalar multiple of Φ is a root.

(iii) If α, β ∈ Φ then β −
2(β, α)

(α, α)
α ∈ Φ

(iv) If α, β ∈ Φ then
2(β, α)

(α, α)
∈ Z
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Example 8.19. Let L = sl3(C). With the notation of Example 8.2, let
α = λ1 − λ2 ∈ H⋆ and let β = λ2 − λ3 ∈ H⋆. Then (α, α) = (β, β) and the
angle between α and β is 2π/3. As a set,

Φ = {±α,±β,±(α + β)} .

9 The classification of complex semisimple Lie

algebras

The aim of this section is to sketch a proof of the following classification
theorem. Some parts will be treated informally, and for this reason none of
the material in this section will be examinable.

Theorem 9.1. Let L be a complex simple Lie algebra. Then either L is
isomorphic to one of the classical Lie algebras, slℓ+1(C) for ℓ ≥ 1, so2ℓ+1(C)
for ℓ ≥ 2, sp2ℓ for ℓ ≥ 3 and so2ℓ(C) for ℓ ≥ 4, or L is one of the five
exceptional Lie algebras, g2, f4, e6, e7, e8.

The definitions of the orthgonal and symplectic Lie algebras were given
in the first lecture. Recall that so2ℓ(C), so2ℓ+1(C), sp2ℓ(C) are defined to be
glS(C) where S is

(

0 Iℓ

Iℓ 0

)

,





1 0 0
0 0 Iℓ

0 Iℓ 0



 ,

(

0 Iℓ

−Iℓ 0

)

respectively, and glS(C) = {x ∈ gln(R) : xtS + Sx = 0}; see Example 1.8.
The smallest exceptional Lie algebra is g2, the 14-dimensional Lie algebra

of derivations of the algebra of octonions. (The other exceptional Lie algebra
are too complicated to even try to define them here.) Highly recomended for
further reading is the article by John Baez, Octonions ; see his website.

Root systems

Let E be a real vector space with an inner product written (−,−). Given a
non-zero vector v ∈ E, let sv be the reflection in the hyperplane normal to
v. Thus sv sends v to −v and fixes all elements y such that (y, v) = 0.

Lemma 9.2. For each x ∈ E,

sv(x) = x −
2(x, v)

(v, v)
v.
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The reflection sv preserves the inner product (−,−); that is, (sv(x), sv(y)) =
(x, y) for all x, y ∈ E.

Convention 9.3. Set 〈x, v〉 :=
2(x, v)

(v, v)

Note that the map 〈−,−〉 : E × E → R is only linear with respect to its
first variable.

Definition 9.4. A subset R of a real vector space E is a root system if it
satisfies the following axioms.

(R1) R is finite, it spans E, and it does not contain 0.

(R2) If α ∈ R, then the only scalar multiples of α in R are ±α.

(R3) If α ∈ R, then the reflection sα permutes the elements of R.

(R4) If α, β ∈ R, then 〈β, α〉 ∈ Z.

The elements of R are called roots.

By Theorem 8.18, if Φ is the set of roots of a complex semisimple Lie
algebra L with respect to a Cartan subalgebra H , and E is the real inner
product space given by restricting the Killing form on H⋆ to the real span of
the roots Φ, then Φ is a root system in E.

By question 5 on sheet 7, if L is simple then it is not possible to partition Φ
into non-empty subsets Φ1, Φ2 such that (α, β) = 0 for all α ∈ Φ1, β ∈ Φ2;
such root systems are said to irreducible. Any root system decomposes as
direct sum of irreducible root systems.

The following lemma gives the first indication that the axioms for root
systems are quite restrictive.

Lemma 9.5. Suppose that R is a root system in the real inner-product space
E. Let α, β ∈ R with β 6= ±α. Then

〈α, β〉 〈β, α〉 ∈ {0, 1, 2, 3}.

Example 9.6. Suppose that R is a root system in the 1-dimensional inner
product space E. Then R = {±α} for some non-zero α ∈ E. There are
essentially four different 2-dimensional root systems, A1 × A1, A2, B2 and
G2, with diagrams as below. Of these, all but A1 × A1 are irreducible.
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β−β

α

−α

α−α

α+β

−α−β

β

β

α−α

2α+β

−2α−β

α+β

−α−β

β

−β.

α

β

This example motivates the definition of isomorphism for root systems.

Definition 9.7. Let R and R′ be root systems in the real inner-product
spaces E and E ′, respectively. We say that R and R′ are isomorphic if there
is a vector space isomorphism ϕ : E → E ′ such that

(a) ϕ(R) = R′, and

(b) for any two roots α, β ∈ R, 〈α, β〉 = 〈ϕ(α), ϕ(β)〉.

Suppose that L is a complex semisimple Lie algebra with roots Φ with
respect to some Cartan subalgebra. Theorem 8.13 says that given the values
〈β, α〉 for all β, α ∈ Φ we can determine most of the structure of L. In
fact, with more work, one can show that these values determine L up to
isomorphism.

Fact 9.8. Let L and M be complex semisimple Lie algebras. Then L and M
are isomorphic if and only if their root systems are isomorphic.

So to classify complex semisimple Lie algebras up to isomorphism, it is
enough to classify root systems up to isomorphism. To do this we need some
further ideas.
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Bases and Dynkin diagrams

Definition 9.9. Let R be a root system in the real inner product space E.
A subset B of R is a base for the root system R if

(B1) B is a vector space basis for E, and

(B2) every β ∈ R can be written as β =
∑

α∈B kαα with kα ∈ Z, where all
the non-zero coefficients kα have the same sign.

The elements of B are said to be simple roots.

It is quite easy to show that every root system has a base. The idea of
the proof is to fix a hyperplane in E and choose as elements of the base the
elements of Φ that are nearest to E. For instance, α, β is a base of the root
system of type B2.

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

α

β α+β 2α+β

chosen hyperplane

{aα + bβ : a, b ≥ 0}

Definition 9.10. Let R be a root system and let α1, . . . , αℓ be a base for R.
The Cartan matrix of R is the ℓ × ℓ-matrix with entries Cij = 〈αi, αj〉.

Given a base for a root system it is possible to reconstruct all the roots by
repeatedly taking reflections in the simple roots. This can be used to show
the following.

Fact 9.11. Let R and R′ be root systems in the real inner product spaces
E and E ′. Then R is isomorphic to R′ if and only if R and R′ have bases
affording the same Cartan matrices

Dynkin introduced a convenient way to summarise the information in a
Cartan matrix.

Definition 9.12. Let R be a root system with simple roots α1, . . . , αℓ. Let ∆
be the graph with vertices labelled by the simple roots. Between the vertices
labelled by simple roots α, β draw dαβ edges where

dαβ = 〈α, β〉 〈β, α〉 ∈ {0, 1, 2, 3}.
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If dαβ > 0, which happens whenever α and β have different lengths and are
not orthogonal, draw an arrow on the edge pointing from the longer root to
the shorter root. The graph ∆ is the Dynkin diagram of R.

Lemma 9.13. A root system is irreducible if and only if its Dynkin diagram
is connected.

So to classify root systems up to isomorphism it is enough to classify the
connected Dynkin diagrams. Unfortunately there won’t be time to do this
in lectures. A nice account is given in §2.5 of Lectures on Lie groups and Lie
algebras by Carter, Segal, Macdonald. The result is as follows:

Theorem 9.14. Given an irreducible root system R, the unlabelled Dynkin
diagram associated to R is either a member of one of the four families

Aℓ for ℓ ≥ 1: . . .

Bℓ for ℓ ≥ 2: . . .

Cℓ for ℓ ≥ 3: . . .

Dℓ for ℓ ≥ 4: . . .

where each of the diagrams above has ℓ vertices, or one of the five exceptional
diagrams

E6:

E7:

E8:

F4:

G2:
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Note that there are no repetitions in this list. For example, we have not
included C2 in the list, as it is the same diagram as B2, and so the associated
root systems are isomorphic. This corresponds to an isomorphism of Lie
algebras, sp4(C) ∼= so5(C).

Finally one can check that the root systems of slℓ(C), so2ℓ+1(C), sp2ℓ(C)
and so2ℓ(C) have types A, B, C and D respectively. So, apart from the five
exceptional Lie algebras, any complex simple Lie algebra is isomorphic to a
member of one of these families.
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