
MT182 Matrix Algebra

Mark Wildon, mark.wildon@rhul.ac.uk

Administration:

I Workshops begin next week.

I Sign-in sheet. Please return to the lecturer after each
lecture.

I Make sure you get the Part A Notes and Problem Sheet 1.
Please pass everything onwards, and eventually to the
back, even if you the person you are passing to already
has a copy.

I Please take a clicker and use it!

I All handouts will be put on Moodle.

I Lectures: Monday noon (QBLT), Friday 10am (QBLT),
Friday 3pm (BLT1).

I Office hours in McCrea 240: Monday 4pm, Wednesday
10am and Friday 4pm.



Part A: Vectors

§1 Introduction to vectors

Definition 1.1
R3 is the set of all ordered triples (x , y , z) of real numbers.

The notation (x , y , z) means that we care about the order of the
entries. For example (1, 2, 3) 6= (2, 1, 3). Ordered triples are not
sets.

Quiz:Exactly one of these statements is true. Which one?

(A) {1, 2, 1} = (1, 2, 1)

(B) {1, 2, 1} 6= {1, 2}
(C) {1, 2, 1} = {2, 1}
(D) (1, 2, 1) = (1, 2, 2)

Quiz: How many dimensions do we live in?

(A) 1 (B) 3 (D) 26 (E) None of these.

(With some room for debate.)
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Three-dimensional Space

The diagram below shows a cube with one vertex at the origin
O = (0, 0, 0).
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Displacement Vectors

Suppose that A and B are distinct points in R3. Starting from A

we can walk to B. The displacement vector
−→
AB, gives the distance

we move in each coordinate direction.

Problem 1.3

(a) What is the displacement vector from (1, 0, 0) to (0, 0, 1)?

(b) If we apply this displacement starting at (1, 1, 0), where do we
finish?

(c) If we finish at (12,−3, 2) after applying this displacement,
where must we have started?

(d) What is the displacement vector from the origin O to (1, 1, 0)?



Vector Sum

Problem 1.4
Let B = (1, 0, 0) and let C = (0, 1, 0). Start at the origin O and

apply the displacement vector
−→
OB. Where do we finish? Now

apply
−→
OC . Let D be the finishing point. Find D.

B = (1, 0, 0)

C = (0, 1, 0)

O = (0, 0, 0)

−→
OB =




1
0
0


, −→

OC =




0
1
0


.

Definition 1.5

Let u =



a
b
c


 and v =



x
y
z


 be vectors. We define the sum of u

and v by u + v =



a + x
b + y
c + z


.

Generalizing Problem 1.4, if we start at a, and apply displacement

vectors
−→
AB then

−→
AC , we end up at D where

−→
AD =

−→
AB +

−→
AC . This

is called the parallelogram rule.



Parallelogram Rule

Generalizing Problem 1.4, let A,B,C ,D be points. If we start at

A, and apply the displacement vectors
−→
AB then

−→
AC , we end up at

D where
−→
AD =

−→
AB +

−→
AC . This is called the parallelogram rule.

A

B

C

D−→
AD

−→
AB

−→
AC

Exercise 1.6
Which displacement vectors label the sides BD and CD of the

parallelogram? What is
−→
AB +

−→
BA? What is

−→
AB +

−→
BC +

−→
CD +

−→
DA?



Parallelogram Rule: Quiz

Let A, B be distinct non-zero points in the plane. Suppose that−→
OA is not parallel to

−→
OB. How many points P are there such that

{O,A,B,P} is the set of vertices of a parallelogram?

(A) 1

(B) 2

(C) 3

(D) More information is required.

Hint: sets are not ordered: {O,A,B,P} = {O,A,P,B}.
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Scalar Multiplication

Elements of R are often called scalars.

Definition 1.7
Let v be as in Definition 1.6, and let α ∈ R. We define the scalar

multiplication of α and v by αv =



αx
αy
αz


.

Example 1.8

Let A = (1, 0, 1) and B = (1, 2, 3) and let u and v be the
corresponding vectors. Then

2u− 3v = 2




1
0
1


− 3




1
2
3


 =



−1
−6
−7


 = −




1
6
7




Find v − u. Note that v − u =
−→
OB −−→OA =

−→
AB. This is often

useful! Find α such that the z-coordinate of αu + v is zero.



Linear Combinations

A sum, such as those in the example, of the form αu + βv is called
a linear combination of the vectors u and v. More generally,
α1u1 + · · ·+ αrvr is a linear combination of the r vectors
v1, . . . , vr .

Problem 1.9
Let u and v be as in Example 1.8. Express u as a linear
combination of the vectors i, j, k. Express v as a linear
combination of i, i + j, k.
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Linear Combinations
A sum, such as those in the example, of the form αu + βv is called
a linear combination of the vectors u and v. More generally,
α1u1 + · · ·+ αrvr is a linear combination of the r vectors
v1, . . . , vr .

Problem 1.9
Let u and v be as in Example 1.8. Express u as a linear
combination of the vectors i, j, k. Express v as a linear
combination of i, i + j, k.

Problem 1.10
There is a unique plane Π containing (0, 0, 0), (1,−1, 0),
(0, 1,−1). Is (1, 0,−1) in Π? Is (1, 1,−3) in Π?

Quiz: The correct answers are:

(A) TT (B) TF (C) FT (D) FF



Motivation for Dot Product

Definition 1.11

The length of a vector v =



x
y
z


 is ||v || =

√
x2 + y2 + z2.

The notation |v | is also used. This can be confused with the
absolute value of a real number, or the modulus of a complex
number, so ||v || is probably better.



Example′ 1.12

Stretch the cube from Lecture 1 by
√

2 in the x direction.
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How many different lengths are there between distinct vertices?

(A) 2 (B) 3 (C) 4 (D) 5

The set of lengths is

(A) ∅ (B) {
√

2,
√

3, 2,
√

5} (C) {1,
√

2,
√

3} (D) {1,
√

2,
√

3, 2}
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Angles Between Vectors

How can we compute the angle between two non-zero vectors?
The angle is between 0 and π. It is π/2 if and only if the vectors
are orthogonal.

Example 1.13

We will find the angle between
√

3i + j and
√

3i− j by considering
the triangle with vertices at (0, 0, 0), (

√
3, 1, 0) and (

√
3,−1, 0).

We used that ||
√

3i + j|| = ||
√

3i− j|| = 2, so the triangle is
isosceles. We can reduce to this case by scaling each vector.
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Angles Between Vectors
How can we compute the angle between two non-zero vectors?
The angle is between 0 and π. It is π/2 if and only if the vectors
are orthogonal.

Example 1.13

We will find the angle between
√

3i + j and
√

3i− j by considering
the triangle with vertices at (0, 0, 0), (

√
3, 1, 0) and (

√
3,−1, 0).

We used that ||
√

3i + j|| = ||
√

3i− j|| = 2, so the triangle is
isosceles. We can reduce to this case by scaling each vector.

Quiz: Conducting quizzes with clickers is a good use of lecturing
time:

(A) Strongly disagree (B) Somewhat disagree
(C) Slightly agree (D) Strongly agree



Angles Between Vectors
How can we compute the angle between two non-zero vectors?
The angle is between 0 and π. It is π/2 if and only if the vectors
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(A) False (B) True
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General Angles

Theorem 1.15
Let u = ai + bj + ck and let v = x i + y j + zk be non-zero vectors.
Let θ be the angle between u and v. Then

cos θ =
ax + by + cz

||u||||v|| .

The diagram used in the proof is below:
û = u/||u|| = a′i + b′j + c ′k and v̂ = v/||v|| = x ′i + y ′j + z ′k.

(
a′, b′, c′

)

(
x′, y′, z′

)

(0, 0, 0)
θ/2

1

t/2
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Dot Product

Definition 1.16
Let u = ai + bj + ck and v = x i + y j + zk ∈ R3 be vectors. The
dot-product of u and v is

u · v = ax + by + cz .

Lemma 1.17
Let n, v ∈ R3 be non-zero vectors [corrected in lecture]. Let θ
be the angle between n and v.

(a) v · v = ||v||2.

(b) n · v = ||n|| ||v|| cos θ

(c) n · v = 0 if and only if n and v are orthogonal.

(d) Suppose that ||n|| = 1. Let w = (n · v)n. Then
v = w + (v −w) where w is parallel to n and v −w is
orthogonal to n.

(e) Let u ∈ R3 and let α, β ∈ R. Then

n · (αu + βv) = αn · u + βn · v.



Angle Between Lines
Two intersecting lines always make an angle between 0 and π/2.

Example 1.18

Let ` be the line through the origin and (1, 0,−1). Let `′ be a line
with direction (−1, 1, 2). What is the angle between ` and `′?

(A) −π/6 (B) π/6 (C) π/4 (D) π/3

The angle between ` and `′ does not depend on where the
intersection is. Since the direction of ` is i− k, θ satisfies

cos θ =
(i− k) · (i + j + 2k)

|| − i + k|| ||i + j + 2k|| =
−3√

2×
√

6
=
−3

2
√

3
= −
√

3

2

So the obtuse angle is 5π/6 and the angle we want is π/6.
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Cosine Rule
As an application of (a) and (b) we prove the cosine rule. We need

part of Example 1.8:
−→
OB −−→OA =

−→
AB.

−→
OA

−→
OB

−→
AB

O A

B

Exercise 1.19
Let A, B ∈ R3 be points such that OAB is a triangle. Let u =

−→
OA

and v =
−→
OB and let θ be the angle between u and v. Find the

length of the side AB by using (a) to compute

||−→AB||2 = ||−→OB −−→OA||2 = ||v − u||2.



Angle between Planes
The plane through a ∈ R3 with normal direction n ∈ R3 is
{v ∈ R3 : n · v = n · a}.

Problem 1.20
What is the angle θ between the planes

{v ∈ R3 : (−i + j + 2k) · v = 1} and {v ∈ R3 : (−i + k) · v = −1}?

(A) π/6 (B) π/4 (C) π/3 (D) 5π/6

A line always makes an angle between 0 and π/2 (a right angle)
with a plane.

Lemma 1.21
Let Π be a plane with normal n. Let ` be a line with direction c
meeting Π at a unique point. The angle θ between Π and ` satisfies

sin θ = |n̂ · ĉ|

where n̂ = n/||n|| and ĉ = c/||c||.
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where n̂ = n/||n|| and ĉ = c/||c||.



Lines and Planes

Problem 1.22
Let Π be the xz-plane, so Π = {x i + zk : x , z ∈ R}. Let ` be the
line passing through 0 and i +

√
2/3j− k. What are the minimum

and maximum angles between ` and a line in Π passing through 0?

(0, 0, 0)

i +
√

2/3j− k =




1√
2/3
−1




`

z

x

y

Π

(A) 0 and π/2 (B) π/6 and π/2 (C) π/3 and π (D) π/3 and π/2

Where does Π meet the line through (−1,−1, 0) and (0, 1, 1)?

(A) (1, 0,−1) (B) (−1
2 , 0,−1

2) (C) (12 , 0,
1
2) (D) (−1

2 , 0,
1
2)
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Administration

I Please take the last installment of the Part A handout (pages
11–12)

I Please take Problem Sheet 2

I Please leave your answers to Sheet 1 at the end at the front

I Please help to return clickers at end



§2 The Vector Product

To solve Problem 1.22 we needed a vector orthogonal to the
xz-plane. In this case the normal vector j was obvious.

Problem 2.1
Let Π be the plane containing i, 2i + j and 4i + 2j + k. Find a
normal vector to Π.

By Lemma 1.17(c),



x
y
z


 is orthogonal to both



a
b
c


 and



r
s
t


 if

and only if

ax + by + cz = 0

rx + sy + tz = 0.

Multiply the first equation by t, the second by c and subtract to
get

(at − cr)x + (bt − cs)y = 0.

This suggests we might take x = bt − cs and y = cr − at.
Substituting in we find that both equations hold when z = as − br .
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Definition of Vector Product

Definition 2.2

The vector product of vectors



a
b
c


 and



r
s
t


 is defined by



a
b
c


×



r
s
t


 =



bt − cs
cr − at
as − br


 .

If you remember the top entry is bt − cs you can obtain the others
using the cyclic permutations

a 7→ b 7→ c 7→ a and r 7→ s 7→ t 7→ r .



Properties of the Vector Product

Exercise 2.3
(a) Show that v × v = 0 for all v ∈ R3.

(b) Show that u× v = −v × u for all u, v ∈ R3.

(c) Show that i× j = k, j× k = i and k× i = j. Hence
(i + j)× (i− k) equals

(A) i + j + k (B) −i + j− k (C) −i + j (D) i− k

Note that in each case, if u× v = w then the vectors u, v and w
form a right-handed system with (as expected) w orthogonal to u
and v. Changing u and v by a small displacement does not change
the orientation of the system, so the system is always right-handed.

Quiz: True or false: (i× j)× j = i× (j× j)?

(A) False (B) True
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Science Festival Saturday 5th March
Volunteers needed! Help enthusiastic children and adults
discover our puzzles, games, Enigma machines and other
exhibits.

Why volunteer?

I £68 for the day

I 10 passport points

I Free lunch

I Free T-shirt

I It’s fun and rewarding

Please contact Dr Mark Wildon: mark.wildon@rhul.ac.uk



Length of u× v

Quiz: Suppose that u and v are orthogonal non-zero vectors.

I What is (u× v)× u?

(A) u (B) v (C) 0 (D) −v

I What is (u× v)× (u× u)?

(A) u (B) v (C) 0 (D) −v

I What is (u× (v × u))× u?

(A) u (B) v (C) u× v (D) −u× v

I How many different vectors can be made using ×, u and v
and parentheses?

(A) 4 (B) 6 (C) 7 (D) 8

Theorem 2.4
Let u and v be non-zero vectors. Let θ be the angle between u and
v. Then

||u× v|| = ||u|| ||v|| sin θ.
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Area of Triangles
The identity

||u× v||2 = ||u||2||v||2 − (u · v)2

seen in the proof of Theorem 2.4 is useful and of independent
interest.

Problem 2.5
Let B = (1, 8, 2) and C = (8, 2, 1). Let

−→
OD =

−→
OB +

−→
OC .

(a) The area of the parallelogram OBDC is

(A) 4085 (B) 69 (C)
√

4085 (D) something else

(b) What is the area of the triangle OBC?

Suppose that ABC is a triangle with sides a, b, c , angles α, β, γ.
Using Theorem 2.4 and the argument for (b), its area is

1
2 ||
−→
AB|| ||−→AC || sinα = 1

2bc sinα.

Repeating this argument with the other sides gives
1
2bc sinα = 1

2ca sinβ = 1
2ab sin γ. Hence get sine rule.
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Feedback on Sheet 1

I Please collect your work: A–G in yellow folder, H–R in clear
folder, S–Z in red folder.

I Please take the feedback sheet. Model answers are on Moodle.

I Please see the lecturer if you want to discuss any of the
questions.

Quiz:

I Let Π be the plane through A = (1, 0, 0), B = (0, 0, 1) and

C = (0, 0, 1). True or false:
−→
AB = −i + j ∈ Π?

(A) False (B) True

I True or false: if ` is a line with direction i then i ∈ `?
(A) False (B) True

I Let ` be a line with direction i. True or false: the angle θ
between ` and Π satisfies cos θ = 1√

3
?

(A) False (B) True
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Using the Vector Product to find a Normal

Example 2.6

Let Π be the plane through A = (1, 2, 3), B = (3, 1, 2) and
C = (2, 3, 1). Then

Π = {−→OA + λ
−→
AB + µ

−→
AC : λ, µ ∈ R}.

A normal vector to Pi is

−→
AB ×−→AC =




2
−1
−1


×




1
1
−2


 =




3
3
3


 .

We can scale the normal vector as we like, so take n = i + j + k.
Since

n · −→OA =




1
1
1


 ·




1
2
3


 = 6

we have Π = {v ∈ R3 : (i + j + k) · v = 6}.



Intersection of Two Planes

Problem 2.7
Let Π be the plane through 0 with normal i + j. Let Π′ be the plane
through j with normal i + 2j + k. Find a and c ∈ R3 such that

` = {a + λc : λ ∈ R}.



Shortest Distances and Projections

Problem 2.8
Let A = (2, 3, 1). What is the shortest distance between A and a
point P on the plane Π through 0 with normal direction (1, 1, 1)?

The solution using Lemma 1.17(d) needed that 0 ∈ Π. One can
always translate the plane and point to reduce to this case: see
Question 4(b) on Sheet 2.

Quiz: True or false?

(a) u · v = v · u for all u, v ∈ R3,
(A) False (B) True

(b) u× v = v × u for all u, v ∈ R3,
(A) False (B) True

(c) There exist distinct u, v ∈ R3 such that u× v = v × u.
(A) False (B) True

(d) (u× v) · (u + v) = 0 for all u, v ∈ R3

(A) False (B) True
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Shortest Distances between Two Lines

Problem 2.9
Let ` be the line through −j and i + k.

(a) True or false: ` meet the line through i + 2k with direction
i + j? [Note this is a change from the printed notes.]

(A) False (B) True

(b) True or false: ` meet the line `′ through 0 with direction i + j?

(A) False (B) True

(c) What is the shortest distance between ` and `′?

Lemma 2.10
Let ` be the line through a with direction c. Let `′ be the line
through a′ with direction c′. The shortest distance between ` and
`′ is ∣∣ c× c′

||c× c′|| · (a′ − a)
∣∣.
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Volume of a Parallelepiped

Problem 2.11
What is the volume of the parallelepiped formed by the vectors
i + k, 2i, 13 i + j?

2i

i + k

1
3 i + j

z

x

y



The Scalar Triple Product

Quiz: let
−→
PC be parallel to the vector n̂ where ||n̂|| = 1. Let OPC

be a right-angled triangle with hypotenuse OC . Write the length
of the side PC as a dot product.

Theorem 2.12
Let a, b, c ∈ R3. The volume of the parallelepiped formed by a, b,
c ∈ R3 is |(a× b) · c|.

Exercise 2.13
Deduce from Theorem 2.12 that

(a× b) · c = (b× c) · a = (c× a) · b.

What is the geometric interpretation of the sign of (a× b) · c?

The scalar (a× b) · c is called the scalar triple product of a, b, c.



Electoral Reform (Misuses of Mathematics)

The Government has proposed changing the rules for strike ballots
so that 50% of the electorate must vote for a strike to be held. Of
course a majority of those voting must favour a strike.

Suppose there are 1000 union members. What is the outcome in
the following cases:

I 300 vote for strike, 10 vote against?

I 300 vote for strike, 290 vote against?

Any comments?



Part B: Introduction to matrices

§3 Matrices and vectors

We now generalize the definition of ‘vector’ to mean an element of
Rn, for any n ∈ N. If u ∈ Rn we write ui for the ith coordinate of
u. As usual vectors are written in column form.

Definition 3.1
The length of u ∈ Rn is defined by

||u|| =
√

u2
1 + · · ·+ u2

n.

The dot product of vectors u, v ∈ Rn is defined by

u · v = u1v1 + u2v2 + · · ·+ unvn.

The sum of vectors u and v ∈ Rn and the scalar multiplication of
v ∈ Rn by α ∈ R are defined by the obvious generalization of
Definition 1.7.



Hypercubes

All the properties of the dot product proved in Lemma 1.17 hold in
any dimension. In particular ||u||2 = u · u for any vector u, and if θ
is the angle between u and v then ||u||||v|| cos θ = u · v.

Problem 3.2
Let S =

{
(x , y , z ,w) : x , y , z ,w ∈ {0, 1}

}
be the set of vertices of

the hypercube.

(a) What is the angle between (1, 1, 0, 0) and (0, 1, 1, 0)?

(b) What is the angle between (1, 1, 0, 0) and (0, 0, 1, 1)?

(c) What is the set of distances between distinct points in S?

(A) {1,
√

2,
√

3, 2} (B) ∅ (C) {1,
√

3, 2} (D) {0, 1,
√

2,
√

3, 2}
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The Hypercube

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111
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The Hypersphere

What proportion of the 10-dimensional hypercube of side length 1
is occupied by a hypersphere of diameter 1?

(A) 0.25% (B) 5% (C) 15.75% (D) 25.8%
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Feedback on Sheet 2

I Please collect your work: A–G in yellow folder, H–R in green
folder, S–Z in red folder.

I Please take the feedback sheet. Model answers are on Moodle.

I Please see the lecturer if you want to discuss any of the
questions.

Quiz: Let c and c′ ∈ R3 be non-zero, and let a, a′ ∈ R. Let
` = {a + λc : λ ∈ R} and let `′ = {a′ + λc′ : λ ∈ R}. Consider the
propositions

P : the lines ` and `′ meet

Q : there exists λ ∈ R such that a + λc = a′ + λc′.

True or false: P =⇒ Q?

(A) False (B) True

True or false: Q =⇒ P?

(A) False (B) True
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True or false: Q =⇒ P?

(A) False (B) True



Matrices as Containers

Definition 3.3
Let m, n ∈ N. An m × n matrix is an array with m rows and n
columns of real numbers.

Matrices are useful simply as containers.

Problem 3.4
The matrix below records the stock prices of British Land, Glencore
and Whitbread in the first weeks of 2012 and 2016, all in pence.

2012
2016

(
360 395 1589
741 77 4130

)

Suppose an investor has a portfolio consisting of (5, 2, 1) units of
each stock. What is her portfolio worth in 2012? In 2016?



Linear Maps from R2 to R2 and 2× 2 Matrices

Definition 3.5
A linear map from R2 to R2 is a function f : R2 −→ R2 of the form

(
x
y

)
7→
(

ax + by
cx + dy

)

where a, b, c, d are some fixed real numbers.

Problem 3.6

(a) Take a = 0, b = 1, c = 1, d = 0. We obtain the linear map

(
x
y

)
7→
(

y
x

)
.

What, geometrically, does this linear map do to a vector
v ∈ R2?



Linear Maps from R2 to R2 and 2× 2 Matrices

Definition 3.5
A linear map from R2 to R2 is a function f : R2 −→ R2 of the form

(
x
y

)
7→
(

ax + by
cx + dy

)

where a, b, c, d are some fixed real numbers.

Problem 3.6

(b) Let f : R2 → R2 be defined so that f

(
x
y

)
records the values,

in 2012 and 2016, of a portfolio consisting of x Glencore
shares and y Whitbread shares. Show that f is a linear map.
What are the coefficients a, b, c , d?



Matrices Represent Linear Maps
The coefficients a, b, c , d in a linear map f can be recorded in a
2× 2 matrix. We define the product of a 2× 2 matrix and vector
in R2 by (

a b
c d

)(
x
y

)
=

(
ax + by
cx + dy

)
.

By definition of the product, if A =

(
a b
c d

)
then

(
x
y

)
f7→ A

(
x
y

)
.

Example 3.7

The matrix

(
2 1
3 1

)
represents the linear map

(
x
y

)
7→
(

2x + y
3x + y

)

Notice that the entries a, b in the first row of the matrix appear in
the first row of the result; c and d from the second row appear in
the second row of the result.



Rotations

Problem 3.8
Let f : R2 → R2 be defined so that f (v) is v rotated by π/4. For
example,

f

(
1
0

)
=

√
2

2

(
1
1

)
.

Find a formula for f

(
x
y

)
and show that f is a linear map.

The matrix representing f is
√
2
2

(
1 −1
1 1

)
.

Quiz:
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Quiz: What matrix represents the linear map ‘double the
x-coordinate’?

(A)
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)
(B)

(
0 1
2 0
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2 2
1 1

)
(D)

(
2 0
0 1

)
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Matrix Multiplication

Definition 3.9

We define the product of 2× 2 matrices

(
a b
c d

)
and

(
r s
t u

)
by

(
a b
c d

)(
r s
t u

)
=

(
ar + bt as + bu
cr + dt cs + du

)
.

Example 3.10

Let θ, φ ∈ R. The matrix representing rotation by θ + φ is

Mθ+φ =

(
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

)
.

We can rotate by θ + φ by first rotating by φ, then by θ. The
corresponding matrices are

Mθ =

(
cos θ − sin θ
sin θ cos θ

)
and Mφ =

(
cosφ − sinφ
sinφ cosφ

)

Check that Mθ+φ = MθMφ.



Products of Matrices and Composition of Linear Maps

Lemma 3.11
Let f : R2 → R2 and g : R2 → R2 be linear maps represented by
the matrices A and B, respectively. Then gf : R2 → R2 is a linear
map, represented by the matrix BA.

Problem 3.12
Let θ ∈ R. Let g : R2 → R2 be defined so that g(v) is v reflected
in the line y = (tan θ)x . Show that g is a linear map and find the
matrix representing g .

(
x
y

)

g

(
x
y

)

θ
•

•
y = (tan θ)x



Inverses of 2× 2 Matrices
Recall that if S and T are sets and f : S → T is a bijective
function then the inverse of f is the function f −1 : T → S defined
by f −1(t) = s ⇐⇒ f (s) = t.

True or false? The matrix

(
1 2
−2 −4

)
represents an invertible

linear map.

(A) False (B) True

Let M =

(
1 −1
1 1

)
. The linear map represented by M is invertible.

(A) False (B) True

Lemma 3.13

The linear map f : R2 → R2 represented by the matrix

(
a b
c d

)
is

invertible if and only if ad − bc 6= 0. In this case the inverse

f −1 : R2 → R2 is the linear map represented by 1
ad−bc

(
d −b
−c a

)
.
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.



Stretches, Rotations and Reflections

Problem 3.14
Let β > 0 be a real number. Let f , g , and h : R2 → R2 be
rotation by π/4, a stretch of β in the x-direction, and reflection in
the x-axis.

(a) What is the matrix representing hgf ?

(A)
√
2
2

(
β β
−1 −1

)
(B)

√
2
2

(
β −β
−1 1

)

(C)
√
2
2

(
β −β
−1 −1

)
(D)

√
2
2

(
β −1
−β −1

)

(b) What is the image of the square with vertices at (0, 0), (1, 0),
(0, 1) and (1, 1) under hgf ?

(c) How does the area change?
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Determinants of 2× 2 Matrices

Lemma 3.15
The image of the unit square under the linear transformation

represented by

(
a b
c d

)
has area |ad − bc|. Moreover,

ad − bc > 0 if and only if the vectors




a
b
0


 ,




c
d
0


 ,




0
0
1




form a right-handed system.

We define the determinant of

(
a b
c d

)
by det

(
a b
c d

)
= ad − bc.

By Lemma 3.13, a 2× 2 matrix M is invertible if and only if
det M 6= 0.



Feedback on Sheet 3

I Please collect your work: A–G in yellow folder, H–R in blue
folder, S–Z in red folder.

I Please take the feedback sheet. Model answers are on Moodle.

I Please see the lecturer if you want to discuss any of the
questions.

Quiz: Let a, c ∈ R3. Only one of the equations below makes
correct use of mathematical notation. Which one?

(A) a · c = a (B) a× c = ac (C) a× c = c (D) ` = {λc}
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Quiz and Application of the Determinant

(a) True or false: if M = 2

(
a b
c d

)
then det M = 2(ad − bc).

(A) False (B) True

Let f : R2 → R2 be defined by

(
x
y

)
=

(
x2

y2

)
.

(b) True or false: f is linear.

(A) False (B) True

Let g : R2 → R2 be defined by

(
x
y

)
=

(
x
1

)
.

(c) True or false: g is linear.

(A) False (B) True

The determinant gives a convenient criterion for a matrix to send a
non-zero vector to 0.

Lemma 3.16
Let M be a 2× 2-matrix. There is a non-zero vector v such that
Mv = 0 if and only if det M = 0.
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Eigenvectors of 2× 2 Matrices: Motivation
Let f : R2 → R2 be the linear map defined by

f

(
x
y

)
=

(
x + 2y
2x + y

)

for x , y ∈ R. Observe that

f

(
1
1

)
=

(
3
3

)
= 3

(
1
1

)
and f

(
1
−1

)
=

(
−1
1

)
= −

(
1
−1

)
.

(
1
1

)(
−1
1

)

f−→

(
3
3

)

(
1
−1

)



Eigenvectors and Eigenvalues of 2× 2 matrices

Definition 3.17
Let A be a 2× 2-matrix. We say that a non-zero vector v ∈ R2 is
an eigenvector of A with eigenvalue λ if Av = λv.

Exercise: why do we require v to be non-zero in Definition 3.17?

Let I denote the 2× 2 identity matrix

(
1 0
0 1

)
. We have

v is an eigenvector of A with eigenvalue λ ⇐⇒ Av = λv

⇐⇒ (λI − A)v = 0

Hence, by Lemma 3.16,

A has an eigenvector with eigenvalue λ ⇐⇒ det(λI − A) = 0.



Correction
I Please take Problem Sheet 5 and pages 19–22 of the printed

notes.
I Please hand in answers to Sheet 4.
I No 182 lecture next Monday 15th. No office hour on

Monday or Wednesday. Workshops as usual.

In the diagram I drew for the first quiz question in the previous
lecture, some vectors were mislabelled. The correct labels are
below. To correct your notes, swap b and c .

(
1
0

)

(
0
1

)

f−→(
a b
c d

)

(
a
c

)

(
b
d

)

Columns of the matrix

(
a b
c d

)
are the images of

(
1
0

)
and

(
0
1

)
.



Finding Eigenvectors and Eigenvalues

Example′ 3.18

(Another very similar example is given in full in the printed notes.)

Let A =

(
−3 6
−4 7

)
. Then

det(λI − A) = det

(
λ+ 3 6
−4 λ− 7

)

= (λ+ 3)(λ− 7) + 24

= λ2 − 4λ+ 3

= (λ− 1)(λ− 3).

Hence A has eigenvalues 1 and 3.

Exercise 3.19. True or false: v =

(
3
2

)
is the unique eigenvector of

A with eigenvalue 1?

(A) False (B) True
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Diagonalization

Let A =

(
−3 6
−4 7

)
be as in Example’ 3.18 and let

P =

(
3 1
2 1

)

be the matrix whose columns are the eigenvectors u and v of A.

Problem 3.20
Compute A2016.

Quiz: A 2× 2 matrix A has eigenvalues 3 and −2. Which of the
following is a possible formula for the entry in the top left of A?

(A) (−2)n + 3n (B) 2n + 3n (C) 1 (D)
√

2
n



Diagonalization

Let A =

(
−3 6
−4 7

)
be as in Example’ 3.18 and let

P =

(
3 1
2 1

)

be the matrix whose columns are the eigenvectors u and v of A.

Problem 3.20
Compute A2016.

Quiz: A 2× 2 matrix A has eigenvalues 3 and −2. Which of the
following is a possible formula for the entry in the top left of A?

(A) (−2)n + 3n (B) 2n + 3n (C) 1 (D)
√

2
n



Diagonalization

Let A =

(
−3 6
−4 7

)
be as in Example’ 3.18 and let

P =

(
3 1
2 1

)

be the matrix whose columns are the eigenvectors u and v of A.

Problem 3.20
Compute A2016.

Quiz: A 2× 2 matrix A has eigenvalues 3 and −2. Which of the
following is a possible formula for the entry in the top left of A?

(A) (−2)n + 3n (B) 2n + 3n (C) 1 (D)
√

2
n



Proportional Vectors

Not all matrices can be diagonalized. A necessary and sufficient
condition is that the matrix has two non-proportional eigenvectors,
as defined below. (If time permits, this will be proved in Part E.)

Definition 3.21
Let n ∈ N. Vectors u and v ∈ Rn are proportional if there exist α
and β ∈ R, not both zero, such that αu = βv.

Quiz: True or false:

(a)




1
2
3


 and




2
3
4


 are proportional.

(A) False (B) True

(b)

(
0
0

)
and

(
1
2

)
are proportional.

(A) False (B) True



Proportional Vectors

Not all matrices can be diagonalized. A necessary and sufficient
condition is that the matrix has two non-proportional eigenvectors,
as defined below. (If time permits, this will be proved in Part E.)

Definition 3.21
Let n ∈ N. Vectors u and v ∈ Rn are proportional if there exist α
and β ∈ R, not both zero, such that αu = βv.

Quiz: True or false:

(a)




1
2
3


 and




2
3
4


 are proportional.

(A) False (B) True

(b)

(
0
0

)
and

(
1
2

)
are proportional.

(A) False (B) True



Proportional Vectors

Not all matrices can be diagonalized. A necessary and sufficient
condition is that the matrix has two non-proportional eigenvectors,
as defined below. (If time permits, this will be proved in Part E.)

Definition 3.21
Let n ∈ N. Vectors u and v ∈ Rn are proportional if there exist α
and β ∈ R, not both zero, such that αu = βv.

Quiz: True or false:

(a)




1
2
3


 and




2
3
4


 are proportional.

(A) False (B) True

(b)

(
0
0

)
and

(
1
2

)
are proportional.

(A) False (B) True



Two Distinct Eigenvalues Implies Diagonalizable:
Preliminary Lemma

Lemma 3.22
Let A be a 2× 2 matrix. Suppose that A has distinct real
eigenvalues λ and µ with eigenvectors u and v, respectively. Then
u and v are not proportional.

Quiz:

(a) Rotation by π/4 has an eigenvector.

(A) False (B) True

(b) Rotation by π has an eigenvector.

(A) False (B) True
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Two Distinct Eigenvalues Implies Diagonalizable

By definition,

(
a
c

)
,

(
b
d

)
∈ R2 are proportional if and only if there

exist α, β ∈ R, not both zero, such that

α

(
a
c

)
= β

(
b
d

)
.

Quiz: Let

(
a
c

)
,

(
b
d

)
be non-zero. Which logical connective can

correctly replace ? below?
(

a
c

)
and

(
b
d

)
are proportional ?

c

a
=

d

b
.

(A) =⇒ (B) ⇐= (C) ⇐⇒ (D) ∨
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Two Distinct Eigenvalues Implies Diagonalizable

By definition,

(
a
c

)
,

(
b
d

)
∈ R2 are proportional if and only if there

exist α, β ∈ R, not both zero, such that

α

(
a
c

)
= β

(
b
d

)
.

Lemma 3.23
If u and v ∈ R2 are not proportional then the matrix (u v) with
columns u and v is invertible.

Proposition 3.24

Let A be a 2× 2 matrix. Suppose that A has distinct eigenvalues λ
and µ with eigenvectors u and v, respectively. Let P = (u v) be
the matrix formed by these eigenvectors. Then P is invertible and

A = P

(
λ 0
0 µ

)
P−1.



A Very Simple Weather Model

If today is sunny then tomorrow is sunny with probability 3/4. If
today is rainy then tomorrow is equally likely to be sunny and rainy.

Example 3.25

Suppose Monday is sunny. Then Tuesday is sunny with probability
3/4. The probability that Wednesday is sunny is

(A) 5/8 (B) 11/16 (C) 3/4 (D) 13/16

More generally,

P[day n + 1 is sunny] = P[day n is sunny]34 + P[day n is rainy]12 .

So, setting pn = P[day n is sunny], we get pn+1 = 3
4pn + 1

2(1−pn).

1
2

1
2

1
4

3
4

S

R

S

R

Exercise 3.26
Show that 1− pn+1 = 1

4pn + 1
2(1− pn).
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Feedback on Sheet 4

I Please collect your work: A–G in green folder, H–R in clear
folder, S–Z in red folder.

I Please take the feedback sheet. Model answers are on Moodle.

I Please see the lecturer if you want to discuss any of the
questions.

Quiz: Let f : X → Y , g : Y → Z be functions.

I True or false? If f and g are invertible then (gf )−1 = g−1f −1.
(A) False (B) True

I True or false? If gf is invertible then f is invertible.
(A) False (B) True

I True or false? If gf is invertible then f is injective.
(A) False (B) True
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§4 Matrices and linear maps in higher dimensions

Matrices were defined in Definition 3.3. If A is an m× n matrix we
write Aij for the entry of A in row i and column j . For example if
A is the 2× 3 matrix (

2 3 4
3 4 5

)

then A23 = 5 and Aij = i + j for all i ∈ {1, 2} and j ∈ {1, 2, 3}.
Definition 4.1
Let m, n ∈ N and let A be an m × n matrix. Let v ∈ Rn. We
define the product of A and v by

A




v1
v2
...

vn


 =




A11v1 + A12v2 + · · ·+ A1nvn
A21v1 + A22v2 + · · ·+ A2nvn

...
Am1v1 + Am2v2 + · · ·+ Amnvn




Equivalently, (Av)i =
∑n

j=1 Aijvj for each i ∈ {1, 2, . . . ,m}.



Definition of Linear Maps

Exercise 4.2
Check that Definition 4.1 generalizes the definition on page 14 of
the product of a 2× 2 matrix and a vector in R2.

We also generalize Definition 3.5.

Definition 4.3
Let m, n ∈ N. A function f : Rn → Rm is a linear map if there is
an m × n matrix A such that f (v) = Av for all v ∈ Rn.

Note that Rn is the domain of f and Rm is the codomain of f .



Examples of Linear Maps

If f : Rn → Rm is a linear map represented by the matrix A then
column j of A is the image of the vector in Rn with 1 in position j
and zero in all other positions.

Example 4.4

Let M be the stock price matrix in Problem 3.4. Suppose an
investor has x , y and z shares in each company. The function
f : R3 → R2 defined by

f




x
y
z


 =

(
360 395 1589
741 77 4130

)


x
y
z


 =

(
360x + 395y + 1589z
741x + 77y + 4130z

)

is linear; the top component is the value of the portfolio in January
2012, and the bottom component is the value of the portfolio in
January 2016.

Note that the columns of the matrix are f (i), f (j) and f (k).



Quiz on Matrix times Vector

After the great stock market crash of March 2016, the new prices
of the three stocks BLND, GLEN, WHIT are in the third row of
the matrix below. 


360 395 1589
741 77 4130
500 10 3000


 .

I What is a portfolio with 5 BLND, 100 GLEN and 1 WHIT
stock worth?

(A) 6000 (B) 6500 (C) 7000 (D) 7500

I A portfolio with 10 BLND and 1 WHIT is now worth £100.
How many Glencore stocks does it have?

(A) −10 (B) 15 (C) 20 (D) 25
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Vector Product as a Linear Map

Example 4.5

Let f : R3 → R3 be defined by f (v) = (i + 2j + 3k)× v. We will
find the matrix A representing f .

A =




0 −3 2
3 0 −1
−2 1 0


 .

Note that the columns of A are f (i), f (j) and f (k).

Now let g : R3 → R be defined by g(v) = (i− j) · v. Which of
these is the matrix B representing g?

(A)




1
−1
0


 (B)

(
1 1 0

)
(C)

(
0 1 −1

)
(D)

(
1 −1 0

)

(a) What is the matrix representing the composition gf ?

(b) What is the matrix representing the composition ff ?



Vector Product as a Linear Map

Example 4.5

Let f : R3 → R3 be defined by f (v) = (i + 2j + 3k)× v. We will
find the matrix A representing f .

A =




0 −3 2
3 0 −1
−2 1 0


 .

Note that the columns of A are f (i), f (j) and f (k).

Now let g : R3 → R be defined by g(v) = (i− j) · v. Which of
these is the matrix B representing g?

(A)




1
−1
0


 (B)

(
1 1 0

)
(C)

(
0 1 −1

)
(D)

(
1 −1 0

)

(a) What is the matrix representing the composition gf ?

(b) What is the matrix representing the composition ff ?



Vector Product as a Linear Map

Example 4.5

Let f : R3 → R3 be defined by f (v) = (i + 2j + 3k)× v. We will
find the matrix A representing f .

A =




0 −3 2
3 0 −1
−2 1 0


 .

Note that the columns of A are f (i), f (j) and f (k).

Now let g : R3 → R be defined by g(v) = (i− j) · v. Which of
these is the matrix B representing g?

(A)




1
−1
0


 (B)

(
1 1 0

)
(C)

(
0 1 −1

)
(D)

(
1 −1 0

)

(a) What is the matrix representing the composition gf ?

(b) What is the matrix representing the composition ff ?



Vector Product as a Linear Map

Example 4.5

Let f : R3 → R3 be defined by f (v) = (i + 2j + 3k)× v. We will
find the matrix A representing f .

A =




0 −3 2
3 0 −1
−2 1 0


 .

Note that the columns of A are f (i), f (j) and f (k).

Now let g : R3 → R be defined by g(v) = (i− j) · v. Which of
these is the matrix B representing g?

(A)




1
−1
0


 (B)

(
1 1 0

)
(C)

(
0 1 −1

)
(D)

(
1 −1 0

)

(a) What is the matrix representing the composition gf ?

(b) What is the matrix representing the composition ff ?



Product of Matrices

Definition 4.6
If B is an m × n matrix and A is an n × p matrix then the product
BA is the m × p matrix defined by

(BA)ij =
n∑

k=1

BikAkj for 1 ≤ i ≤ m and 1 ≤ j ≤ p.

Written out without the Sigma notation,

(BA)ij = Bi1A1j + Bi2A2j + · · ·+ BinAnj .

So to calculate (BA)ij go left-to-right along row i of B and
top-to-bottom down column j of A, multiplying each pair of
entries. Then take the sum.

Alternatively, if column j of A is vj , so A = (v1 v2 . . . vn), then
BA = (Bv1 Bv2 . . .Bvn).
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Composition of Linear Maps and Matrix Multiplication

Exercise 4.7
Continuing Example 4.5, check that the matrix found in (a)
representing gf is BA and the matrix found in (b) representing ff
is A2.

In each case matrix multiplication corresponds to composition of
linear maps.

The general result is as follows. The proof is non-examinable and
will probably be skipped; please see the printed notes (on Moodle
this evening). The 2× 2 case is Lemma 3.11.

Lemma 4.8
Let f : Rp → Rn and g : Rn → Rm be linear maps, represented by
the n × p matrix A and the m × n matrix B, respectively. Then
gf : Rp → Rm is a linear map, represented by the matrix BA.
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Properties of Matrix Multiplication

Proposition 4.9

(i) If A,B,C are matrices then C (BA) = (CB)A, whenever either
side is defined. (Associativity.)

(ii) If A is an n × p matrix and B and C are m × n matrices then
(B + C )A = BA + CA. (Distributivity.)

The set of all n × n matrices forms a ring, in the sense defined in
181 Number Systems. The zero element is the all-zeros matrix,
and the one element is the identity matrix

I =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


.

Quiz: The equation A2 = I has

(A) 1 (B) 2 (C) 4 (D) ∞
solutions in the ring of 2× 2 matrices.
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Feedback on Sheet 5

I Please collect your work: A–G in green folder, H–R in clear
folder, S–Z in red folder.

I Feedback sheet will be on Moodle soon. Model answers are
on Moodle.

I Please see the lecturer to discuss any of the questions.

Quiz: The matrix A has

(
1
1

)
and

(
−1
1

)
as eigenvectors with

eigenvalues 2 and 1.

(a) The eigenvalues of A− I are

(A) {0, 1} (B) {1, 2} (C) {−1,−2} (D) can’t say

(b) The eigenvalues of A−1 are

(A) {1, 2} (B) {1/2, 1} (C) {−1,−2} (D) can’t say

(c) True or false? If v is an eigenvector of A then v is an
eigenvector of A2 − 2A.

(A) False (B) True

(d) The converse of (c) is:
(A) False (B) True
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Revision of Matrix Multiplication
Quiz: Let f : R→ R3 be the linear map f (x) =




x
2x
3x


. Let

g : R3 → R be the linear map g(v) =



−1
0
1


 · v.

(a) The matrix representing f is:

(A)
(
1 2 3

)
(B)




1
2
3


 (C)




3
2
1


 (D) something else

(b) True or false? The matrix representing g is
(
−1 0 1

)
.

(A) False (B) True

(c) The matrix representing gf is

(A) (2) (B) (6) (C)
(
1 2 3

)
(D)



−1 0 1
−2 0 2
−3 0 3




(d) The matrix representing fg is

(A) (2) (B) (6) (C)
(
1 2 3

)
(D)



−1 0 1
−2 0 2
−3 0 3
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Eigenvectors and Eigenvalues

Definition 4.10
Let A be a n × n matrix. A non-zero vector v ∈ Rn is an
eigenvector of A with eigenvalue λ if Av = λv.

Example 4.11

Let f : R3 → R3 be rotation by π/4 with axis k and g : R3 → R3

be rotation by π/2 with axis j.

(0, 0, 0)

v

f (v)

π
4

z

x

y



Google’s Pagerank Algorithm

Example 4.12

The diagram below shows a tiny part of the World Wide Web.
Each dot represents a website; an arrow from site A to site B
means that site A links to site B.

•

•

•

• •

1

2

3

4 5

Exercise 4.13
Simulate a surfer who clicks 10 links. Where do you finish?

(A) Site 1 (B) Site 2 (C) Site 3 (D) Site 4
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Each dot represents a website; an arrow from site A to site B
means that site A links to site B.
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• •

1

2

3

4 5

If p(n)i is the probability that we are at site i after n steps, then
p(2)4 = and p(3)3 =

(A) 1/3 (B) 1/6 (C) 1/12 (D) 0

(A) 1/2 (B) 5/12 (C) 1/3 (D) 1/4
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Part C: Solving equations

§5 Row operations

Example 5.1

Suppose that 2x + y + 3z = 11 and 2x + 4y + 6z = 20. Then
x − y =?

(A) −1 (B) 0 (C) 1 (D) can’t say

Example′ 5.2 (
2 1 3
2 4 6

)

x1
x2
x3


 = 0 (1)

(
1 0 1
0 1 1

)

x1
x2
x3


 = 0 (2)

Solve the system of your choice. (But please, some people, do (1).)
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Elementary Row Operations
Fix m, n ∈ N and let A be an m × n matrix.

Definition 5.3
An elementary row operation (ERO) on an m × n matrix A is one
of the following:

(a) Multiply a row of A by a non-zero scalar.

(b) Swap two rows of A.

(c) Add a multiple of one row of A to another row of A.

Quiz: True or false? A′ can be obtained from A by a sequence of
EROs where

A =

(
2 1 3
2 4 6

)
, A′ =

(
1 0 1
0 1 1

)

(A) False (B) True
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Matrices for EROs

Elementary row operations on an m × n matrix are performed by
left multiplication by suitable m ×m matrices. Importantly, these
matrices are all invertible.

Lemma 5.4
Let A be an m × n matrix. Let 1 ≤ k , ` ≤ m with k 6= `. Let I be
the identity m ×m matrix. Let α ∈ R, with α 6= 0.

(a) Let S be I with the 1 in row k replaced with α. Then SA is A
with row k scaled by α.

(b) Let P be I with rows k and ` swapped. Then PA is A with
rows k and ` swapped.

(c) Let Q be I with the entry in row k and column ` changed
from 0 to α. Then QA is A with row k replaced with the sum
of row k and α times row `.

Moreover, S , P and Q are invertible.



EROs Preserve Solution Sets

Corollary 5.5

Let A be an m × n matrix and let A′ be obtained from A by a
sequence of elementary row operations. Then

{x ∈ Rn : Ax = 0} = {x ∈ Rn : A′x = 0}.

The more general result for Ax = b where b ∈ Rn is on Problem
Sheet 7. Hint for proof: adapt the proof of Corollary 5.5.



Echelon Form and Row-Reduced Echelon Form

Example 5.2 suggests what to aim for when doing row operations.

Definition 5.6
Let A be an m × n matrix. We say that A is in echelon form if
both of the following conditions hold.

(i) All zero rows are at the bottom.

(ii) Suppose i < m. If row i of A is non-zero, and the leftmost
non-zero entry of row i is in column j then all the non-zero
entries of row i + 1 of A are in columns j + 1, . . . , n.

We say that A is in row-reduced echelon form if A is in echelon
form and

(iii) If row i is non-zero and the lefmost non-zero entry is in
column j , then Aij = 1, and this 1 is the unique non-zero
entry in column j .

Thus the matrix in Example 5.2(2) is in row-reduced echelon form.
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Quiz and Example of Row Reduction
Let

A =

(
1 2 1 0
1 1 3 1

)
, B =




1 1 0
0 1 0
0 0 1


 , C =
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0 0 0
0 0 0

)

True or false? A is in echelon form:
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(A) False (B) True

C is in row-reduced echelon form:
(A) False (B) True

Example 5.2 (continued)

We will put

A =




4 8 0 −4
2 4 −1 −1
−1 −2 3 −2




into row-reduced echelon form.
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Feedback on Sheet 6
I Please collect your work: A–G in green folder, H–R in clear

folder, S–Z in red folder.
I Please take feedback sheet. Model answers are on Moodle.
I Please see the lecturer to discuss any of the questions.
I If you want to check your continuous assessment 0/1 marks,

please email lecturer, mark.wildon@rhul.ac.uk.

Question. Show that if u, v ∈ R3 then u× v = −v × u.

Answer. Take u = v = 0. Then u× v = 0 = −v × u.

Quiz: Is this an acceptable answer?

(A) False (B) True

Looking at examples and special cases is a very good idea. But
make it clear in your answers that you know you are not
working in general. Try to give the general proof as well.
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2. Let A =
1

3




1 −2 −2
−2 1 −2
−2 −2 1


. Let n = i + j + k and let Π be the

plane through the origin with normal n.

(a) Show that An = −n.
(b) Let u = i− j. Find Au.
(c) Find a vector v such that Π = {αu + βv : α, β ∈ R}.
(d) Show that if w ∈ Π then Aw = w.
(e) What, geometrically, is the linear map f : R3 → R3 defined by

f (w) = Aw?



Example 5.2 (continued)

Row operations putting A into row-reduced echelon form begin as
follows:

A =




4 8 0 −4
2 4 −1 −1
−1 −2 3 −2


 1 7→ 1 /4

7−−−−−−→




1 2 0 −1
2 4 −1 −1
−1 −2 3 −2




2 7→ 2 −2 1

7−−−−−−→




1 2 0 −1
0 0 −1 1
−1 −2 3 −2




3 7→ 3 + 1

7−−−−−−→




1 2 0 −1
0 0 −1 1
0 0 3 −3


 .



General result on Ax = 0

Proposition 5.7

Let A be an m × n matrix in row-reduced echelon form. Suppose
that the first r rows of A are non-zero and the rest are zero. Thus
A has r pivot columns and n − r non-pivot columns, say columns
`1, . . . , `n−r . Given any α1, . . . , αn−r ∈ R there is a unique
solution x ∈ Rn to the equation

Ax = 0

such that x`s = αs for each s with 1 ≤ s ≤ n − r .

Stated informally, the solution space of a system of n equations in
m variables is n − r dimensional, for some r ≤ m, n.

Example 5.8

See printed notes. (This is the continuation of Example 5.2, done
earlier in lecture.)



Row Reduction for Ax = b

Problem 5.9
Find all solutions to the system

x1 − x3 − x4 = −4

x1 + x2 − x4 = −1

x1 − x2 − 2x3 = −1

2x1 − 3x2 − 5x3 = β

where β ∈ R.



Problem 5.9 (continued)
Row reducing the augmented matrix




1 0 −1 −1 −4
1 1 0 −1 −1
1 −1 −2 0 −1
2 −3 −5 0 β




we get . . .




1 0 −1 0 2
0 1 1 0 3
0 0 0 1 6
0 0 0 0 β + 5




The equation for the final row is 0x1 + 0x2 + 0x3 + 0x4 = β + 5.
So if β 6= −5 then the equations are inconsistent and there is no
solution.

Suppose β = 5. The pivot columns are 1, 2 and 4, so x1, x2 and x4
are determined by x3. Intuitively, the family of solutions is 1
dimensional.
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are determined by x3. Intuitively, the family of solutions is 1
dimensional.
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Quiz: Intuition for Dimension

(a) Let A be a 1× 3 matrix. What are the possible dimensions of

{x ∈ R3 : Ax = 0}?

(A) 1 (B) 2 (C) 3 (D) 2, 3

(b) Let A be a 2× 3 matrix. What are the possible dimensions of

{x ∈ R3 : Ax = 0}?

(A) 1 (B) 1, 2 (C) 1, 2, 3 (D) 2, 3

Dimension will be defined formally in Part E of the course.
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Application: Inverting a Matrix

Problem 5.10

Let A =




1 2 3
1 3 3
1 2 4


. What is A−1? We form the augmented

matrix (A | I ) and perform row operations to put it in row-reduced
echelon form, getting (I |B).

Example 5.11

By row operations we can transform

A =




1 0 1
0 1 1
1 −1 0


 to A′ =




1 0 1
0 1 1
0 0 0




in row-reduced echelon form. Quiz: True or false: A′ is surjective?

(A) False (B) True

A′ is invertible?

(A) False (B) True
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Part D: Determinants

§6 Permutations and determinants

We saw in Lemma 3.15 that if A is a 2× 2 matrix then the image
of the unit square with vertices at

(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)

under A has area |detA|.

Now suppose that A is a 3× 3 matrix, with columns a,b, c. As
seen in Example 4.5, the columns of A are the images of i, j and k
under A. By Theorem 2.12 and Exercise 2.13 the volume of the
parallelepiped formed by a,b, c is |a · (b× c)|.

Definition 6.1
Let A be a 3× 3 matrix with columns a, b, c. We define

detA = a · (b× c).
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Other Expressions for the 3× 3 Determinant

Lemma 6.2
Let A be a 3× 3 matrix. Then

detA

= A11 det

(
A22 A23

A32 A33

)
− A21 det

(
A12 A13

A32 A33

)
+ A31 det

(
A12 A13

A22 A23

)

= A11A22A33 + A12A23A31 + A13A21A32

− A12A21A33 − A13A22A31 − A11A23A32.

A33

A23

A13

A32

A22

A12

A31

A21

A11

A33

A23

A13

A32

A22

A12

A31

A21

A11



Permutations
To define the determinant for n × n matrices we need to know the
correct sign to attach to each bijection

σ : {1, 2, . . . , n} → {1, 2, . . . , n}.

We call such bijections permutations.

Example 6.3 (Two-line notation)

See board.

Definition 6.4
A permutation σ of {1, 2, . . . , n} is an r -cycle if there exist distinct
x1, x2, . . . , xr ∈ {1, 2, . . . , n} such that

σ(x1) = x2, σ(x2) = x3, . . . σ(xr ) = x1

and σ(y) = y for all y 6∈ {x1, x2, . . . , xr}. We write

σ = (x1, x2, . . . , xr ).



Feedback on Sheet 7

I Please collect your work: A–G in blue folder, H–R in green
folder, S–Z in red folder.

I Please take feedback sheet. Model answers are on Moodle.

I Please see the lecturer to discuss any of the questions.

I If you want to check your continuous assessment 0/1 marks,
please email lecturer, mark.wildon@rhul.ac.uk.

Quiz: True or False?

I x = 2 =⇒ x2 = 4
(A) False (B) True

I {2} = {x ∈ R : x2 = 4}
(A) False (B) True

The forwards implication ‘=⇒’ is equivalent to

{2} ⊆ {x ∈ R : x2 = 4}.
Note ‘⇐=’ does not hold, and the sets are not equal.
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Quiz on Composing Permutations

A 2-cycle is called a transposition. Quiz: True or false?

(a) Let σ = (1, 3, 2). Then σ = (2, 1, 3).
(A) False (B) True

(b) Let σ = (1, 3, 2). Then σ3 = (1, 2, 3).
(A) False (B) True

(c) If σ = (1, 2) and τ = (2, 3) then στ = (1, 2, 3).
(A) False (B) True

(d) Every permutation of {1, 2, . . . , n} is a composition of
transpositions.

(A) False (B) True

(e) Let σ = (1, 2)(1, 3)(1, 4)(1, 5), defined by composing the four
transpositions (1, 2), (1, 3), (1, 4), (1, 5). Which of the
following cycles is equal to σ?

(A) (1,2,3,4,5) (B) (1,5,4,3,2) (C) (5,4,3,2,1) (D) (5,1,2,3,4)
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Sign of a Permutation
Quiz: True or False? (1, 2, 3, 4, 5) is equal to a composition of

(a) 4 transpositions;
(A) False (B) True

(b) 6 transpositions;
(A) False (B) True

(c) 5 transpositions;
(A) False (B) True

(d) 2 transpositions.
(A) False (B) True

Definition 6.5
Let σ be a permutation. We define the sign of σ by

I sgn(σ) = 1 if σ is equal to a composition of an even number
of transpositions;

I sgn(σ) = −1 if σ is equal to a composition of an odd number
of transpositions.

Sign is well defined: no permutation can be written as a
composition of both evenly many and oddly many transpositions.
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Products of Signs
The sliding block puzzle played in last Friday’s lecture had these
initial and target positions:

1 2 3 4
5 6 7 8
9 10 11 12

13 15 14

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15

Here shows the empty space.

Claim 6.6
There is no sequence of slides going from the initial position to the
target position.

Lemma 6.7
Let σ, τ be permutations of {1, 2, . . . , n}. Then

sgn(στ) = sgn(σ) sgn(τ).
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Disjoint Cycle Decomposition of a Permutation
We say that two cycles (x1, . . . , xk) and (y1, . . . , y`) are disjoint if
{x1, . . . , xk} ∩ {y1, . . . , y`} = ∅.

Quiz: True or false? The cycles (1, 6, 4) and (3, 5) are disjoint.

(A) False (B) True

Let τ = (4, 5), σ = (1, 4, 7)(2, 5)(6, 8). Which is τσ?

(A) (1, 5, 2, 4, 7, 6, 8) (B) (1, 4, 7)(2, 5)(6, 8)

(C) (4, 7, 1, 5, 2)(6, 8) (D) (1, 5, 2, 4, 7).

Exercise 6.8
Write the permutation of {1, 2, 3, 4, 5, 6} defined by σ(1) = 6,
σ(2) = 1, σ(3) = 5, σ(4) = 4, σ(5) = 3, σ(6) = 2 as a
composition of disjoint cycles.

Lemma 6.9
A permutation σ of {1, 2, . . . , n} can be written as a composition
of disjoint cycles. The cycles in this composition are uniquely
determined by σ.
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Computing the Sign of a Permutation

Lemma 6.10
Let τ = (x1, x2, . . . , x`) be an `-cycle. Then sgn(τ) = (−1)`−1.

Thus cycles of odd length have sign 1 and cycles of even length
have sign −1.

Corollary 6.11

If σ is a permutation of {1, 2, . . . , n} then

sgn(σ) =

{
1 if σ has an even number of cycles of even length

−1 if σ has an odd number of cycles of even length

in its disjoint cycle decomposition.



Exercise 6.12
We saw earlier that if τ = (4, 5), σ = (1, 4, 7)(2, 5)(6, 8) then

τσ = (4, 7, 1, 5, 2)(6, 8) = (1, 5, 2, 4, 7)(6, 8).

Quiz: True or False?

(a) sgn(τ) = 1?
(A) False (B) True

(b) sgn(σ) = 1?
(A) False (B) True

(c) sgn(σ−1) = 1?
(A) False (B) True

(d) sgn(τσ) = 1?
(A) False (B) True
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We saw earlier that if τ = (4, 5), σ = (1, 4, 7)(2, 5)(6, 8) then

τσ = (4, 7, 1, 5, 2)(6, 8) = (1, 5, 2, 4, 7)(6, 8).

Quiz: True or False?

(a) sgn(τ) = 1?
(A) False (B) True

(b) sgn(σ) = 1?
(A) False (B) True

(c) sgn(σ−1) = 1?
(A) False (B) True

(d) sgn(τσ) = 1?
(A) False (B) True
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(a) sgn(τ) = 1?
(A) False (B) True

(b) sgn(σ) = 1?
(A) False (B) True

(c) sgn(σ−1) = 1?
(A) False (B) True

(d) sgn(τσ) = 1?
(A) False (B) True



Definition of the determinant

Definition 6.13
Let A be an n × n matrix. We define the determinant of A by

detA =
∑

σ

sgn(σ)A1σ(1)A2σ(2) . . .Anσ(n)

where the sum is over all permutations σ of {1, 2, . . . , n}.
Exercise 6.14
(a) Check that if A is a 2× 2 matrix then Definition 6.13 agrees

with the definition given immediately after Lemma 3.15.

(b) List all permutations of {1, 2, 3} and state their signs. Hence
check that Definition 6.13 agrees with Lemma 6.2.

(c) Compute det




1 1 0 0
0 1 1 0
0 0 1 1
β 0 0 1


 for each β ∈ R.

[Hint: only a few of the 4! = 24 permutations of {1, 2, 3, 4} give a

non-zero summand.]



On Moodle you can find:

I Answers to Sheet 8

I A mock MT182 exam, with the same style and format as the
real thing.

I Examination guidance.



§7 Properties of the determinant

Recall that AT denotes the transpose of A, defined on Question 3
of Sheet 6 by (AT )ij = Aji .

Proposition 7.1

Let A be an n × n matrix.

(i) If A′ is obtained from A by swapping two rows then
detA′ = − detA.

(ii) If A′ is obtained from A by scaling a row by α ∈ R then
detA′ = α detA.

(iii) detAT = detA.

Exercise 7.2
Let A be a 3× 3 matrix with columns a,b, c. Let A′ = (a c b)
and let A′′ = (b 3c 2a) Express detA′ and detA′′ in terms of
detA.



Feedback on Sheet 8

I Please collect your work: A–G in blue folder, H–R in green
folder, S–Z in red folder.

I Please take feedback sheet. Model answers are on Moodle.

I Please see the lecturer to discuss any of the questions.

I If you want to check your continuous assessment 0/1 marks,
please email lecturer, mark.wildon@rhul.ac.uk.

Quiz: Let σ = (1, 6, 2)(3, 5), as in Question 4. What is σ3?

(A) id (B) (3, 5) (C) (1, 6, 2) (D) (1, 2, 6)
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Adding One Row to Another: Lemmas

Lemma 7.3
If A is an n × n matrix with two equal rows then detA = 0.

Quiz: Which permutation of {1, 2, 3, 4} corresponds to taking the
red entries below? 



α1 α2 α3 α4

α1 α2 α3 α4

A31 A32 A33 A34

A41 A42 A43 A44




(A) (1, 2, 3, 4) (B) (1, 2, 3) (C) (1, 3, 2) (D) (1, 3)

Which permutation cancels its contribution to the determinant?

(A) (1, 2, 3, 4) (B) (1, 2, 3) (C) (1, 3, 2) (D) (1, 3)
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Adding One Row to Another: Lemmas

Lemma 7.3
If A is an n × n matrix with two equal rows then detA = 0.

Quiz: Which permutation of {1, 2, 3, 4} corresponds to taking the
red entries below? 



α1 α2 α3 α4

α1 α2 α3 α4

A31 A32 A33 A34

A41 A42 A43 A44
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Which permutation cancels its contribution to the determinant?

(A) (1, 2, 3, 4) (B) (1, 2, 3) (C) (1, 3, 2) (D) (1, 3)

The cancelling permutation is shown in purple.



Adding One Row to Another: Lemmas

Lemma 7.3
If A is an n × n matrix with two equal rows then detA = 0.

Lemma 7.4
Let Aij ∈ R for 2 ≤ i ≤ n and 1 ≤ j ≤ n. If α1, α2, . . . , αn and
β1, β2, . . . , βn ∈ R then

det




α1 α2 . . . αn

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann


 + det




β1 β2 . . . βn
A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann


 =

det




α1 + β1 α2 + β2 . . . αn + βn
A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann


 .



Adding One Row to Another

Quiz: what row operation does

(
1 3
0 1

)
perform on 2× 2 matrices?

(A) add 3 times row 1 to row 2 (B) add 3 times row 2 to row 1

What is the inverse of this matrix?

(A)

(
1 0
−3 1

)
(B)

(
1 −3
0 1

)
(C) 1

3

(
1 −3
0 1

)
(D)

(
1 1

3
0 1

)

Proposition 7.5

Let A be an n × n matrix. Let 1 ≤ k , ` ≤ n with k 6= `. Let A′ be
obtained from A by replacing row k with the sum of row k and α
times row `. Then detA′ = detA.

In particular, the elementary matrix corresponding to the row
operation in Proposition 7.5 has determinant 1.
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In particular, the elementary matrix corresponding to the row
operation in Proposition 7.5 has determinant 1.



Determinants and Matrix Products

Example′ 7.6

We will use column operations to find

det




1 1 1
α β γ
α2 β2 γ2




Quiz: What is det




1 2 3
6 5 4
7 7 7


?

(A) 0 (B) −7 (C) 7 (D) 2



Determinants and Matrix Products

Example′ 7.6

We will use column operations to find

det




1 1 1
α β γ
α2 β2 γ2




Quiz: What is det




1 2 3
6 5 4
7 7 7


?

(A) 0 (B) −7 (C) 7 (D) 2



Administration

I Sign in for Monday’s lecture (if and only if you were there).

I Please hand in answers to Sheet 9 at the end.

I Please take the final installment of the Part D handout.

I Spare copies of Problem Sheet 9 and feedback on Sheet 8 at
front.



detAB = detA detB

Corollary 7.7

Let A and B be n × n matrices.

(i) If E is one of the elementary matrices in Lemma 5.4 then
detEB = detE detB.

(ii) If Q is a product of elementary n × n matrices then
detQB = detQ detB.

(iii) If A is an n × n matrix then detAB = detA detB.

(iv) detB 6= 0 if and only if B is invertible.



Laplace Expansion

Definition 7.8
Let A be an n × n matrix with n ≥ 2 and let 1 ≤ k , ` ≤ n. The
minor of A in row k, column `, denoted M(k , `), is the
(n − 1)× (n − 1) matrix obtained from A by deleting row k and
column `.

For example, a general 3× 3 matrix A has minors

M(1, 1) =

(
A22 A23

A32 A33

)
,M(1, 2) =

(
A21 A23

A31 A33

)
, . . . .

Proposition 7.9

Let A be an n × n matrix. Then

detA = A11 detM(k, 1)−A12 detM(1, 2)+· · ·+(−1)n+1A1n detM(1, n).



Adjugate Matrix

Definition 7.10
Let A be an n× n matrix. Let A be an n× n matrix. The adjugate
of A is the n × n matrix defined by

(adjA)k` = (−1)`+kM(`, k).

Note that the k and ` are swapped on the right-hand side.

Quiz: Let A =




0 1 1
1 0 1
1 1 0


. The diagonal entries of adjA are all

equal to:
(A) −1 (B) 0 (C) 1 (D) 2

The off-diagonal entries of adjA are all equal to:
(A) −1 (B) 0 (C) 1 (D) 2
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Adjugate Matrix

Definition 7.10
Let A be an n× n matrix. Let A be an n× n matrix. The adjugate
of A is the n × n matrix defined by

(adjA)k` = (−1)`+kM(`, k).

Note that the k and ` are swapped on the right-hand side.

Example 7.11

Let A =




1 1 1
2 4 4
3 5 6


 be the matrix in Sheet 8, Question 1(a). We

have

adjA =




det

(
4 4
5 6

)
− det

(
1 1
5 6

)
det

(
1 1
4 4

)

− det

(
2 4
3 6

)
det

(
1 1
3 6

)
− det

(
1 1
2 4

)

det

(
2 4
3 5

)
− det

(
1 1
3 5

)
det

(
1 1
2 4

)




=




4 −1 0
0 3 −2
−2 −2 2


 .

Hence adjA = 2A−1 = (detA)A−1.



The Adjugate and the Inverse

Proposition 7.12

If A is an n × n matrix then

A(adjA) = (detA)I .

Hence if detA 6= 0 then A−1 = 1
detA adjA.

In printed notes: (adjA)A = (detA)I . Also true, but form above
fits better with Proposition 7.9 (row expansion).

Exercise 7.13

Find adj

(
a b
c d

)
and hence check that Proposition 7.12 holds in

the 2× 2 case.



Eigenvalues and Eigenvectors

Proposition 7.14

Let A be a square matrix. Then λ is an eigenvalue of A if and only
if det(λI − A) = 0.

Quiz:

(1) What are the eigenvalues of




1 −1 3
0 2 0
0 0 3


?

(A) −1,2,3 (B) 1,−1,3 (C) 0,1,2 (D) 1,2,3

(2) Let A be the 3× 3 matrix representing rotation by π/4 with
axis i. True or false? 1 is the only eigenvalue of A.

(A) False (B) True
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Eigenvalues and Eigenvectors

Proposition 7.14

Let A be a square matrix. Then λ is an eigenvalue of A if and only
if det(λI − A) = 0.

Example 7.15
Let α ∈ R and let A =




2 0 0
1 1 α
0 0 1


. So λI −A =



λ− 2 0 0
−1 λ− 1 −α
0 0 λ− 1




and

det(λI − A) = (λ− 2) det

(
λ− 1 −α

0 λ− 1

)
= (λ− 2)(λ− 1)2

Hence the eigenvalues of A are 1 and 2. When λ = 2 we have

(2I−A)



x
y
z


 =




0 0 0
−1 1 −α
0 0 1





x
y
z


 =




0
−x + y − αz

z


 =




0
0
0




if and only if z = 0 and x = y . So




1
1
0


 is an eigenvector with

eigenvalue 2.
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answers are on Moodle.
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I Please see the lecturer to discuss any of the questions: office
hours this week are Monday 4pm, Wednesday 10am, or by
appointment.

I If you want to check your continuous assessment 0/1 marks,
please email lecturer, mark.wildon@rhul.ac.uk.



Part E: Vector Spaces

§8 Vector spaces and subspaces

Definition 8.1
A vector space is a set V of vectors with an addition rule and zero
element 0 such that

(A1) u + (v + w) = (u + v) + w

(A2) u + v = v + u

(A3) u + 0 = 0 + u = u

for all u, v,w ∈ V . Moreover there is a rule for multiplying a
vector by a scalar such that

(M1) α(βv) = (αβ)v

(M2) 1v = v

(M3) 0v = 0

(D) (α + β)v = αv + βv

for all v ∈ V and α, β ∈ R.



Examples

Example 8.2

(1) Let n ∈ N. Then Rn is a vector space.

(2) Let n ∈ N. The set of all n × n matrices is a vector space.

(3) The set of all real polynomials, i.e.

R[x ] = {a0 + a1x + · · ·+ adx
d : a0, a1, . . . , ad ∈ R, d ∈ N0}

is a vector space.

(4) The line ` = {λ
(

1
1

)
: λ ∈ R} is a vector space.

(5) The translated line `′ = {
(

1
0

)
+ λ

(
1
1

)
: λ ∈ R} is not a

vector space.



More Examples of Vector Spaces

Quiz: True or false?

I
{


x
y
z


 ∈ R3 : x + z = 0

}
is a vector space.

(A) False (B) True

I Q is a vector space
(A) False (B) True

I The set of continuous functions from R to R is a vector
space.

(A) False (B) True

I The set of continuous functions f : R→ R such that f (x) ≥ 0
for all x ∈ R is a vector space.

(A) False (B) True
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Linear Independence, Spanning and Basis

Definition 8.3
Let V be a vector space. Vectors u1, . . . ,ur ∈ V

(i) are linearly dependent if there exist α1, α2, . . . , αr ∈ R, not all
equal to zero, such that

α1u1 + α2u2 + · · ·+ αrur = 0.

(ii) are linearly independent if they are not linearly dependent.

(iii) span V if for all v ∈ V there exist β1, . . . , βr ∈ R such that

v = β1u1 + β2u2 + · · ·+ βrur .

(iv) are a basis for V if they are linearly independent and span V .

Finally if V has a basis of size d we say that V has dimension d .

It will be proved in the second year linear algebra course that any two

bases of a vector space have the same size. So dimension is well-defined.



Key Example

Example 8.4

Let V =
{


x
y
z


 ∈ R3 : x + z = 0

}
be the plane in R3 through the

origin with normal i + k. Let

u1 =




1
0
−1


 , u2 =




0
1
0


 , u3 =




1
1
−1


 .

Then

(i) u1,u2,u3 are linearly dependent;

(ii) u1,u2 are linearly independent;

(iii) u1,u2 span V ;

(iv) u1,u2 are a basis of W , so V has dimension 2.



Quiz on Example 8.4

Quiz: True or false:

(a) u1,u2,u3 span V .
(A) False (B) True

(b) u1,u3 are linearly dependent.
(A) False (B) True

(c) 0,u1,u3 span V .
(A) False (B) True

(d) 0,u1,u3 are linearly independent.
(A) False (B) True

(e) V has a unique basis.
(A) False (B) True
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Subspaces

Definition 8.5
Let W be a vector space. A subset V of W is a subspace of W if

(i) 0 ∈ V and

(ii) if u, v ∈ V and α, β ∈ R then αu + βv ∈ V .

Example 8.6

Let n ∈ R3 be non-zero and let

V =
{
v ∈ R3 : n · v = 0

}

be the plane in R3 through the origin with normal n. Then V is a
subspace of R3 of dimension 2.

Proposition 8.7

If V is a subspace of a vector space W then V is a vector space.

For example, the plane in Example 8.4 is now proved to be a
vector space.


