MT181 Number Systems: Revision Questions

For further questions and questions on congruences and relations see Sheet 10 and How to think like a mathematician by Kevin Houston (Cambridge University Press, 2009), or the other books in the recommended reading.

You should also practice by doing past January Tests.

Functions. Let X and Y be sets. Recall from Definitions 2.5 and 2.11 that a function $f: X \rightarrow Y$ is
(i) bijective if for all $y \in Y$ there exists a unique x such that $f(x)=y$,
(ii) injective if $f(x)=f\left(x^{\prime}\right) \Longrightarrow x=x^{\prime}$,
(iii) surjective if for each $y \in Y$ there exists some $x \in X$ such that $f(x)=y$,

Equivalently

- f is injective if for all $y \in Y$ there exists at most one x such that $f(x)=y$,
- f is bijective if and only if f is injective and surjective.

You are welcome to use these as alternative definitions. Definitions must be accurately stated to get marks in an exam.

These properties can be recognized from the graph of a function. For example, let $\mathbb{R}^{>0}=\{x \in \mathbb{R}: x>0\}$ and consider $f: \mathbb{R}^{>0} \rightarrow \mathbb{R}^{>0}$ defined by $f(x)=1 / x$. The graph is shown below.

Since for each $y \in \mathbb{R}^{>0}$ the horizontal line of height y meets the graph at a unique point, the function is bijective.

If instead we define $g: \mathbb{R}^{>0} \rightarrow \mathbb{R}$ by $g(x)=1 / x$ then g has the same graph as f, but g is no longer surjective. For instance, -1 is in the codomain of g and $g(x) \neq-1$ for any $x \in \mathbb{R}^{>0}$. Correspondingly, the horizontal line of height -1 does not meet the graph above.

1. For each of the diagrams below decide whether the function it represents is (1) injective, (2) surjective, (3) bijective.

2. Let $X=\{x \in \mathbb{R}: 0 \leq x \leq 2\}$ and let $Y=\{y \in \mathbb{R}:-1 \leq y \leq 1\}$. The graphs below show three functions $f: X \rightarrow Y$. Decide for each each graph whether the function it shows is (1) injective, (2) surjective, (3) bijective.

3. Let $X=\{x \in \mathbb{R}: x \neq-1\}$ and let $Y=\{y \in \mathbb{R}: y \neq 0\}$. Let $g: X \rightarrow Y$ be the function defined by

$$
g(x)=\frac{1}{x+1}
$$

Show that g is bijective and find a formula for $g^{-1}: Y \rightarrow X$.

Complex Numbers.

4. (a) Write $-1-i$ in polar and exponential forms.
(b) Let $\phi=\tan ^{-1} 2$. Plot $1+2 i, 2+i,-2+i$ and $-1-2 i$ on an Argand diagram, and convert these numbers to polar form, writing your answers in terms of ϕ and multiples of π.
(c) Let $z=\frac{1}{2}-i \frac{\sqrt{3}}{2}$. Write z in polar and exponential forms.
(d) What are $\operatorname{Arg}(i)$ and $\operatorname{Arg}(-i)$? Put i and $-i$ in exponential form.
(e) Convert $\mathrm{e}^{-\pi i / 6}$ to Cartesian form.
5. Draw the sets $\{z \in \mathbb{C}:|z|=2\}$ and $\{w \in \mathbb{C}:|w-2|=2\}$ on the same Argand diagram.
6. Let T be the set of $z \in \mathbb{C}$ such that $|z|=1$ and $0 \leq \operatorname{Arg} z \leq \pi / 2$. Draw T on an Argand diagram.
7. Solve the following equations, giving the solutions in Cartesian form. Be sure to give all solutions.
(a) $(1+i) z-(3+i)=6$,
(b) $(z+3)^{3}=-2$,
(c) $\exp z=10+10 i$,
(d) $z+\bar{z}=3$

Induction and natural numbers.

8. (a) Prove by induction that

$$
\sum_{k=1}^{n} k^{2}=\frac{1}{3} n\left(n+\frac{1}{2}\right)(n+1)
$$

for all $n \in \mathbb{N}$.
(b) Prove by induction (or using congruences if you prefer) that $7^{n}-1$ is divisible by 6 for all $n \in \mathbb{N}$.
(c) Prove by induction that $1+1 / 2+\cdots+1 / 2^{n}=2-1 / 2^{n}$ for all $n \in \mathbb{N}_{0}$.
9. Work through Euclid's proof that there are infinitely many primes. Then, a day later, try to write out your own version of the proof, or explain it to a friend.
10. (a) Express 79 in base 2 .
(b) Let $0 \leq a, b, c \leq 9$. Show that the base 10 number $a b c c b a$ is divisible by 11 .
(c) Let $0 \leq a_{k} \leq 9$ for each $k \in\{0,1, \ldots, d-1\}$. Prove that

$$
\sum_{k=0}^{d-1} a_{k} 10^{k} \text { is divisible by } 9 \Longleftrightarrow \sum_{k=0}^{d-1} a_{k} \text { is divisible by } 9 .
$$

(d) Is 123456789987654321 a multiple of 9 ?

Propositions.

11. Show that the following propositions formed from propositions P, Q and R are logically equivalent:
(a) $(P \Longrightarrow Q)$ and $(\neg Q \Longrightarrow \neg P)$,
(b) $\neg(P \vee Q \vee R)$ and $\neg P \wedge \neg Q \wedge \neg R$,
(c) $P \Longrightarrow(Q \vee R)$ and $\neg P \vee Q \vee R$.
12. Negate each of the following propositions. Decide which are true and which are false. Justify your answers.
(a) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})\left(y^{2}=x\right)$
(b) $(\forall x \geq 0)(\exists y \in \mathbb{R})\left(y^{2}=x\right)$
(c) $(\forall x \in \mathbb{R})(\exists n \in \mathbb{N})(n \geq x)$
(d) $(\exists n \in \mathbb{N})(\forall x \in \mathbb{R})(n \geq x)$
13. Which of the following are tautologies? Justify your answers. (If you use truth tables, make it clear which feature of the truth table you use.)
(a) $(P \Longleftrightarrow Q) \Longleftrightarrow((P \wedge Q) \vee(\neg P \wedge \neg Q))$,
(b) $(P \Longrightarrow Q) \Longrightarrow(Q \Longrightarrow P)$,
(c) $(P \Longrightarrow(Q \Longrightarrow R)) \Longrightarrow(Q \Longrightarrow(P \Longrightarrow R))$.

Sets.
14. Let X be the set $\{1, \pi,\{42, \sqrt{2}\},\{\{1,3\}\}\}$. Decide which of the following statements are true and which are false.
(i) $\pi \in X$;
(vi) $\{1, \pi\} \subseteq X$;
(ii) $\{\pi\} \notin X$;
(vii) $(\exists A \in X)(1 \in A)$;
(iii) $\{42, \sqrt{2}\} \in X$;
(viii) $\{1,3\} \subseteq X$;
(iv) $\{1\} \subseteq X$;
(ix) $\{1,3\} \in X$
(v) $\{1, \sqrt{2}\} \subseteq X$;
(x) $(\exists A \in X)(\{1,3\} \in A)$;
15. Define subsets X, Y and Z of the natural numbers as follows:

$$
\begin{aligned}
& X=\{n \in \mathbb{N}: 6 \text { divides } n-1\} \\
& Y=\{n \in \mathbb{N}: 3 \text { divides } n-1\} \\
& Z=\left\{n \in \mathbb{N}: 3 \text { divides } n^{2}-1 .\right\}
\end{aligned}
$$

(a) Let $n \in \mathbb{N}$. Show that $n \in X \Longrightarrow n \in Y$.
(b) Is $X \subseteq Y$ true? Is $Y \subseteq X$ true?
(c) Let $n \in \mathbb{N}$. Show that $n \in Y \Longrightarrow n \in Z$.
(d) Is $X \subseteq Z$ true?

