Some algebra questions to motivate vacation revision

Questions 1-5 are roughly in order of increasing difficulty. After them there are some further questions more in the style of examination questions.

1. For $\alpha \in \mathbb{R}$, let $T_{\alpha} : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined by

$$T_{\alpha} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + \alpha y \\ y + \alpha z \\ z \end{pmatrix}$$

(i) Find the matrix representing T_{α} with respect to the standard basis of \mathbb{R}^3 (as both initial and final basis).

(ii) Find bases \mathcal{E} and \mathcal{F} for \mathbb{R}^3 such that the matrix representing T_{α} with respect to \mathcal{E} as initial basis and \mathcal{F} as final basis is the 3×3 identity matrix.

(iii) Prove that T_{α} is diagonalisable if and only if $\alpha = 0$.

2. Let V and W be a finite dimensional real vector spaces of dimensions m and n respectively and let $T: V \to W$ be a linear map.

(i) Show that there is a basis of V, $\mathcal{E} = (e_1, \ldots, e_m)$ and a basis of W, $\mathcal{F} = (f_1, \ldots, f_n)$ such that if $r = \operatorname{rank} T$,

$$Te_i = \begin{cases} f_i : 1 \le i \le r \\ 0 : r < i \le m \end{cases}$$

[*Hint: Adapt the proof of the rank-nullity theorem.*]

(ii) Suppose now that \mathcal{E}' is a basis of V and \mathcal{F}' is a basis of W. Let A be the matrix representing T with respect to \mathcal{E}' as initial basis and \mathcal{F}' as final basis. Show that there exist invertible matrices P and Q such that

$$QAP^{-1} = J(r)$$

where J(r) is the $n \times m$ -matrix satisfying

$$J(r)_{ij} = \begin{cases} 1 : i = j \text{ and } 1 \le i \le r \\ 0 : \text{ otherwise} \end{cases}$$

3. (i) Suppose that U and W are vector subspaces of a vector space V. Show that there is a basis of V containing bases for $U \cap W$, U and W.

[You may assume that if X is a vector subspace of the vector space Y then any basis of X can be extend to a basis of Y.]

(ii) Deduce that $V = U \oplus W$ if and only if $U \cap W = 0$ and $\dim U + \dim W = \dim V$.

(iii) If U_1 , U_2 and U_3 are vector subspaces of a vector space V, must there be a basis of V containing bases for each of U_1 , U_2 and U_3 ?

4. Let *a*, *b* and *c* be any 3 complex numbers, and let $A = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$.

(i) Let $\omega = \exp(2\pi i/3)$. Show that A has eigenvalues a + b + c, $a + \omega b + \omega^2 c$ and $a + \omega^2 b + \omega c$.

(ii) Let α , β and γ be complex numbers. By diagonalising A, or otherwise, give necessary and sufficient conditions for the following system of linear equations over \mathbb{C} to have a solution:

$$ax + by + cz = \alpha$$

$$cx + ay + bz = \beta$$

$$bx + cy + az = \gamma.$$

5. Let $n \ge 1$ and let A be the $n \times n$ matrix such that $A_{ij} = 1$ if $i \ne j$ and $A_{ij} = 0$ if i = j,

$$A = \begin{pmatrix} 0 & 1 & \dots & 1 & 1 \\ 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{pmatrix}.$$

(i) Show that n-1 and -1 are eigenvalues of A and find bases of the associated eigenspaces.

(ii) Find an invertible $n \times n$ matrix P such that

$$P^{-1}AP = \begin{pmatrix} n-1 & & \\ & -1 & & \\ & & \ddots & \\ & & & -1 \end{pmatrix}.$$

(iii) (This part may be regarded as optional.) One says that a permutation of the numbers $\{1, 2, ..., n\}$ is a *derangement* if it has no fixed points. So for permutations of $\{1, 2, 3, 4\}$, (12)(34) and (1234) are derangements, but (123) is not, as 4(123) = 4.

Let e_n be the number of derangements of $\{1, 2, ..., n\}$ that are even permutations and let o_n be the number of derangements of $\{1, 2, ..., n\}$ that are odd permutations. By evaluating the determinant of A in 2 different ways prove that

$$e_n - o_n = (-1)^{n-1}(n-1).$$

(You might first check this holds for small n, e.g. n = 2, n = 3, ...)

Exam style questions

1. (a) Let V and W be finite dimensional vector spaces over the real numbers and let $T: V \to W$ be a linear transformation. Define the *kernel*, ker T and the *image*, im T.

Prove that ker T is a subspace of V and im T is a subspace of W.

Prove that T is one-to-one if and only if ker $T = \{0_V\}$.

State the rank-nullity formula

Suppose that $\dim(V) = \dim(W)$. Prove that T maps V onto W if and only T is one-to-one.

(b) Let $T: V \to V$ be a linear transformation of the finite dimensional real vector space V. Show that rank $T = \operatorname{rank} T^2$ if and only if $V = \operatorname{im} T \oplus \ker T$.

2. (a) Let V be a finite dimensional real vector space and let $T: V \to V$ be a linear map. Explain carefully what is meant be an *eigenvalue* of T and by an associated *eigenvector* of T.

Show that if $\lambda_1, \ldots, \lambda_r$ are distinct eigenvalues of T and v_1, \ldots, v_r are associated eigenvectors then v_1, \ldots, v_r are linearly independent.

(b) Let V be the set of all differentiable functions on \mathbb{R} . (You may assume that V is a real vector space). Let $n \geq 1$ and let U be the subspace of V spanned by the functions

$$\{\sin mx, \cos mx : m = 1 \dots n\}$$

Show that differentiation defines a linear transformation from U onto itself.

Prove that if for some $n \ge 1$

 $a_1 \sin x + a_2 \sin 2x + \ldots + a_n \sin nx = 0 \quad \forall x \in \mathbb{R}$

then $a_1 = \ldots = a_n = 0$.

3. (a) Let S be a finite subset of a vector space V. Explain what is meant by

- (i) the span of S,
- (ii) S is linearly independent,
- (iii) S is a *basis* of V.

Let $n \ge 1$ and let V be the vector space of all polynomials of degree at most n. Show that if $\alpha \in \mathbb{R}$ then

$$\{f \in V : f(\alpha) = 0\}$$

is a subspace of V, and determine its dimension.

(b) Now suppose that n = 4. Find, with proof, a basis of V which contains bases for each of

$$U = \left\{ f : \frac{d^3 f}{dx^3} = 0 \right\} \text{ and } W = \left\{ f \in V : f(1) = f(2) = 0 \right\}.$$

4. (a) Let π be a permutation of the set $\{1, 2, ..., n\}$. What is the cycle decomposition of π ? Illustrate your answer by giving the cycle decomposition of

The conjugate by π of the permutation θ is defined to be the permutation $\pi^{-1}\theta\pi$. Let θ be the 3-cycle (*abc*). Show that $\pi^{-1}\theta\pi$ is the 3-cycle ($a\pi \ b\pi \ c\pi$).

We say that θ and π commute if $\theta \pi = \pi \theta$. Show that θ and π commute if and only if the conjugate by π of θ is θ .

(b) Now let n = 6 and let α be the permutation

Express α as a product of disjoint cycles and find all permutations that commute with it. Show that each such permutation is a power of α .

Let

Is every permutation which commutes with β a power of β ?