Some algebra questions to motivate vacation revision

Questions 1-5 are roughly in order of increasing difficulty. After them there are some further questions more in the style of examination questions.

1. For $\alpha \in \mathbb{R}$, let $T_{\alpha}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map defined by

$$
T_{\alpha}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x+\alpha y \\
y+\alpha z \\
z
\end{array}\right)
$$

(i) Find the matrix representing T_{α} with respect to the standard basis of \mathbb{R}^{3} (as both initial and final basis).
(ii) Find bases \mathcal{E} and \mathcal{F} for \mathbb{R}^{3} such that the matrix representing T_{α} with respect to \mathcal{E} as initial basis and \mathcal{F} as final basis is the 3×3 identity matrix.
(iii) Prove that T_{α} is diagonalisable if and only if $\alpha=0$.
2. Let V and W be a finite dimensional real vector spaces of dimensions m and n respectively and let $T: V \rightarrow W$ be a linear map.
(i) Show that there is a basis of $V, \mathcal{E}=\left(e_{1}, \ldots, e_{m}\right)$ and a basis of $W, \mathcal{F}=$ $\left(f_{1}, \ldots, f_{n}\right)$ such that if $r=\operatorname{rank} T$,

$$
T e_{i}=\left\{\begin{aligned}
f_{i} & : 1 \leq i \leq r \\
0 & : r<i \leq m
\end{aligned}\right.
$$

[Hint: Adapt the proof of the rank-nullity theorem.]
(ii) Suppose now that \mathcal{E}^{\prime} is a basis of V and \mathcal{F}^{\prime} is a basis of W. Let A be the matrix representing T with respect to \mathcal{E}^{\prime} as initial basis and \mathcal{F}^{\prime} as final basis. Show that there exist invertible matrices P and Q such that

$$
Q A P^{-1}=J(r)
$$

where $J(r)$ is the $n \times m$-matrix satisfying

$$
J(r)_{i j}= \begin{cases}1 & : i=j \text { and } 1 \leq i \leq r \\ 0 & : \text { otherwise }\end{cases}
$$

3. (i) Suppose that U and W are vector subspaces of a vector space V. Show that there is a basis of V containing bases for $U \cap W, U$ and W.
[You may assume that if X is a vector subspace of the vector space Y then any basis of X can be extend to a basis of Y.]
(ii) Deduce that $V=U \oplus W$ if and only if $U \cap W=0$ and $\operatorname{dim} U+\operatorname{dim} W=\operatorname{dim} V$.
(iii) If U_{1}, U_{2} and U_{3} are vector subspaces of a vector space V, must there be a basis of V containing bases for each of U_{1}, U_{2} and U_{3} ?
4. Let a, b and c be any 3 complex numbers, and let $A=\left(\begin{array}{ccc}a & b & c \\ c & a & b \\ b & c & a\end{array}\right)$.
(i) Let $\omega=\exp (2 \pi i / 3)$. Show that A has eigenvalues $a+b+c, a+\omega b+\omega^{2} c$ and $a+\omega^{2} b+\omega c$.
(ii) Let α, β and γ be complex numbers. By diagonalising A, or otherwise, give necessary and sufficient conditions for the following system of linear equations over \mathbb{C} to have a solution:

$$
\begin{aligned}
a x+b y+c z & =\alpha \\
c x+a y+b z & =\beta \\
b x+c y+a z & =\gamma
\end{aligned}
$$

5. Let $n \geq 1$ and let A be the $n \times n$ matrix such that $A_{i j}=1$ if $i \neq j$ and $A_{i j}=0$ if $i=j$,

$$
A=\left(\begin{array}{ccccc}
0 & 1 & \ldots & 1 & 1 \\
1 & 0 & \ldots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \ldots & 0 & 1 \\
1 & 1 & \ldots & 1 & 0
\end{array}\right)
$$

(i) Show that $n-1$ and -1 are eigenvalues of A and find bases of the associated eigenspaces.
(ii) Find an invertible $n \times n$ matrix P such that

$$
P^{-1} A P=\left(\begin{array}{cccc}
n-1 & & & \\
& -1 & & \\
& & \ddots & \\
& & & -1
\end{array}\right)
$$

(iii) (This part may be regarded as optional.) One says that a permutation of the numbers $\{1,2, \ldots, n\}$ is a derangement if it has no fixed points. So for permutations of $\{1,2,3,4\},(12)(34)$ and (1234) are derangements, but (123) is not, as $4(123)=4$.

Let e_{n} be the number of derangements of $\{1,2, \ldots, n\}$ that are even permutations and let o_{n} be the number of derangements of $\{1,2, \ldots, n\}$ that are odd permutations. By evaluating the determinant of A in 2 different ways prove that

$$
e_{n}-o_{n}=(-1)^{n-1}(n-1)
$$

(You might first check this holds for small n, e.g. $n=2, n=3, \ldots$)

Exam style questions

1. (a) Let V and W be finite dimensional vector spaces over the real numbers and let $T: V \rightarrow W$ be a linear transformation. Define the kernel, $\operatorname{ker} T$ and the image, $\operatorname{im} T$.

Prove that $\operatorname{ker} T$ is a subspace of V and $\operatorname{im} T$ is a subspace of W.
Prove that T is one-to-one if and only if $\operatorname{ker} T=\left\{0_{V}\right\}$.
State the rank-nullity formula
Suppose that $\operatorname{dim}(V)=\operatorname{dim}(W)$. Prove that T maps V onto W if and only T is one-to-one.
(b) Let $T: V \rightarrow V$ be a linear transformation of the finite dimensional real vector space V. Show that $\operatorname{rank} T=\operatorname{rank} T^{2}$ if and only if $V=\operatorname{im} T \oplus \operatorname{ker} T$.
2. (a) Let V be a finite dimensional real vector space and let $T: V \rightarrow V$ be a linear map. Explain carefully what is meant be an eigenvalue of T and by an associated eigenvector of T.

Show that if $\lambda_{1}, \ldots, \lambda_{r}$ are distinct eigenvalues of T and v_{1}, \ldots, v_{r} are associated eigenvectors then v_{1}, \ldots, v_{r} are linearly independent.
(b) Let V be the set of all differentiable functions on \mathbb{R}. (You may assume that V is a real vector space). Let $n \geq 1$ and let U be the subspace of V spanned by the functions

$$
\{\sin m x, \cos m x: m=1 \ldots n\} .
$$

Show that differentiation defines a linear transformation from U onto itself.
Prove that if for some $n \geq 1$

$$
a_{1} \sin x+a_{2} \sin 2 x+\ldots+a_{n} \sin n x=0 \quad \forall x \in \mathbb{R}
$$

then $a_{1}=\ldots=a_{n}=0$.
3. (a) Let S be a finite subset of a vector space V. Explain what is meant by
(i) the span of S,
(ii) S is linearly independent,
(iii) S is a basis of V.

Let $n \geq 1$ and let V be the vector space of all polynomials of degree at most n. Show that if $\alpha \in \mathbb{R}$ then

$$
\{f \in V: f(\alpha)=0\}
$$

is a subspace of V, and determine its dimension.
(b) Now suppose that $n=4$. Find, with proof, a basis of V which contains bases for each of

$$
U=\left\{f: \frac{\mathrm{d}^{3} f}{\mathrm{~d} x^{3}}=0\right\} \quad \text { and } \quad W=\{f \in V: f(1)=f(2)=0\}
$$

4. (a) Let π be a permutation of the set $\{1,2, \ldots, n\}$. What is the cycle decomposition of π ? Illustrate your answer by giving the cycle decomposition of

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
5 & 3 & 2 & 1 & 8 & 9 & 7 & 4 & 6
\end{array}\right) .
$$

The conjugate by π of the permutation θ is defined to be the permutation $\pi^{-1} \theta \pi$. Let θ be the 3 -cycle $(a b c)$. Show that $\pi^{-1} \theta \pi$ is the 3 -cycle $(a \pi b \pi c \pi)$.

We say that θ and π commute if $\theta \pi=\pi \theta$. Show that θ and π commute if and only if the conjugate by π of θ is θ.
(b) Now let $n=6$ and let α be the permutation

$$
\alpha=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 1 & 5 & 4 & 6
\end{array}\right) .
$$

Express α as a product of disjoint cycles and find all permutations that commute with it. Show that each such permutation is a power of α.

Let

$$
\beta=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 1 & 5 & 6 & 4
\end{array}\right) .
$$

Is every permutation which commutes with β a power of β ?

