
Answers to first half of the vacation algebra problems
1. For α ∈ R, let Tα : R3 → R3 be the linear map defined by

Tα

 x
y
z

 =

 x + αy
y + αz

z


(i) Find the matrix representing Tα with respect to the standard basis of R3 (as both
initial and final basis).

Let B = (e1, e2, e3) be the standard basis of R3. As Tαe1 = e1, Tαe2 = αe1 + e2

and Tαe3 = αe2 + e3, the matrix representing Tα with respect to B is 1 α 0
0 1 α
0 0 1

 .

(ii) Find bases E and F for R3 such that the matrix representing Tα with respect
to E as initial basis and F as final basis is the 3× 3 identity matrix.

Being extremely unimaginative I took E = B and F = (Tαe1, Tαe2, Tαe3). It’s
easy to check that F is a basis (for any α).

(iii) Prove that Tα is diagonalisable if and only if α = 0.
The slick method is to argue that, by part (i), the only eigenvalue of Tα is 1.

(Remember that the eigenvalues of an upper triangular matrix can be read off its
diagonal.) So the only diagonal matrix that could possible represent Tα is the 3× 3-
identity matrix. But unless α = 0, Tα is clearly not the identity map.

Any argument based on showing that the 1-eigenspace for Tα is only 1-dimensional
is also more than acceptable.

2. Let V and W be a finite dimensional real vector spaces of dimensions m and n
respectively and let T : V → W be a linear map.

(i) Show that there is a basis of V , E = (e1, . . . , em) and a basis of W , F =
(f1, . . . , fn) such that if r = rankT ,

Tei =
{

fi : 1 ≤ i ≤ r
0 : r < i ≤ m

.

[Hint: Adapt the proof of the rank-nullity theorem.]
Let (v1, . . . , vk) be a basis of kerT . Extend this in any way to a basis of V ,

E = (u1, . . . , ur, v1, . . . , vk), where r + k = m. Then, by the proof of the rank-
nullity theorem, (Tu1, . . . , Tur) is a basis of im T . Extend this to a basis of W ,
F = (Tu1, . . . , Tur, w1, . . . , ws), where r + s = n.

(ii) Suppose now that E ′ is a basis of V and F ′ is a basis of W . Let A be the
matrix representing T with respect to E ′ as initial basis and F ′ as final basis. Show
that there exist invertible matrices P and Q such that

QAP−1 = J(r)

where J(r) is the n×m-matrix satisfying

J(r)ij =
{

1 : i = j and 1 ≤ i ≤ r
0 : otherwise

.
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The matrix representing T with respect to E as initial basis and F as final basis
is J(r). (This is a straight-forward check.)

Let P be the matrix of the identity transformation with respect to E ′ as initial
basis and E as final basis. (So the columns of P are the coefficients expressing each
element of E ′ in terms of the elements of E .) We write this as P =E[1V ]E ′ . Similarly
let Q =F[1V ]F ′ . We have

J(r) =F[T ]E =F[1V ]F ′F ′ [T ]E ′E ′ [1V ]E = QAP−1.

Two remarks: 1) You should be prepared to produce a proof of the rank-nullity
theorem without reference to your notes! I find that if I remember to always start
‘Take a basis for ker T ...’ the proof comes out fairly automatically.

2) We’ve shown that given any matrix A there exist invertible matrices R and S
such that RAS = J(r) for some r. In lectures you saw a more concrete proof of this
result using row and column operations.

3. (i) Suppose that U and W are vector subspaces of a vector space V . Show that
there is a basis of V containing bases for U ∩W , U and W .
[You may assume that if X is a vector subspace of the vector space Y then any basis
of X can be extend to a basis of Y .]

Let (e1, . . . , el) be a basis for the vector subspace U ∩W . We may extend this
basis to a basis (e1, . . . , el, f1, . . . , fm) of U . Independently we may extend it to a basis
(e1, . . . , el, g1, . . . , gn) of W . We expect that B = (e1, . . . , el, f1, . . . , fm, g1, . . . , gn) will
be a basis for U + W , the vector subspace of V spanned by U and W . The next two
paragraphs prove this.

First of all we check that B spans U +W . Given u ∈ U we can write u as a linear
combination of the ei and fj . Similarly given w ∈ W we can write w as a linear
combination of the ei and gk. So u + w is a linear combination of elements of B.

Linear independence is a bit more fiddly. Suppose that

l∑
i=1

λiei +
m∑

j=1

µjfj +
n∑

k=1

νkgk = 0.

Subtracting the third sum we find that

l∑
i=1

λiei +
m∑

j=1

µjfj = −
n∑

k=1

νkgk ∈ U ∩W.

Accordingly there exist some further scalars ζi such that
∑

k νkgk =
∑

i ζiei. But
together the ei and gk form a basis (the basis of W found above), so they are linearly
independent. Hence νk = 0 for all k. Substituting back we get

∑
i λiei +

∑
j µjfj = 0,

and now a similar argument shows that the λi and µj are also all 0.
If we extend B to a basis of V , we get a basis of V with the required properties.
(ii) Deduce that V = U⊕W if and only if U∩W = 0 and dim U +dim W = dim V .
Recall that, by definition, V is the direct sum of U and W (written V = U ⊕W )

if U ∩W = 0 and V = U + W .
if: Part (i) proves the identity

dim(U + W ) = dim U + dim W − dim(U ∩W ).
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So if U ∩W = 0 and dim U + dim W = dim V then we have dim(U + W ) = dim V ,
hence U + W = V . So V = U ⊕W .

only if: Given that V = U ⊕ W , we have U ∩ W = 0 and U + W = V . So
dim V = dim(U + W ) as required.

(iii) If U1, U2 and U3 are vector subspaces of a vector space V , must there be a
basis of V containing bases for each of U1, U2 and U3?

There need not. The diagram below shows 3 different 1-dimensional subspaces of
R2. Any basis of R2 containing bases for each of U1, U2 and U3 would have (at least)
3 elements, but the plane is 2-dimensional.

U1

U2

�
�

�
�

�
�

�
�

�
�
U3

This can often be a useful example/counterexample to bear in mind.

4. Let a, b and c be any 3 complex numbers, and let A =

 a b c
c a b
b c a

.

(i) Let ω = exp(2πi/3). Show that A has eigenvalues a + b + c, a + ωb + ω2c and
a + ω2b + ωc.

One can find eigenvectors for each of the given eigenvalues by inspection:

A

 1
1
1

 = (a + b + c)

 1
1
1


A

 1
ω
ω2

 = (a + ωb + ω2c)

 1
ω
ω2


A

 1
ω2

ω

 = (a + ω2b + ωc)

 1
ω2

ω

 .

(ii) Let α, β and γ be complex numbers. By diagonalising A, or otherwise, give
necessary and sufficient conditions for the following system of linear equations over
C to have a solution:

ax + by + cz = α

cx + ay + bz = β

bx + cy + az = γ.

First of all, I apologise for setting such a nasty question. Let P be the matrix whose
columns are the eigenvectors of A found above, so

P =

 1 1 1
1 ω ω2

1 ω2 ω
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and AP = PD where D is the diagonal matrix with entries a + b + c, a + ωb + ω2c
and a + ω2b + ωc.

Let z =

 α
β
γ

. Suppose there is a solution v =

 x
y
z

 to Av = z. Then

w = P−1v is a solution to Dw = P−1APw = P−1z. And conversely, given a solution
w to Dw = P−1z, we get a solution v to Av = z.

Now P−1z = 1
3

 α + β + γ
α + ω2β + ωγ
α + ωβ + ω2γ

. So by the previous paragraph, the equation

Av = z has a solution if and only if there exists scalars λ, µ and ν such that

D

 λ
µ
ν

 =

 α + β + γ
α + ω2β + ωγ
α + ωβ + ω2γ


or equivalently,

(a + b + c)λ = α + β + γ,

(a + ωb + ω2c)µ = α + ω2β + ωγ,

(a + ω2b + ωc)ν = α + ωβ + ω2γ.

Hence a necessary and sufficient condition for there to be a solution is that

a + b + c = 0 =⇒ α + β + γ = 0,

a + ωb + ω2c = 0 =⇒ α + ω2β + ωγ = 0,

a + ω2b + ωc = 0 =⇒ α + ωβ + ω2γ = 0.

5. Let n ≥ 1 and let A be the n× n matrix such that Aij = 1 if i 6= j and Aij = 0 if
i = j,

A =


0 1 . . . 1 1
1 0 . . . 1 1
...

...
. . .

...
...

1 1 . . . 0 1
1 1 . . . 1 0

 .

(i) Show that n−1 and −1 are eigenvalues of A and find bases of the associated
eigenspaces.

Let (e1, . . . , en) be the standard basis of Rn. One finds that A(e1 + . . . + en) =
(n−1)(e1 + . . . + en) and A(e1 − ei) = −(e1 − ei). So the −1 eigenspace is n−1
dimensional, with basis (e1−e2, . . . , e1−en) and the (n−1)-eigenspace is 1-dimensional.

(ii) Find an invertible n× n matrix P such that

P−1AP =


n−1

−1
. . .

−1

 .

As usual we take for P a matrix whose columns are a basis of eigenvectors for A.
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(iii) (This part may be regarded as optional.) One says that a permutation of the
numbers {1, 2, . . . , n} is a derangement if it has no fixed points. So for permutations
of {1, 2, 3, 4}, (12)(34) and (1234) are derangements, but (123) is not, as 4(123) = 4.

Let en be the number of derangements of {1, 2, . . . , n} that are even permutations
and let on be the number of derangements of {1, 2, . . . , n} that are odd permutations.
By evaluating the determinant of A in 2 different ways prove that

en − on = (−1)n−1(n−1).

(You might first check this holds for small n, e.g. n = 2, n = 3, . . .)
If n = 2 then there is just 1 derangement, (12) and it is odd. So e2 − o2 = −1. If

n = 3 then there are 2 derangements, (123) and (132) both even, so e3 − o3 = 2. If
n = 4 there are 9 derangements, the 6 4-cycles and the 3 double-transpositions. So
e4 − o4 = 3− 6 = −3.

The determinant of a diagonal matrix is just the product of the diagonal entries.
Hence det A = detP−1AP = (−1)(n−1)(n−1).

On the other hand, we can attempt to evaluate the determinant of A by working
directly from the definition:

det A =
∑
σ∈Sn

sgn(σ)A1 1σ . . . An nσ.

If σ ∈ Sn is not a derangement, i.e. there is some m such that mσ = m, the contri-
bution from σ in this sum is 0 (because Amm = 0). If σ is a derangement then its
contribution is just sgn(σ). So we count +1 for each even derangement and −1 for
each odd derangement. Hence

(−1)(n−1)(n−1) = det A = en − on.

5


