Answers to first half of the vacation algebra problems

1. For $\alpha \in \mathbb{R}$, let $T_{\alpha} : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined by

$$T_{\alpha} \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \left(\begin{array}{c} x + \alpha y \\ y + \alpha z \\ z \end{array} \right)$$

(i) Find the matrix representing T_{α} with respect to the standard basis of \mathbb{R}^3 (as both initial and final basis).

Let $\mathcal{B} = (e_1, e_2, e_3)$ be the standard basis of \mathbb{R}^3 . As $T_{\alpha}e_1 = e_1$, $T_{\alpha}e_2 = \alpha e_1 + e_2$ and $T_{\alpha}e_3 = \alpha e_2 + e_3$, the matrix representing T_{α} with respect to \mathcal{B} is

$$\left(\begin{array}{rrrr}1&\alpha&0\\0&1&\alpha\\0&0&1\end{array}\right).$$

(ii) Find bases \mathcal{E} and \mathcal{F} for \mathbb{R}^3 such that the matrix representing T_{α} with respect to \mathcal{E} as initial basis and \mathcal{F} as final basis is the 3×3 identity matrix.

Being extremely unimaginative I took $\mathcal{E} = \mathcal{B}$ and $\mathcal{F} = (T_{\alpha}e_1, T_{\alpha}e_2, T_{\alpha}e_3)$. It's easy to check that \mathcal{F} is a basis (for any α).

(iii) Prove that T_{α} is diagonalisable if and only if $\alpha = 0$.

The slick method is to argue that, by part (i), the only eigenvalue of T_{α} is 1. (Remember that the eigenvalues of an upper triangular matrix can be read off its diagonal.) So the only diagonal matrix that could possible represent T_{α} is the 3 × 3-identity matrix. But unless $\alpha = 0$, T_{α} is clearly not the identity map.

Any argument based on showing that the 1-eigenspace for T_{α} is only 1-dimensional is also more than acceptable.

2. Let V and W be a finite dimensional real vector spaces of dimensions m and n respectively and let $T: V \to W$ be a linear map.

(i) Show that there is a basis of V, $\mathcal{E} = (e_1, \ldots, e_m)$ and a basis of W, $\mathcal{F} = (f_1, \ldots, f_n)$ such that if $r = \operatorname{rank} T$,

$$Te_i = \begin{cases} f_i : 1 \le i \le r \\ 0 : r < i \le m \end{cases}.$$

[*Hint: Adapt the proof of the rank-nullity theorem.*]

Let (v_1, \ldots, v_k) be a basis of ker *T*. Extend this in any way to a basis of *V*, $\mathcal{E} = (u_1, \ldots, u_r, v_1, \ldots, v_k)$, where r + k = m. Then, by the proof of the ranknullity theorem, (Tu_1, \ldots, Tu_r) is a basis of im *T*. Extend this to a basis of *W*, $\mathcal{F} = (Tu_1, \ldots, Tu_r, w_1, \ldots, w_s)$, where r + s = n.

(ii) Suppose now that \mathcal{E}' is a basis of V and \mathcal{F}' is a basis of W. Let A be the matrix representing T with respect to \mathcal{E}' as initial basis and \mathcal{F}' as final basis. Show that there exist invertible matrices P and Q such that

$$QAP^{-1} = J(r)$$

where J(r) is the $n \times m$ -matrix satisfying

$$J(r)_{ij} = \begin{cases} 1 : i = j \text{ and } 1 \le i \le r \\ 0 : otherwise \end{cases}$$

The matrix representing T with respect to \mathcal{E} as initial basis and \mathcal{F} as final basis is J(r). (This is a straight-forward check.)

Let P be the matrix of the identity transformation with respect to \mathcal{E}' as initial basis and \mathcal{E} as final basis. (So the columns of P are the coefficients expressing each element of \mathcal{E}' in terms of the elements of \mathcal{E} .) We write this as $P =_{\mathcal{E}}[1_V]_{\mathcal{E}'}$. Similarly let $Q =_{\mathcal{F}}[1_V]_{\mathcal{F}'}$. We have

$$J(r) =_{\mathcal{F}} [T]_{\mathcal{E}} =_{\mathcal{F}} [1_V]_{\mathcal{F}'\mathcal{F}'} [T]_{\mathcal{E}'\mathcal{E}'} [1_V]_{\mathcal{E}} = QAP^{-1}.$$

Two remarks: 1) You should be prepared to produce a proof of the rank-nullity theorem without reference to your notes! I find that if I remember to always start 'Take a basis for ker T ...' the proof comes out fairly automatically.

2) We've shown that given any matrix A there exist invertible matrices R and S such that RAS = J(r) for some r. In lectures you saw a more concrete proof of this result using row and column operations.

3. (i) Suppose that U and W are vector subspaces of a vector space V. Show that there is a basis of V containing bases for $U \cap W$, U and W.

[You may assume that if X is a vector subspace of the vector space Y then any basis of X can be extend to a basis of Y.]

Let (e_1, \ldots, e_l) be a basis for the vector subspace $U \cap W$. We may extend this basis to a basis $(e_1, \ldots, e_l, f_1, \ldots, f_m)$ of U. Independently we may extend it to a basis $(e_1, \ldots, e_l, g_1, \ldots, g_n)$ of W. We expect that $\mathcal{B} = (e_1, \ldots, e_l, f_1, \ldots, f_m, g_1, \ldots, g_n)$ will be a basis for U + W, the vector subspace of V spanned by U and W. The next two paragraphs prove this.

First of all we check that \mathcal{B} spans U + W. Given $u \in U$ we can write u as a linear combination of the e_i and f_j . Similarly given $w \in W$ we can write w as a linear combination of the e_i and g_k . So u + w is a linear combination of elements of \mathcal{B} .

Linear independence is a bit more fiddly. Suppose that

$$\sum_{i=1}^{l} \lambda_i e_i + \sum_{j=1}^{m} \mu_j f_j + \sum_{k=1}^{n} \nu_k g_k = 0.$$

Subtracting the third sum we find that

$$\sum_{i=1}^{l} \lambda_i e_i + \sum_{j=1}^{m} \mu_j f_j = -\sum_{k=1}^{n} \nu_k g_k \in U \cap W.$$

Accordingly there exist some further scalars ζ_i such that $\sum_k \nu_k g_k = \sum_i \zeta_i e_i$. But together the e_i and g_k form a basis (the basis of W found above), so they are linearly independent. Hence $\nu_k = 0$ for all k. Substituting back we get $\sum_i \lambda_i e_i + \sum_j \mu_j f_j = 0$, and now a similar argument shows that the λ_i and μ_j are also all 0.

If we extend \mathcal{B} to a basis of V, we get a basis of V with the required properties.

(ii) Deduce that $V = U \oplus W$ if and only if $U \cap W = 0$ and $\dim U + \dim W = \dim V$.

Recall that, by definition, V is the direct sum of U and W (written $V = U \oplus W$) if $U \cap W = 0$ and V = U + W.

if: Part (i) proves the identity

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W).$$

So if $U \cap W = 0$ and dim $U + \dim W = \dim V$ then we have dim $(U + W) = \dim V$, hence U + W = V. So $V = U \oplus W$.

only if: Given that $V = U \oplus W$, we have $U \cap W = 0$ and U + W = V. So $\dim V = \dim(U + W)$ as required.

(iii) If U_1 , U_2 and U_3 are vector subspaces of a vector space V, must there be a basis of V containing bases for each of U_1 , U_2 and U_3 ?

There need not. The diagram below shows 3 different 1-dimensional subspaces of \mathbb{R}^2 . Any basis of \mathbb{R}^2 containing bases for each of U_1 , U_2 and U_3 would have (at least) 3 elements, but the plane is 2-dimensional.

This can often be a useful example/counterexample to bear in mind.

4. Let a, b and c be any 3 complex numbers, and let $A = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$.

(i) Let $\omega = \exp(2\pi i/3)$. Show that A has eigenvalues a + b + c, $a + \omega b + \omega^2 c$ and $a + \omega^2 b + \omega c$.

One can find eigenvectors for each of the given eigenvalues by inspection:

$$A\begin{pmatrix}1\\1\\1\end{pmatrix} = (a+b+c)\begin{pmatrix}1\\1\\1\end{pmatrix}$$
$$A\begin{pmatrix}1\\\omega\\\omega^{2}\end{pmatrix} = (a+\omega b+\omega^{2}c)\begin{pmatrix}1\\\omega\\\omega^{2}\end{pmatrix}$$
$$A\begin{pmatrix}1\\\omega^{2}\\\omega\end{pmatrix} = (a+\omega^{2}b+\omega c)\begin{pmatrix}1\\\omega^{2}\\\omega\end{pmatrix}.$$

(ii) Let α , β and γ be complex numbers. By diagonalising A, or otherwise, give necessary and sufficient conditions for the following system of linear equations over \mathbb{C} to have a solution:

$$ax + by + cz = \alpha$$

$$cx + ay + bz = \beta$$

$$bx + cy + az = \gamma$$

First of all, I apologise for setting such a nasty question. Let P be the matrix whose columns are the eigenvectors of A found above, so

$$P = \left(\begin{array}{rrr} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{array}\right)$$

and AP = PD where D is the diagonal matrix with entries a + b + c, $a + \omega b + \omega^2 c$ and $a + \omega^2 b + \omega c$.

Let $z = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$. Suppose there is a solution $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ to Av = z. Then

 $w = P^{-1}v$ is a solution to $Dw = P^{-1}APw = P^{-1}z$. And conversely, given a solution w to $Dw = P^{-1}z$, we get a solution v to Av = z.

Now $P^{-1}z = \frac{1}{3} \begin{pmatrix} \alpha + \beta + \gamma \\ \alpha + \omega^2 \beta + \omega \gamma \\ \alpha + \omega \beta + \omega^2 \gamma \end{pmatrix}$. So by the previous paragraph, the equation Av = z has a solution if and only if there exists scalars λ , μ and ν such that

$$D\left(\begin{array}{c}\lambda\\\mu\\\nu\end{array}\right) = \left(\begin{array}{c}\alpha+\beta+\gamma\\\alpha+\omega^2\beta+\omega\gamma\\\alpha+\omega\beta+\omega^2\gamma\end{array}\right)$$

or equivalently,

$$\begin{aligned} (a+b+c)\lambda &= \alpha + \beta + \gamma, \\ (a+\omega b+\omega^2 c)\mu &= \alpha + \omega^2\beta + \omega\gamma, \\ (a+\omega^2 b+\omega c)\nu &= \alpha + \omega\beta + \omega^2\gamma. \end{aligned}$$

Hence a necessary and sufficient condition for there to be a solution is that

$$\begin{aligned} a+b+c &= 0 \implies \alpha+\beta+\gamma = 0, \\ a+\omega b+\omega^2 c &= 0 \implies \alpha+\omega^2\beta+\omega\gamma = 0, \\ a+\omega^2 b+\omega c &= 0 \implies \alpha+\omega\beta+\omega^2\gamma = 0. \end{aligned}$$

5. Let $n \ge 1$ and let A be the $n \times n$ matrix such that $A_{ij} = 1$ if $i \ne j$ and $A_{ij} = 0$ if i = j,

	$\begin{pmatrix} 0 \end{pmatrix}$	1		1	1	
	1	0		1	1	
A =	:	÷	•••	÷	÷	
	1	1		0	1	
	1	1		1	0 /	

(i) Show that n-1 and -1 are eigenvalues of A and find bases of the associated eigenspaces.

Let (e_1, \ldots, e_n) be the standard basis of \mathbb{R}^n . One finds that $A(e_1 + \ldots + e_n) = (n-1)(e_1 + \ldots + e_n)$ and $A(e_1 - e_i) = -(e_1 - e_i)$. So the -1 eigenspace is n-1 dimensional, with basis $(e_1 - e_2, \ldots, e_1 - e_n)$ and the (n-1)-eigenspace is 1-dimensional.

(ii) Find an invertible $n \times n$ matrix P such that

$$P^{-1}AP = \begin{pmatrix} n-1 & & \\ & -1 & & \\ & & \ddots & \\ & & & -1 \end{pmatrix}.$$

As usual we take for P a matrix whose columns are a basis of eigenvectors for A.

(iii) (This part may be regarded as optional.) One says that a permutation of the numbers $\{1, 2, ..., n\}$ is a derangement if it has no fixed points. So for permutations of $\{1, 2, 3, 4\}$, (12)(34) and (1234) are derangements, but (123) is not, as 4(123) = 4.

Let e_n be the number of derangements of $\{1, 2, ..., n\}$ that are even permutations and let o_n be the number of derangements of $\{1, 2, ..., n\}$ that are odd permutations. By evaluating the determinant of A in 2 different ways prove that

$$e_n - o_n = (-1)^{n-1}(n-1)$$

(You might first check this holds for small n, e.g. n = 2, n = 3, ...)

If n = 2 then there is just 1 derangement, (12) and it is odd. So $e_2 - o_2 = -1$. If n = 3 then there are 2 derangements, (123) and (132) both even, so $e_3 - o_3 = 2$. If n = 4 there are 9 derangements, the 6 4-cycles and the 3 double-transpositions. So $e_4 - o_4 = 3 - 6 = -3$.

The determinant of a diagonal matrix is just the product of the diagonal entries. Hence det $A = \det P^{-1}AP = (-1)^{(n-1)}(n-1)$.

On the other hand, we can attempt to evaluate the determinant of A by working directly from the definition:

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A_{1\,1\sigma} \dots A_{n\,n\sigma}.$$

If $\sigma \in S_n$ is not a derangement, i.e. there is some m such that $m\sigma = m$, the contribution from σ in this sum is 0 (because $A_{mm} = 0$). If σ is a derangement then its contribution is just $\operatorname{sgn}(\sigma)$. So we count +1 for each even derangement and -1 for each odd derangement. Hence

$$(-1)^{(n-1)}(n-1) = \det A = e_n - o_n.$$