
Some answers to vacation questions.
If a question is pure bookwork then I have left you to look up the proof in notes

or a book. Except for question 10 (which had a misprint I thought I should clear up)
I haven’t given answers to the optional questions; ask me if you want any help with
them.

1. True or false: (give brief proofs or counterexamples as appropriate)
(i) A convergent sequence is bounded.
True. Let (an) be a convergent sequence. Take ε = 1 in the definition of conver-

gence to obtain
∃a ∈ R ∃N ∈ N ∀n ≥ N |an − a| < 1.

From this it follows that |an| ≤ |a|+ 1 if n ≥ N . To get an overall upper bound just
take A = max(a1, a2, . . . , aN−1, |a|+ 1).

(ii) A bounded sequence is convergent.
False. For example an = (−1)n.
(iii) If the sequence (an) does not tend to infinity then there is a constant K such

that |an| < K for all n ≥ 1.
False. Remember we say that the sequence (an) tends to infinity if given any

K ∈ R there exists an N ∈ N such that |an| > K for all n ≥ N . By this definition
the sequence

an =

{
0 n is even
n n is odd

does not tend to infinity. But |a2m| = 2m so the sequence is not bounded.
(iv) If X and Y are non-empty sets of real numbers and x < y for all x ∈ X and

y ∈ Y then supX and inf Y exist and supX ≤ inf Y .
True. Take any y ∈ Y . By hypothesis x ≤ y for all x ∈ X so X is bounded above.

By the completeness property of R, X has a supremum, sup X. A similar argument
shows that Y has an infimum. Now supX < y for all y ∈ Y so sup X < inf Y . Here
we used the (often helpful) result that A ≤ y for all y ∈ Y implies A ≤ inf Y .

Further exercise: Can the conclusion be strengthened to supX < inf Y ?
(v) A subsequence of a convergent sequence is convergent, and has the same limit

as the original sequence.
True. Bookwork.
(vi) If an > 0 for all n and an → 0 as n →∞ then 1/an →∞ as n →∞.
True. We want to show that for all K > 0 there exists N ∈ N such that |1/an| >

K for all n ∈ N . All we have to play with is the hypothesis that an → 0 as n →∞, i.e.

∀ε > 0 ∃N ∈ N ∀n ≥ N |an| < ε.

So if we put ε = 1/K we will obtain a suitable N .

2. (i) Let (an) be a bounded monotone sequence of real numbers. Prove that (an) is
convergent.

Bookwork. By replacing an with −an if necessary we may assume that (an) is in-
creasing. Now show that an converges to sup {an : n ∈ N} by using the approximation
property.
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(ii) Let b > 1 be a fixed real number. We define a sequence (an) inductively by
taking

a0 = b, an+1 =
an

2
+

b

2an
for n ≥ 0.

Prove that (an) converges. Show that if β = limn→∞ an then β > 0 and β2 = b.
Straightforward inductive arguments show that (a) an is positive, (b) a2

n ≥ b and
(c) an+1 ≤ an for all n. So the sequence (an) is decreasing and bounded below. By
part (a) it must converge to some β > 0. As limn→∞ an = limn→∞ an+1, the limit β
must satisfy β = β/2 + b/2β. It follows that β2 = b.

(iii) (?) Show that if an ≥ 1 and |an − β| < ε then |an+1 − β| < ε2/2. Deduce
that if for our initial guess a0 we pick the natural number whose square is nearest to
b then |an − β| < 1/22n−1). Can an = β for any n?

The first part is just a calculation:

|an+1 − β| =
∣∣∣∣an

2
+

b

2an
− β

∣∣∣∣
= (an − β)2/2an

< ε2/2.

Now |a0 − β| < 1, as otherwise there would be a natural number nearer β than a0,
and its square would be nearer b than a2

0. The error estimate given in the question
now follows by induction on n.

3. (i) State the Bolzano-Weierstrass Theorem concerning sequences of real numbers.
The Bolzano-Weierstass Theorem states that any bounded sequence of real num-

bers has a convergent subsequence. (There is an analogous version for sequences of
complex numbers.)

(ii) What does it mean to say that a sequence is a Cauchy sequence? Prove that
a sequence of real numbers is a Cauchy sequence if and only if it converges.

Bookwork.
(iii) Deduce that if the series

∑∞
r=1 ar converges absolutely then it converges. Give

an example to show that the converse of this result is false.
The first part is bookwork. The series

∑∞
r=1 ar where ar = (−1)r/

√
r is convergent

(by the alternating series test), but not absolutely convergent.

4. [Based on Q1 1999 Mods Analysis.] Let (an) be a sequence of real numbers.
What is meant by the statement that (an) is convergent?

Let (an) and (bn) be sequences converging to the limits l and m respectively. Show
that:

(i) The sequence (an + bn) converges to l + m.
(ii) The sequence (anbn) converges to lm.
(iii) If an ≤ bn for all n then l ≤ m.
Yet more bookwork.
Give an example to show that if an < bn for all n then it is not neccesarily true

that l < m.
One could take an = 0 for all n and bn = 1/n. The moral of this example is that

limits don’t in general preserve ‘sharp’ inequalities, i.e. inequalities involving < or >
signs.
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Now suppose that l = 0. Define a new sequence (cn) by cn = 1
n

∑n
r=1 ar. Show

that (cn) also converges to 0.
Fix ε > 0. Let |ar| < ε for all r ≥ N . If n ≥ N then∣∣∣∣∣ 1n

n∑
r=1

ar

∣∣∣∣∣ ≤ 1
n

n∑
r=1

|ar| =
1
n

N∑
r=1

|ar|+
1
n

n∑
r=N+1

|ar| ≤
1
n

N∑
r=1

|ar|+
n−N

n
ε.

As n tends to ∞ the first summand tends to 0, and the second is bounded by ε. So
limn→∞ cn = 0.

5. [Based on Q4 2001 Mods Analysis] State the comparison test and derive the
integral test for a series of real numbers

∑∞
r=1 ar.

It’s important to include all the neccessary conditions in the integral test: let
f : R → R be a decreasing function that takes values in the positive real numbers.
The integral test states that the series with nth term f(n) converges if and only if
the integral ∫ ∞

1
f(x)dx

converges.
Prove that the series

∑∞
r=1 r−α converges if α > 1 and diverges if α ≤ 1. Deter-

mine whether the following series converge or diverge:

∞∑
r=2

1
r log r

,

∞∑
r=1

1
r

sin
1
r
.

The first part follows from an application of the integral test with the function
f(x) = x−α. For the next part apply the integral test with the function f(x) =
1/x log x, which has integral∫ t

2

dx

x log x
= log log t− log log 2.

For the last one use the inequality sinx ≤ x, which is valid for all x ≥ 0 to get
n∑

r=1

1
r

sin
1
r
≤

n∑
r=1

1
r2

.

The comparison test now shows that the series converges.

9. (?) Let α > 0 be an irrational number. Show that given N > 0 there exist natural
numbers m and n such that n ≤ N and∣∣∣α− m

n

∣∣∣ <
1

nN

[Hint: let {x} denote the fractional part of x ∈ R. Apply the pigeonhole principle to
the N + 1 numbers 0, {α}, {2α}, . . ., {Nα}.] Deduce that for any ε > 0 there exist
points (m,n) ∈ N× N lying within a distance ε of the line y = αx.

The numbers 0, {α}, {2α}, . . ., {Nα} all lie between 0 and 1. So one of the
disjoint intervals (0, 1/N), (1/N, 2/N), . . ., ((N − 1)/N, 1) must contain 2 of them.
(We don’t need to worry about endpoints as we supposed that α was irrational.) If
both {rα} and {sα} appear in one such interval then there is an integer m such that

|rα− sα−m| < 1
N

.
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Put r − s = n and divide through to obtain∣∣∣α− m

n

∣∣∣ <
1

Nn
.

Fix ε > 0. Choose N > 1/ε. We have shown that there exist m,n ∈ N such that
|α−m/n| < ε/n. Multiplying by n gives |nα−m| < ε, so the point (m,n) lies within
ε of the line y = mα.
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