Further exercises for a5 algebra

Questions 1 and 2 are there if you would like some revision of normal subgroups, but otherwise optional. If time is pressing, question 5 may also be regarded as optional. Question 3 is intended to clarify part of last week's sheet.

1. (Based on algebra moderations 2000 Q9). What are the elements and what is the definition of multiplication in the quotient G / N of a group G by a normal subgroup N ? State carefully (without proof) the isomorphism theorem for groups.

Let G be the set of all 2×2 real matrices of the form $\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right)$ with $a \neq 0$, and N the set of matrices in G with $a=1$.
(a) Prove that G is a group under matrix multiplication.
(b) Define $\phi: G \rightarrow \mathbb{R}^{\star}$ by $\phi\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)=a$. (Here \mathbb{R}^{\star} is the multiplicative group of non-zero real numbers.) Prove that ϕ is a group homomorphism.
(c) Deduce that N is a normal subgroup of G and that G / N is isomorphic to \mathbb{R}^{\star}. Describe explicitly the elements of G / N.
(d) Are there any other normal subgroups of G ?
2. Throught this question G is a finite group.
(a) Explain what it means to say that G is a simple group.
(b) Prove Cayley's theorem, that if G has order n, and $\rho: G \rightarrow S_{n}$ is the map sending each $g \in G$ to the permutation ρ_{g} it induces on G, then $G \cong \operatorname{im} \rho$.
(c) Suppose that the order of G is even. Show that G has an element of order 2. [Hint: one approach is to consider a partitioning of G into subsets of the form $\left\{g, g^{-1}\right\}$.]
(d) Suppose that G has order $2 m$ where m is odd. Prove that if $t \in G$ has order 2 then ρ_{t} is an odd permutation of the elements of G. Hence prove that G has a normal subgroup of order m.
3. In this question we consider various groups of transformations of the plane, \mathbb{R}^{2}. Let $O_{2}(\mathbb{R})$ be the group of all distance-preserving linear maps from \mathbb{R}^{2} to itself. Let $S O_{2}(\mathbb{R})=\left\{T \in O_{2}(\mathbb{R}): \operatorname{det} T=1\right\}$. Let $T_{a}: \mathbb{R} \rightarrow \mathbb{R}$ be translation by $a \in \mathbb{R}^{2}$, i.e. $T_{a}(x)=a+x$. Let $T=\left\{T_{a}: a \in \mathbb{R}^{2}\right\}$ be the group of all translations. Let $E_{2}(\mathbb{R})$ be the group of isometries of the plane generated by $O_{2}(\mathbb{R})$ and $T_{2}(\mathbb{R})$.
(a) Show that if $x \in O_{2}(\mathbb{R})$ is represented by the matrix A with respect to the standard basis of \mathbb{R}^{2} then $A^{t r} A=A A^{t r}=I$.
(b) Show that $\mathrm{SO}_{2}(\mathbb{R})$ is a normal subgroup of $O_{2}(\mathbb{R})$. Describe geometrically the cosets of $\mathrm{SO}_{2}(\mathbb{R})$ in $\mathrm{O}_{2}(\mathbb{R})$.
(c) Prove that T is a normal subgroup of $E_{2}(\mathbb{R})$. Hence show that

$$
E_{2}(\mathbb{R})=\left\{T_{a} S: S \in O_{2}(\mathbb{R}), a \in \mathbb{R}^{2}\right\}
$$

Use this to give a rigorous proof that $\operatorname{Stab}_{E_{2}(\mathbb{R})}(0)=O_{2}(\mathbb{R})$.
4. Let G be a group of order p^{a} for some prime p. By considering the orbits in the action of G on itself by conjugacy, show that the centre of G has order at least p. [The centre of a group G is $\{g \in G: x g=g x \forall x \in G\}$.]
5. (Based on a3 algebra 2000 Q 2). Let G be a non-trivial finite group of rotations of \mathbb{R}^{3}. Let P be the set of points of the unit sphere that are fixed by some non-identity element of G.
(a) Show that if $a \in P$ and $x \in G$ then the image of a under x lies in P.
(b) Prove that $|P|$ is an even integer with $2 \leq|P| \leq 2(|G|-1)$.
(c) Let k be the number of orbits of G on P. Prove that $(k-2)|G|=|P|-2$.
[Hint: use Burnside's lemma.] Deduce that $2 \leq k \leq 3$.
(d) Show that if $|G|$ is odd then $|P|=k=2$ and all non-identity elements of G have the same axis.
(e) Give an example where $k=3$.

