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PREFACE

In Autumn 2015 I gave a 10 lecture course on symmetric functions
at Royal Holloway, University of London, following a slightly uncon-
ventional path that emphasised bijective and involutive proofs. This
is an expanded version of the lecture notes. Subsections marked ? are
not logically essential. A recurring theme is the combinatorial and al-
gebraic meaning of the transition matrices between the various bases of
the ring of symmetric functions. For example:

Elementary to monomial Gale–Ryser Theorem §1.4 and §5.2
Schur to monomial Kostka Numbers (1.11) and Q24
Schur to power sum Symmetric group characters §5.5
Power sum to monomial Polya’s Cycle Index Theorem §5.7

Outline. In §1 the families of elementary, complete homogeneous and power sum
symmetric functions are defined. Schur functions are defined combinatorially, us-
ing semistandard tableaux, and shown to be symmetric by the Bender–Knuth in-
volution. Motivation comes from combinatorial results including the Gale–Ryser
Theorem, MacMahon’s Master Theorem, and the Cycle Index Formula for the
symmetric group. The ring of symmetric functions is defined formally and then
shown to be an inverse limit of the graded rings of symmetric polynomials.

In §2 the Jacobi–Trudi Identity is proved ‘by sufficiently general example’ using
a special case of an involution due to Lindström and Gessel–Viennot. This is now
a standard proof: it may be found in [14, §7.16] or [13, §4.5].

In §3 we switch focus to antisymmetric polynomials, and present the elegant in-
volutive proofs in [8] of the Pieri, Young and Murnaghan–Nakayama Rules using
Loehr’s abacus model. A textbook account may be found in [9]. These are results
on the Schur polynomials, defined as a quotient of two antisymmetric determi-
nants, so do not obviously relate to the Schur functions already defined. In §4 we
establish the equivalence of the two definitions using the Lascoux–Schützenberger
involution (originally defined in [7]).

In §5 we unify the results so far using the Hall inner product and the ω involu-
tion on the ring of symmetric functions. We then prove the key properties of the
characteristic isometry, relating class functions of symmetric groups and symmet-
ric polynomials and apply it to prove Pólya’s Cycle Index Formula.
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The Jacobi–Trudi formula and the Lascoux–Schützenberger involution extend
to Schur functions labelled by skew partitions. This generality adds considerably
to their utility, but appeared excessive in the early lectures. It was assumed in
the final lecture, where I used the Lascoux–Schützenberger involution to give a
proof of the Littlewood–Richardson Rule. The proof is given as a series of ques-
tions in §6, starting with Question 26. Most of these questions are on well-known
results or proofs: possible exceptions are Question 7 (generalized derangements),
Question 13 (an easy way to go wrong in the proof of the Jacobi–Trudi Identity)
and Question 21 (an involutive proof of the Murnaghan–Nakayama Rule). Hints,
references or solutions for all the questions are given in the final section.

Comments. Comments are very welcome. In particular I gratefully ac-
knowledge extremely detailed comments and corrections from Darij
Grinberg, sent over several years, to earlier versions of these notes. I
also thank Eoghan McDowell for helpful comments and corrections. Of
course I have full responsibility for the remaining errors.

1. INTRODUCTION: DEFINITIONS AND MOTIVATION

Lecture 1 1.1. Preliminary definitions. The following definitions are standard.
Note in particular that partitions have infinitely many parts, all but
finitely many of which are zero. Permutations act on the right.

Compositions and partitions. A composition of n ∈ N0 is an infinite se-
quence (α1, α2, . . .) such that αi ∈ N0 for all i and α1 + α2 + · · · = n.
(The term ‘weak composition’ is also used in the literature.) The se-
quence elements are called parts. By this definition, there is a unique
composition of 0, which we denote ∅. If α 6= ∅, let `(α) be the maxi-
mum r such that αr 6= 0 and let `(∅) = 0. If `(α) ≤ N then we write
α = (α1, . . . , αN). A composition α is a partition of n if α1 ≥ α2 ≥ . . . and
α1 + α2 + · · · = n. We write α |= n to indicate that α is a composition
of n and λ ` n to indicate that λ is a partition of n.

It is often convenient to use exponents to indicate multiplicities of
parts: thus (mam , . . . , 2a2 , 1a1) denotes the partition with exactly aj parts
equal to j, for each j ∈ {1, . . . , m}. For example,

(4, 4, 2, 1, 1, 1, 0, . . .) = (4, 4, 2, 1, 1, 1) = (42, 30, 21, 13).

The Young diagram [λ] of a partition λ is the set {(i, j) : i, j ∈ N, 1 ≤
i ≤ `(λ), 1 ≤ j ≤ λi}. We represent Young diagrams by diagrams, such
as the one shown below for (4, 2, 1, 1):

.

The conjugate of a partition λ is the partition λ′ defined by

λ′j = |{i : λi ≥ j}|.



3

By definition λ′j = r if and only if λ has exactly r parts of size j or more,
or equivalently, if and only if column j of [λ] has length r. Thus [λ′]
is obtained from [λ] by reflection in the main diagonal. In particular
λ′′ = λ for any partition λ.

Orders on partitions. The dominance order on partitions of n, denoted �,
is defined by λ � µ if and only if

λ1 + · · ·+ λc ≥ µ1 + · · ·+ µc

for all c ∈ N. It is a partial order: for example (3, 1, 1, 1) and (2, 2, 2)
are incomparable. It is usually the correct order to use when working
with symmetric functions or symmetric groups. The lexicographic order,
denoted >, is defined by λ > µ if and only if λ1 = µ1, . . . , λc−1 = µc−1
and λc > µc for some c. It is a total order refining the dominance order.
(The word ‘refining’ is mathematically correct, but may give the wrong
impression: more precise information comes from using the dominance
order.)

Symmetric group. Let Sym(X) denote the symmetric group on a set X.
Let Symn = Sym({1, . . . , n}). In these notes permutations act on the
right. For example, the composition of the cycles (12) and (123) in the
symmetric group Sym3 is (12)(123) = (13), and the image of 1 under
the permutation (12) is 1(12) = 2.

1.2. Gale–Ryser Theorem. We begin with a combinatorial result. An
a × b matrix X with entries in C has row sums (∑b

j=1 Xij)i∈{1,...,a} and
column sums (∑a

i=1 Xij)j∈{1,...,b}. A matrix is 0-1 if all its entries are either
0 or 1.

Theorem 1.1 (Gale–Ryser). Let λ and µ be partitions of n. There is a 0-1
matrix X with row sums λ and column sums µ if and only if λ′ � µ.

For example, take λ = (4, 1, 1), so λ′ = (3, 1, 1, 1). If µ = (2, 2, 1, 1)
then a suitable 0-1 matrix is 1 1 1 1

1 0 0 0
0 1 0 0


while if µ = (2, 2, 2) then no such matrix exists.

By Question 2, we have λ′ � µ if and only if λ � µ′. The condition in
the Gale–Ryser Theorem is therefore symmetric with respect to λ and µ,
as expected.

Proof that the Gale–Ryser condition is necessary. Let a = `(λ) and let b =
`(µ). Suppose that X is an a× b matrix with row sums λ and column
sums µ. Think of (λ1, . . . , λa) as the sizes of a vehicles, and (µ1, . . . , µb)
as the sizes of b families. Imagine putting someone from family j into
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vehicle i if and only if Xij = 1. We then have a way to dispatch the fami-
lies so that no members of the same family share a vehicle. Consider the
µ1 + · · ·+ µk people in the first k families. They occupy at most k seats
in each vehicle, so, looking at the first k columns of the Young diagram
of [λ], we see that λ′1 + · · ·+ λ′k ≥ µ1 + · · ·+ µk, as required. �

We will shortly use this result to relate elementary symmetric func-
tions and monomial symmetric functions. We later use symmetric func-
tions to prove that the Gale–Ryser condition is sufficient: see Lemma 5.4.
Constructive proofs also exist: see Question 11.

1.3. The ring of symmetric functions Λ. Given a composition α of
n, define the monomial xα = xα1

1 xα2
2 . . . of degree n. These monomials

should be regarded purely formally for the moment. For each n ∈ N0
define Ĉ[x1, x2, . . .]n to be the C-vector space of all formal infinite C-
linear combinations of the xα, for α a composition of n. In symbols

Ĉ[x1, x2, . . .]n = {∑
α|=n

cαxα : cα ∈ C}.

Note that x∅ = 1, so Ĉ[x1, x2, . . .]0 = C. Let

Ĉ[x1, x2, . . .] =
∞⊕

n=0
Ĉ[x1, x2, . . .]n.

Then Ĉ[x1, x2, . . .] is a ring, graded by degree, with product defined by
formal bilinear extension of xαxβ = xα+β, where α + β is the composi-
tion defined by (α + β)i = αi + βi for each i ∈ N. (The hat is included
to distinguish Ĉ[x1, x2, . . .] from the polynomial ring in the variables
x1, x2 . . . , which it properly contains. See §1.7 below.)

The symmetric group Sym(N) acts as a group of unital C-algebra
isomorphisms of Ĉ[x1, x2, . . .] by xiσ = xiσ. That is, the action of each
σ ∈ Sym(N) sends the unit element 1 is sent to itself, and its action
respects products and all well-defined infinite linear combinations. We
define

Λ = Ĉ[x1, x2, . . .]Sym(N)

to be the set of fixed points. Thus f ∈ Λ if and only if f σ = f for all
σ ∈ Sym(N). If f , g ∈ Ĉ[x1, x2, . . .] then ( f g)σ = ( f σ)(gσ). Hence
Λ is a subring of Ĉ[x1, x2, . . .], again graded by degree. Setting Λn =

Λ ∩ Ĉ[x1, x2, . . .]n, an equivalent statement of this grading is that Λ =⊕∞
n=0 Λn. The elements of Λn are called symmetric functions of degree n.

For example, a basis for Λ3 is

x3
1 + x3

2 + · · · ,

x2
1x2 + x1x2

2 + x2
1x3 + · · · ,

x1x2x3 + x1x2x4 + · · · .
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Remark 1.2. Symmetric polynomials can be constructed more simply
by taking the fixed points for the symmetric group Sn permuting the
variables in C[x1, . . . , xn]. They are recovered by specializing symmetric
functions at xn+1 = . . . = 0: see §1.6. Remark 5.9 gives one reason why
it is necessary to work with infinitely many variables. See also §1.7 for
the construction of Λ using inverse limits.

Given a partition λ of n ∈ N0, let

monλ = ∑
α|=n

P(α)=λ

xα,

where P(α) is the partition obtained by rearranging the parts of α into
weakly decreasing order. We say that monλ is the monomial symmet-
ric function labelled by λ. (The notation mλ is more usual, but mono-
mial symmetric functions are not so important, and m is a useful letter
to have free.) For example, the basis of Λ3 above is mon(3), mon(2,1),
mon(1,1,1). More generally,

{monλ : λ ` n}

is a basis for Λn. Thus the dimension of Λn is the number of partitions
of n. Note that mon∅ = 1 and (this is almost a triviality), the coefficient
of xλ in monλ is 1.

1.4. Elementary symmetric functions. While easily defined, the mono-
mial basis is not the most useful for most computations. We shall now
define several different bases, starting with the elementary symmetric
functions, and see the first signs that the transition matrices between
these bases are of combinatorial and algebraic interest.

For n ∈ N0 the elementary symmetric function of degree n is defined by
en = mon(1n). For example e2 = x1x2 + x1x3 + x2x3 + x1x4 + · · · . For µ

a composition of n define eµ = eµ1 . . . eµ`(µ)
. The eµ are called elementary

symmetric functions.

Lemma 1.3. For µ a partition of n define coefficients Nλµ by

eµ = ∑
λ`n

Nλµmonλ.

Then Nλµ is the number of 0-1 matrices of size `(λ)× `(µ) with row sums λ
and column sums µ.

Proof. The coefficient of monλ in eµ is the coefficient of xλ in eµ. This
coefficient is the number of ways to choose one monomial from each
bracket in the product

eµ =
`(µ)

∏
j=1

eµj =
`(µ)

∏
j=1

(x1x2 . . . xµj + · · · )
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so that the product of all `(µ) monomials is xλ. These choices corre-
spond to 0-1 matrices Z of size `(λ)× `(µ) with row sums λ and col-
umn sums µ: if we choose xk1 xk2 . . . xkµj

from the jth bracket we set
Zk1 j = · · · = Zkµj j = 1, and all other entries in column j of Z to be 0.
Thus column j of Z has sum µj and corresponds to a choice contribut-
ing 1 to the power of each xk1 , . . . , xkj . Conversely, such a matrix clearly
determines a corresponding choice of monomials. �

For example,

e(2,2) = (x1x2 + x1x3 + x2x3 + x1x4 + · · · )(x1x2 + x1x3 + x2x3 + x1x4 + · · · )
= mon(2,2) + 2mon(2,1,1) + 6mon(1,1,1,1).

The 0-1 matrices with row sums (2, 1, 1) and column sums (2, 2) corre-
sponding to the summand 2mon(2,1,1) are1 1

1 0
0 1

 ,

1 1
0 1
1 0

 .

Proposition 1.4. The set {eµ : µ ` n} is a basis for Λn.

Proof. The ‘necessity’ direction of the Gale–Ryser Theorem says that if
Nλµ 6= 0 then λ′ � µ. Hence

(1.1) eµ = ∑
λ

λ′�µ

Nλµmonλ = ∑
ν�µ

Nν′µmonν′ = ∑
ν�µ

Xνµmonν′

where Xνµ = Nν′µ. Note that Xνµ = 0 unless ν � µ. By Question 1(a),
Xµµ = Nµ′µ = 1 for all partitions µ. Hence, when partitions are ordered
lexicographically the matrix X is unitriangular and so invertible. �

For example, we have e(n) = mon(1n) and

(e(4), e(3,1), . . . , e(14)) = (mon(14), mon(2,1,1), . . . , mon(4))X

where

X =


1 4 6 12 24
· 1 2 5 12
· · 1 2 6
· · · 1 4
· · · · 1

 .

Since X is upper triangular, so is X−1. Thus (X−1)νµ 6= 0 only if ν�µ.
Multiplying (1.1) by X−1 we obtain ∑µ�κ(X−1)µκeµ = monκ′ . Hence

(1.2) monλ = ∑
µ�λ′

(X−1)µλ′eµ.

In particular, monλ = eλ′ + g where g is a linear combination of eµ for
µ�λ′. By the first equality in (1.1), when g is expressed in the monomial
basis, each summand monν with a non-zero coefficient satisfies ν′ �
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λ′, or equivalently, ν � λ. We have therefore recovered the traditional
algorithm for writing a symmetric function f as a linear combination
of elementary symmetric functions: find the lexicographically greatest
monomial summand in f with a non-zero coefficient, say monλ, with
coefficient c, then replace f with f − ceλ′ , and repeat.

Remark 1.5. Working with the dominance order rather than the lexico-
graphic order gives more information. For example, to write mon(2,2,2)
as a linear combination of elementary symmetric functions, we take g =
mon(2,2,2) − e(3,3) in the first step. In the lexicographic order we have
(4, 1, 1) > (2, 2, 2)′, but since (4, 1, 1) 6�(2, , 2, 2)′, it follows from (1.2)
that, when expressed in the basis of elementary symmetric functions, g
does not involve e(4,1,1).

Lecture 21.5. Complete homogeneous symmetric functions. The complete ho-
mogeneous symmetric function of degree n is defined by hn = ∑λ`n monλ.
By definition, hn = ∑α|=n xα. For example,

h1 = mon(1) = x1 + x2 + · · ·

h2 = mon(2) + mon(12) = x2
1 + x2

2 + · · ·+ x1x2 + x1x3 + x2x3 + · · · .

For µ a composition of n define hµ = hµ1 . . . hµ`(µ)
∈ Λn. The hµ are

called complete homogeneous symmetric functions.
We shall relate the hµ to the elementary symmetric functions defined

in §1.4. For this it will be useful to work in the ring Ĉ[x1, x2, . . .][[t]]
of formal power series ∑∞

n=0 fntn with coefficients in Ĉ[x1, x2, . . .]. A
subring is the ring Λ[[t]] of formal power series with coefficients in Λ.
Let

H(t) =
∞

∏
i=1

1
1− xit

∈ Ĉ[x1, x2, . . .][[t]].

Observe that

H(t) =
∞

∏
i=1

(1 + xit + x2
i t2 + · · · ) =

∞

∑
n=0

hntn.

Hence H(t) ∈ Λ[[t]]. Let E(t) = 1/H(t). We have

E(t) =
∞

∏
i=1

(1− xit) =
∞

∑
n=0

(−1)nentn.

Taking the coefficient of tn in 1 = H(t)E(t) we obtain Newton’s Identity

(1.3)
n

∑
k=0

(−1)kekhn−k = 0 if n ∈ N.

Proposition 1.6. The set {hµ : µ ` n} is a basis of Λn.

Proof. Newton’s identity rearranges to hn = ∑n
k=1(−1)k−1ekhn−k. Thus

hn = (−1)n−1en + f where f is in the polynomial algebra generated by
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e1, . . . , en−1, h1, . . . , hn−1. It follows by induction that hn ∈ (−1)n−1en +
C[e1, . . . , en−1] and so hn = (−1)n−1en + f where f is a linear combi-
nation of elementary symmetric functions eν for partitions ν of n; since
deg f = n, each ν has at least two parts. Multiplying we find that

hµ =
`(µ)

∏
i=1

(
(−1)µi−1eµi + fi

)
where each fi is a linear combination of elementary symmetric func-
tions eν for partitions ν of µi with at least two parts. Therefore

(1.4) hµ ∈ (−1)n−`(µ)eµ + 〈eν : ν is a proper refinement of µ〉.

(A partition ν is a proper refinement of a partition µ if ν 6= µ and it is
possible to add up parts of ν to obtain µ, using each part of ν exactly
once. For example (5, 3, 1, 1) is a proper refinement of (6, 4) since 6 =
5 + 1 and 4 = 3 + 1.) The matrix expressing the hµ in the basis {eν : ν `
n} is therefore triangular with entries ±1 on the main diagonal. �

See Question 5 for further properties of this change of basis matrix.

1.6. Specializations. Let N ∈ N. We define

êvN : Ĉ[x1, x2, . . .]→ C[x1, . . . , xN ]

by linear extension of

êvN(xα) =

{
xα if `(α) ≤ N
0 otherwise

to all finite linear combinations of monomials and all well-defined in-
finite linear combinations. It is clear from the definition of the prod-
uct in Ĉ[x1, x2, . . .] that êvN is a ring homomorphism. Let evN : Λ →
C[x1, . . . , xN ] be the restricted map. Thus if λ is a partition of n and
`(λ) ≤ N then

evN(monλ) = ∑
α|=n

P(α)=λ
`(α)≤N

xα

while if `(λ) > N then evN(monλ) = 0. (Recall from §1.3 that P(α)
is the underlying partition of the composition α.) From this formula
we see that the image of evN is contained in the ring of symmetric poly-
nomials in N variables C[x1, . . . , xN ]

SymN . Just as Λ, this ring is graded
by degree. It is clear from the monomial basis for Λn that evN : Λn →
C[x1, . . . , xN ]

SymN
n is always surjective. It is injective if and only if N ≥ n.
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We shall usually write f (x1, . . . , xN) rather than evN( f ). For example,

e2(x1, x2, x3) = ev3(x1x2 + x1x3 + x2x3 + x1x4 + · · · )
= x1x2 + x1x3 + x2x3,

h3(x1, x2) = ev2(x3
1 + · · ·+ x2

1x2 + · · ·+ x1x2x3 + · · · )
= x3

1 + x3
2 + x2

1x2 + x1x2
2,

e3(x1, x2) = ev2(x1x2x3 + x1x2x4 + · · · )
= 0.

More generally, evN(en) = 0 whenever N < n. We can specialize fur-
ther by sending each xi for i ≤ N to a given complex number zi ∈ C.
For example e2(1, 1, 1) = 3, h3(1, 1) = 4 and e2(1, i,−1,−i) = 0, being
the coefficient of z2 in z4 − 1.

Note that if f , g ∈ Λ then

(1.5) f = g ⇐⇒ evN( f ) = evN(g) for all N ∈ N.

Roughly put: a symmetric function is determined by its finite images.

1.7. Inverse limits?. The previous comment suggests that Λ could some-
how be constructed out of the rings C[x1, . . . , xN ]

SymN . Consider the
commutative diagram below.

Λ
evN
����

evN−1 ** **

ev1

-- --
qN+1
// // C[x1, . . . , xN ]

SymN
qN
// // C[x1, . . . , xN−1]

SymN−1
qN−1
// // . . . q2

// // C[x1]

The horizontal maps are determined by the commutativity: since evN
kills xN+1, but not xN , whereas evN−1 kills both, the map

qN : C[x1, . . . , xN ]
SymN � C[x1, . . . , xN−1]

SymN−1

must be defined to be the restriction of the unique C-algebra homomor-
phism C[x1, . . . , xN ] → C[x1, . . . , xN−1] such that xN 7→ 0 and xk 7→ xk
for k < N. We record the images evN( f ) = f (N) of f ∈ Λ as a sequence

( f (N))∞
N=1 ∈

∞

∏
N=1

C[x1, . . . , xN ]
SymN .

Since this sequence determines f , the ring Λ is isomorphic to a subring
of ∏∞

N=1 C[x1, . . . , xN ]
SymN . Imposing the compatibility condition from

the commutative diagram, we can identify this subring explicitly: the
degree n component is{
( f (N))∞

N=1 ∈
∞

∏
N=1

C[x1, . . . , xN ]
SymN
n : qN( f (N)) = f (N−1) for all N ≥ 2

}
.
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This ring is the inverse limit lim←−C[x1, . . . , xN ]
SymN , defined using the

maps qN , taken in the category of graded rings.

Remark 1.7. It is essential to work with an inverse limit of graded rings.
To see this, let

f (N) = e1(x1, . . . , xN) + · · ·+ eN(x1, . . . , xN)

for each N ∈ N and consider ( f (N))∞
N=1 ∈ ∏∞

N=1 C[x1, . . . , xN ]
SymN .

This sequence satisfies the compatibility condition qN( f (N)) = f (N−1)

but does not correspond to an element of Λ. I am grateful to Darij Grin-
berg for this example.

Completions. Let R be a ring and let IN �R for N ∈ N be ideals of R such
that IN � IN+1 for each N. The completion of R with respect to (IN)

∞
N=1

is R̂ = lim←− R/IN , defined as a subring of ∏∞
N=1 R/IN by

R̂ =
{
(rN + IN)

∞
N=1 : rN + IN−1 = rN−1 + IN−1 for all N ≥ 2

}
.

It is useful to think of rN + IN as the ‘Nth approximation’ of the el-
ement (rN + IN)

∞
N=1 ∈ R̂: since IN � IN+1, these approximations get

better and better as N increases. If R and the ideals IN are graded then,
as suggested by the previous remark, one normally wants the graded
completion, defined by R̂n = lim←−(R/IN)n for each n.

Example 1.8.
(1) The ring Ĉ[x1, x2, . . .] defined in §1.3 is isomorphic to the graded

completion of the polynomial ring C[x1, x2, . . .] with respect to
the ideals IN = ker êvN = 〈xN+1, xN+2, . . .〉. An eventually con-
stant sequence corresponds to an element of C[x1, x2, . . .] and a
sequence ( f (N))∞

N=1 where

f (N) ∈ C[x1, x2, . . .]/IN
∼= C[x1, . . . , xN ]

such that each f (N) is invariant under SymN and has homoge-
neous degree n corresponds to an element of Λn.

Note that Ĉ[x1, x2, . . .]Sym(N) = Λ, whereas C[x1, x2, . . .]Sym(N) =
C. Thus taking fixed points does not commute with taking com-
pletions and there is no sense in which Λ is a completion of the
ring C[x1, x2, . . .]Sym(N).

(2) The rings of formal power series C[[t]] and Λ[[t]] are also exam-
ples of completions. Generally, for any ring S we have S[[t]] ∼=
lim←− S[t]/〈tN〉.

(3) Let p be prime. The ring of p-adic integers Zp is isomorphic to
the completion lim←−Z/〈pN〉. The similarity to (2) is not coinci-
dental: the rings Zp and F[[t]], where F is a field, have many
properties in common.
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1.8. Counting compositions?. Let n, N ∈ N0. As an easy application
of specializations we determine the number Cn(N) of compositions α of
n such that `(α) ≤ N. Specialize hn so that xi 7→ 1 if i ≤ N and xi 7→ 0
if i > N to get

∞

∑
n=0

Cn(N)tn =
∞

∑
n=0

hn(1, . . . , 1)tn =
1

(1− t)N =
∞

∑
n=0

(
−N

n

)
(−t)n.

Hence

Cn(N) =

(
−N

n

)
(−1)n =

(−N)(−N − 1) . . . (−N − n + 1)
n!

(−1)n

=
N(N + 1) . . . (N + n− 1)

n!
=

(
N + n− 1

n

)
.

(This trick of negating the top in a binomial coefficient is often useful
when simplifying sums involving binomial coefficients.)

1.9. MacMahon’s Master Theorem?. The duality between the elemen-
tary and complete symmetric functions gives a slick proof of MacMa-
hon’s Master Theorem (his name for it). The presentation below is
based on a question of Alexander Chervov: see MathOverflow 103919.
Given a linear map B : V → V, let SymnB : SymnV → SymnV denote
the map induced by B on the space Symn V of polynomials of degree n
over V. For example, if V has basis u, v then Sym2V has basis u2, uv, v2

and we have

Sym2
(

α β
γ δ

)
=

 α2 αβ β2

2αγ αδ + βγ 2βδ
γ2 γδ δ2

 .

Lemma 1.9. Let B be a square matrix with entries in a polynomial ring
C[x1, . . . , xN ]. Working in C[x1, . . . , xN ][[t]], we have

det(I − Bt)−1 =
∞

∑
n=0

Tr Symn(Bt).

Proof. Suppose that B is an M×M-matrix. It suffices to prove the iden-
tity with the indeterminates x1, . . . , xN specialized to N arbitrary com-
plex numbers. Let B′ be the specialized matrix and let θ1, . . . , θM ∈ C
be its eigenvalues. By specializing H(t) = ∏∞

i=1(1− xit)−1 = ∑∞
n=0 hntn

at θ1, . . . , θM we get

det(I − B′t)−1 =
M

∏
i=1

1
1− θit

=
∞

∑
n=0

hn(θ1, . . . , θM)tn.

Now observe that the eigenvalues of SymnB′ are exactly the monomials
θα = θα1

1 . . . θ
αM
M for α a composition of n with `(α) ≤ M. �
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Example 1.10 (Dixon’s Identity). We shall use Lemma 1.9 to show that

2m

∑
k=0

(−1)k
(

2m
k

)3
= (−1)m (3m)!

m!3
.

The left-hand side is

(?) [x2my2mz2m](x− y)2m(y− z)2m(z− x)2m,

where square brackets denote taking a coefficient, since if we take xk

from (x − y)2m then we must also take yk from (y − z)2m and zk from
(z− x)2m. Consider the matrix

B =

 0 y −z
−x 0 z
x −y 0


representing a linear transformation in a basis u, v, w of the C[x, y, z]-
module C[x, y, z]3. Let i + j + k = n. We have

(SymnB)(uivjwk) = B(u)iB(v)jB(w)k

= (−xv + xw)i(yu− yw)j(−zu + zv)k

= xiyjzk(−v + w)i(u− w)j(−u + v)k.

Hence the coefficient of x2my2mz2m in Tr Sym6mB is the coefficient of
u2mv2mw2m in (−v + w)2m(u − w)2m(−u + v)2m. The variables have
changed, but the coefficient is the same as in (?). Hence

2m

∑
k=0

(−1)k
(

2m
k

)3
= [x2my2mz2m]Tr Sym6mB.

On the other hand, since det(I− Bt) = 1+ (xy + yz + zx)t2, Lemma 1.9
implies that the right-hand side is

[x2my2mz2mt6m]det(I − Bt)−1 = [x2my2mz2mt6m](1 + (xy + yz + zx)t2)−1

= [x2my2mz2m](−1)m(xy + yz + zx)3m.

If we take (xy)k from the multinomial expansion of (xy+ yz+ zx)3m, we
must then take (yz)2m−k to get the correct power of y, and then (zx)m to
get a monomial of the correct degree. Therefore the only contribution
to the coefficient of x2my2mz2m comes from taking each of xy, yz and zx
exactly m times. Hence the coefficient is (−1)m(3m)!/m!3, as claimed.

The general result is as follows.

Theorem 1.11 (MacMahon’s Master Theorem). Let A be an N × N com-
plex matrix and let B = A diag(x1, . . . , xN). Thus the entries of B lie in
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C[x1, . . . , xN ]. Let y1, . . . , yN be N further indeterminates. If α |= n and
`(α) ≤ N then

[xαtn]det(I − Bt)−1 = [yα]
N

∏
i=1

(
N

∑
j=1

Ajiyj)
αi .

Proof. By Lemma 1.9, it is equivalent to show that

[xα]Tr SymnB = [yα]
N

∏
i=1

(
N

∑
j=1

Ajiyj)
αi .

Let v1, . . . , vN be a basis of the C[x1, . . . , xN ]-module C[x1, . . . , xN ]
N .

Since the only variable appearing in the ith column of B is xi, the left-
hand side is the coefficient of vα in ∏(Avi)

αi . Since Avi = ∑N
j=1 Ajivj,

this agrees with the right-hand side. �

See Questions 6 and 7 for some further applications of MacMahon’s
Master Theorem.

Lecture 31.10. Power sum symmetric functions. For n ∈ N, we define pn =
mon(n) = ∑∞

i=1 xn
i ∈ Λn. Let p0 = 1. For α a composition of n define

pα = pα1 . . . pα`(α) . We say that pα is the power sum symmetric function
corresponding to α. To prove that the power sum symmetric functions
labelled by partitions form a basis for Λ we adapt the argument using
Newton’s Identity seen earlier.

Let Q(t) = ∑∞
n=1 pntn/n. Observe that

Q(t) =
∞

∑
n=1

∞

∑
i=1

xn
i tn

n
= −

∞

∑
i=1

log(1− xit).

Hence

(1.6) exp Q(t) =
∞

∏
i=1

1
1− xit

= H(t).

By Question 3(c), we have the identity tH′(t) = tQ′(t)H(t). Taking
coefficients of tn gives the Newton type identity

(1.7) nhn =
n

∑
k=1

pkhn−k.

Hence pn = nhn−∑n−1
k=1 pkhn−k for each n ∈ N. It follows as in §1.5 that

C[p1, . . . , pn] = C[h1, . . . , hn] for all n and that {pα : α ` n} is a basis
of Λn.

We make the following remarks.

(1) Let n ∈ N and let ΛZ,n = {∑α`n cαmonα : cα ∈ Z}. Since the
transition matrix from {eµ : µ ` n} to {monα : α ` n} is uni-
triangular (see Proposition 1.4), we obtain the same set if we
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replace each monα with eλ. However, the subgroup

{∑
α`n

cα pα : cα ∈ Z}

of Λn is properly contained in ΛZ,n. For example, e2 = 1
2(p2

1 −
p2) = 1

2 p(1,1) − 1
2 p2, so this subgroup contains 2e2, but not e2.

Informally, we say that the pα do not form a Z-basis for Λn.

(2) Suppose that f (p1, . . . , pm) = 0, where f ∈ C[y1, . . . , ym]. Let

f (y1, . . . , ym) = ∑
β

cβyβ1
1 . . . yβm

m

where the sum is over all compositions β with `(β) ≤ m. Sub-
stituting pk for yk for each k ∈ {1, . . . , m}, we get

∑
β

cβ p(mβm ,...,1β1 ) = 0.

Since the pλ for λ a partition form a basis for Λ, we see that cβ =
0 for all β. Hence f = 0 and p1, p2, . . . are algebraically indepen-
dent. An analogous result holds for e1, e2, . . . and h1, h2, . . ..

1.11. The cycle index of the symmetric group?. We have

exp Q(t) = exp
∞

∑
k=1

pk
tk

k
=

∞

∏
k=1

exp
pktk

k
=

∞

∏
k=1

∞

∑
m=0

pm
k

km
tkm

m!
.

Let α be a partition of n having exactly ak parts of size k for each k ∈
{1, . . . , n}. There is a unique way to obtain pαtn by multiplying out the
right-hand side above; the coefficient of pαtn is ∏n

k=1 1/(kak ak!). There-
fore

(1.8) exp Q(t) =
∞

∑
n=0

∑
α`n

pα

zα
tn

where, by definition,

zα =
n

∏
k=1

kak ak!.

This proves the following result.

Theorem 1.12 (Cycle Index Formula).

exp
∞

∑
k=1

pk
k

tk =
∞

∑
n=0

∑
α`n

pα

zα
tn

=
∞

∑
n=0

∑
(nan ,...,1a1 )`n

pa1
1 . . . pan

n

1a1 . . . nan a1! . . . an!
tn.
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Note that by (1.6), the left-hand side is ∏∞
i=1(1− xit)−1 = ∑∞

n=0 hntn.
By Question 8, zα is the order of the centralizer in Symn of an element

of cycle-type α. Thus there are n!/zα such elements in Symn, and 1/zα

is the probability of picking one, when permutations are chosen uni-
formly at random. Therefore a restatement of the Cycle Index Formula
is

exp
∞

∑
k=1

pk
k

tk =
∞

∑
n=0

1
n! ∑

σ∈Symn

pρ(σ)t
n

=
∞

∑
n=0

1
n! ∑

σ∈Symn

pcyc1(σ)
1 . . . pcycn(σ)

n tn(1.9)

where the partition ρ(σ) is the cycle-type of σ ∈ Symn and cycm(σ) is
the number of m-cycles in σ.

Many appealing results can be obtained by specializing the Cycle In-
dex Formula by setting the pn to particular complex numbers or inde-
terminates. This is justified by the algebraic independence of the pn.

In the following result, recall that σ ∈ Symn is a derangement if σ has
no fixed points.

Corollary 1.13.
(i) Let dn be the number of derangements in Symn. Then

dn

n!
= 1− 1

1!
+

1
2!
− · · ·+ (−1)n

n!
.

(ii) Let On be the number of derangements in Symn that have an odd num-
ber of cycles, and let En be the number of derangements in Symn that have an
even number of cycles. Then On − En = n− 1.

(iii) Let on be the number of derangements in Symn that are odd permuta-
tions, and let en be the number of derangements in Symn that are even permu-
tations. Then on − en = (−1)n(n− 1).

Proof. Let Dn be the set of derangements in Symn. For (i) and (ii) spe-
cialize the version of the Cycle Index Formula in (1.9) by setting p1 = 0
and pk = z for k ≥ 2, where z is an indeterminate. We get

exp
∞

∑
k=2

ztk

k
=

∞

∑
n=0

tn

n! ∑
σ∈Dn

zcyc(σ)

where cyc(σ) is the number of cycles in σ. Setting z = 1 we get

exp(−t)
1− t

= exp
(
−t− log(1− t)

)
=

∞

∑
n=0

dn

n!
tn.

Taking the coefficient of tn on the left-hand side gives (i). For (ii) set
z = −1 to get

(1− t) exp t = exp
(
t + log(1− t)

)
=

∞

∑
n=0

En −On

n!
tn
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and again take the coefficient of tn. Part (iii) is left as an exercise: see
Question 9. �

1.12. Asymptotics of cycles?. Treat the pk in (1.9) as formal indetermi-
nates. Observe that if we differentiate (1.9) with respect to pm we obtain

tm

m
exp

∞

∑
k=1

pk
k

tk =
∞

∑
n=0

tn

n! ∑
σ∈Symn

cycm(σ)pcycm(σ)−1
m ∏

k 6=m
pcyck(σ)

k .

Specialize by setting pk to 1 for all k to get

tm

m
1

1− t
=

∞

∑
n=0

tn

n! ∑
σ∈Symn

cycm(σ).

Taking the coefficient of tn, we see that the mean number of m-cycles in
a permutation in Symn is 1/m if n ≥ m, and otherwise zero.

More generally, let β be a composition and set b = β1 + 2β2 + · · · .
Differentiate the identity above βm times with respect to pm, for each m,
to obtain

tb

∏m∈N mβm
exp

∞

∑
k=1

pk
k

tk

=
∞

∑
n=0

tn

n! ∑
σ∈Symn

∏
m∈N

βm!
(

cycm(σ)

βm

)
∏
k∈N

pcyck(σ)−βk
k .

Specialize by setting pk = 1 for all k to get

tb

∏m∈N mβm

1
1− t

=
∞

∑
n=0

tn

n! ∑
σ∈Symn

∏
m∈N

βm!
(

cycm(σ)

βm

)
.

Taking the coefficient of tn it follows that

(1.10) E
[

∏
m∈N

(
cycm(σ)

βm

)]
=

1
z(1β1 ,2β2 ,...)

for all n ≥ b

where the expected value is taken over all permutations σ ∈ Symn,
chosen uniformly at random. (Here (1β1 , 2β2 , . . .) denotes the partition
with exactly βm parts of size m, for each m ∈ N.)

Below we write cyc(n)m (σ) for cycm(σ) when σ ∈ Symn.

Theorem 1.14 (Goncharov). As n → ∞ the random variables cyc(n)m con-
verge to independent Poisson random variables with mean 1/m.

Outline proof. The binomial moments of a Poisson random variable X
with mean γ are E[(X

r )] = γr/r!. Let Cm for m ∈ N be independent
Poisson random variables with mean 1/m. By independence we have

E
[

∏
m∈N

(
Cm

βm

)]
=

1
z(1β1 ,2β2 ,...)



17

for all compositions β of n. Comparing with (1.10) we see that if β is a
composition of b then

E
[

∏
m∈N

Cβm
m

]
= E

[
∏

m∈N
(cyc(n)m )βm

]
for all n ≥ b.

It follows that the moments of the cyc(n)m (σ) converge to the moments
of the Cm as n→ ∞. This implies convergence in joint distribution. �

1.13. Schur functions. Recall that [λ] denotes the Young diagram of a
partition λ: formally this is the set of boxes {(i, j) : 1 ≤ i ≤ `(λ), 1 ≤ j ≤
λi}.

Definition 1.15. Let λ be a partition of n. A λ-tableau (or tableau of shape
λ) is a function [λ] → N. To draw a λ-tableau t, draw the Young dia-
gram of λ and, for each (i, j) ∈ [λ], put t(i, j) inside the corresponding
box. A λ-tableau is semistandard if its rows are weakly increasing (from
left to right) and its columns are strictly increasing (from top to bot-
tom). Let SSYT(λ) be the set of all semistandard λ-tableaux. Given a
λ-tableau t, let ck(t) =

∣∣{(i, j) ∈ [λ] : t(i, j) = k}
∣∣. The content of t is the

composition (c1(t), c2(t), . . .). For α a composition of n, let SSYT(λ, α)
be the set of semistandard λ-tableaux with content α. Define

xt = xc1(t)
1 xc2(t)

2 . . .

The Schur function sλ is then defined by

sλ = ∑
t∈SSYT(λ)

xt.

For example,

s(3) = x 1 1 1
+ x 1 1 2

+ x 1 2 2
+ x 1 2 3

+ · · ·

= x3
1 + x2

1x2 + x1x2
2 + x1x2x3 + · · ·

= mon(3) + mon(2,1) + mon(1,1,1).

Notice that if we specialize to three variables then xt = 0 whenever t
has an entry strictly greater than 3. So

s(2,1)(x1, x2, x3)

= x
1 1
2

+ x
1 1
3

+ x
1 2
2

+ x
1 2
3

+ x
1 3
2

+ x
1 3
3

+ x
2 2
3

+ x
2 3
3

= x2
1x2 + x2

1x3 + x1x2
2 + x1x2x3 + x1x2x3 + x1x2

3 + x2
2x3 + x2x2

3

= mon(2,1)(x1, x2, x3) + 2mon(1,1,1)(x1, x2, x3).

Since ev3 : Λ3 → C[x1, x2, x3]
Sym3 is injective, it follows, on the as-

sumption that s(2,1) is a symmetric function, that s(2,1) = mon(2,1) +
2mon(1,1,1).

Lemma 1.16. Let n ∈ N. Then s(n) = hn and s(1n) = en.
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Proof. This follows easily from the definition of semistandard. �

Note that in every case seen so far sλ is a symmetric function. This is
not obvious from our definition, but has a beautiful short proof due to
Bender and Knuth.

Lecture 4
Proposition 1.17. The Schur functions are symmetric functions.

Proof. Let λ be a partition and let i ∈ N. It suffices to define an invo-
lution BK : SSYT(λ) → SSYT(λ) such that xBK(t) = xt(i, i + 1). (More
explicitly, if xt = gxc

i xd
i+1 where g is a monomial not involving xi or

xi+1, then xBK(t) = gxd
i xc

i+1.) For it then follows that

sλ = ∑
t∈SSYT(λ)

xt = ∑
t∈SSYT(λ)

xBK(t) = ∑
t∈SSYT(λ)

xt(i, i + 1) = sλ(i, i + 1)

and so sλ is invariant under all transpositions, and so invariant under
all finitary permutations (i.e. permutations fixing all but finitely many
elements of N). It is an easy exercise to show that if f ∈ Ĉ[x1, x2, . . .] is
fixed by all finitary permutations then f ∈ Λ. Therefore sλ ∈ Λ.

Let t ∈ SSYT(λ). With minor changes for the top and bottom rows,
the is and (i + 1)s in t in each row of t are arranged as shown below:

i i + 1. . . . . .

. . .

. . .

i i i + 1 i + 1i i + 1

a

b> i + 1

< i

i + 1 i + 1

i i

. . . . . .

Define BK(t) by replacing the a is and b (i + 1)s in the middle part of
each row with b is and a (i + 1)s. The new tableau clearly has weakly
increasing rows, and the columns are strictly increasing because the en-
tries below the middle part are > i + 1 and the entries above the middle
part are < i. �

It follows that if λ is a partition of n then

(1.11) sλ = ∑
µ`n
|SSYT(λ, µ)|monµ.

By Question 11, SSYT(λ, µ) = ∅ unless λ�µ. Moreover |SSYT(λ, λ)| =
1. By the standard argument it follows that {sλ : λ ` n} is a basis for
Λn. An alternative proof of this fundamental result is given in §2. We
remark that the Kostka Numbers Kλµ are defined by Kλµ = |SSYT(λ, µ)|.

2. THE JACOBI–TRUDI IDENTITY

In this section we shall see how to express the Schur functions in the
basis of complete homogeneous symmetric functions.
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Theorem 2.1 (Jacobi–Trudi Identity). Let λ be a partition of n and let M ≥
`(λ). Then

sλ = det


hλ1 hλ1+1 · · · hλ1+(M−1)

hλ2−1 hλ2 · · · hλ2+(M−2)
...

... . . . ...
hλM−(M−1) hλM−(M−2) · · · hλM


where we set hr = 0 if r < 0.

We offer a ‘proof by example’ that shows all the main features of the
general proof, outlined in Question 12.

Example 2.2. Take λ = (5, 3, 3) and M = 3. We prove that the Jacobi–
Trudi Identity holds for sλ when both sides are evaluated at x1, . . . , x5.
Let Bi = (3− i + λi, 5) for i ∈ {1, 2, 3}. Consider the diagram below.

• • •

• • •

0 1 2 3 4 5 6 7
1

2

3

4

5

P1

P2P3

B3 B2 B1

By a path we mean a sequence of unit steps, each either east or north.
Marked on the grid is a triple of paths (P3, P2, P1) such that Pi goes from
(3 − i, 1) to Bi for each i. (Note that B3 is strictly left of B2, which is
strictly left of B1; this remains true in the general case where Bi = (M−
i + λi, 5), for each i.) Let S be the set of all such triples, like the one
shown above, where no two paths intersect.

Claim. The map sending the (5, 3, 3)-tableau t with entries a1 ≤ . . . ≤
aλi in row i to the triple (P3, P2, P1) where Pi has horizontal steps at
heights a1, . . . , aλi is a bijection between the set of semistandard (5, 3, 3)-
tableaux with entries from {1, 2, 3, 4, 5} and S .

Proof. Let (P3, P2, P1) correspond to the tableau t. Suppose paths Pi and
Pi+1 meet, for the first time, at (a, b). Then Pi+1 goes from (a − 1, b)
to (a, b), say in its rth rightward step, and Pi goes from (a, b − 1) to
(a, b) and makes its rth rightward step at (a, c) for some c ≥ b. Hence
t(i, r) = c ≥ b = t(i + 1, r), so t is not semistandard. The converse is
similar and is left as an exercise. �
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Let A be the set of all triples of paths (P3, P2, P1) such that Pi goes
from (3− i, 1) to Biτ for some permutation τ ∈ Sym3. We now allow
paths to intersect: if τ 6= id then at least one intersection is inevitable.
An example where τ = (1, 2) is shown below.

P1

P2

P3

• • •

• • •

0 1 2 3 4 5 6 7
1

2

3

4

5
B3 B2 = B1τ B1 = B2τ

Define the weight of a path Pi with horizontal steps at heights h1, . . . , hr
by wt(Pi) = xh1 . . . xhr . Thus the path P2 from (1, 1) to (7, 5) drawn in
blue above has weight x2x2

3x4x2
5. Define the weight of a triple (P3, P2, P1)

by wt(P3, P2, P1) = wt(P3)wt(P2)wt(P1). Define the sign of a triple
(P3, P2, P1) where each Pi ends at Biτ to be sgn(τ). For the triple shown
above we have wt(P3, P2, P1) = x1x2x3

3x4
4x2

5 and sgn(P3, P2, P1) = −1.
The previous claim shows that

(2.1) ev5sλ = ∑
t

xt = ∑
(P3,P2,P1)∈S

wt(P3, P2, P1)

where the middle sum is over all semistandard λ-tableaux with entries
from {1, 2, 3, 4, 5}.

Claim. Let P ∈ A\S . Choose i minimal so that Pi meets another path.
Follow Pi, starting at (M− i, 1) and stepping up and right, until it meets
another path, at a point (a, b). Let j be maximal such that Pj passes
through (a, b). Let Pi agree with Pi until this intersection and then fol-
low Pj. Similarly let Pj agree with Pj until this intersection and then
follow Pi. Let Pk = Pk if k 6= i, j. Define J : A → A by

J(P3, P2, P1) =

{
(P3, P2, P1) if (P3, P2, P1) ∈ A\S
(P3, P2, P1) otherwise.

.

Then J is a weight-preserving involution on A fixing exactly the triples
in S . Moreover, J is sign-reversing on A\S .

Proof. Let (P3, P2, P1) ∈ A\S and let i and j be as above. In (P3, P2, P1),
the positions of intersections do not change; the paths involved in each
intersection change only when one or both was originally Pi or Pj and



21

afterwards Pi or Pj. Therefore i is still minimal such that Pi meets an-
other path, the first intersection point is still (a, b), and j is still maximal
such that Pj passes through (a, b).

Hence J is an involution. If τ is the permutation for (P3, P2, P1) then,
since the final destinations of the paths starting at (M− i, 1) and (M−
j, 1) are swapped, (i, j)τ is the permutation for (P3, P2, P1). Hence J is
sign-reversing on A\S . Since the right steps in P3, P2, P1 and P3, P2, P1
occur at the same heights, J is weight-preserving. �

For example, let (P3, P2, P1) be the intersecting paths above. The im-
age (P3, P2, P1) under J is shown below. We have i = 1, j = 2 and
(a, b) = (3, 3).

P1

P2

P3

• • •

• • •

0 1 2 3 4 5 6 7
1

2

3

4

5
B3 B2 B1

By pairing up (P3, P2, P1) and J(P3, P2, P1) for each (P3, P2, P1) ∈ A\S ,
and observing that their contributions to the left-hand side of the equa-
tion below cancel, we get

∑
(P3,P2,P1)∈A

wt(P3, P2, P1) sgn(P3, P2, P1) = ∑
(P3,P2,P1)∈S

wt(P3, P2, P1).

The right-hand side is ev5sλ by (2.1). So to complete the proof, we need
to show that

∑
(P3,P2,P1)∈A

wt(P3, P2, P1) sgn(P3, P2, P1) = ev5 det

h5 h6 h7
h2 h3 h4
h1 h2 h3


= ev5(h(5,3,3) − h(5,2,4) + h(1,6,4) − h(2,6,3) + h(2,2,7) − h(1,3,7)).

This is easily checked: for example, the summand h(2,6,3) = h(6,3,2) enu-
merates the weighted paths from (2, 1) to (4, 5), (1, 1) to (7, 5) and (0, 1)
to (3, 5), with 2, 6 and 3 steps right, respectively. 2

The general result on how summands in the expansion of the deter-
minant correspond to path tuples can be guessed from this example:
see Question 12. See also Lemma 4.9 and the following remark for the
connection with the dot action.
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An immediate corollary of Theorem 2.1 is a proof (independent of
Proposition 1.17) that Schur functions are symmetric functions. We also
get the following result.

Lecture 5 Corollary 2.3. Let n ∈ N0. There exist Lλµ ∈ Z for λ, µ ` n such that

sλ = ∑
µ`n

Lλµhµ.

Moreover Lλµ = 0 unless µ � λ and Lλλ = 1 for all λ and µ.

Proof. Let `(λ) = M. Suppose we expand the determinant of the M×M
matrix in the Jacobi–Trudi Identity for sλ by taking hλi−i+ci from row i.
This gives a contribution to the coefficient of hµ where µ is the partition
obtained by rearranging the entries of (λ1 − 1 + c1, . . . , λM −M + cM)
into decreasing order. We have

j

∑
i=1

µi ≥
j

∑
i=1

(λi − i + ci) =
j

∑
i=1

λi +
j

∑
i=1

(ci − i) ≥
j

∑
i=1

λi

where the final inequality holds because {c1, . . . , cM} = {1, . . . , M}.
Hence µ � λ. Moreover, if µ = λ then ci = i for each i (since if j is
minimal such that cj > j then we have strict inequality above) and so
Lλλ = 1. �

The matrix expressing the sλ for λ a partition of n in the basis {hµ :
µ ` n} of Λn is therefore triangular with diagonal entries 1. It follows,
by the usual argument, that {sλ : λ ` n} is a basis for Λn. (A more stan-
dard proof using the monomial basis was indicated at the end of §1.13.)

Corollary 2.4. Let 0 ≤ m ≤ n/2. Then
(i) s(n−m,m) = h(n−m,m) − h(n−m+1,m−1),
(ii) h(n−m,m) = s(n−m,m) + · · ·+ s(n−1,1) + s(n).

Proof. By the Jacobi–Trudi Identity we have

s(n−m,m) = det
(

hn−m hn−m+1
hm−1 hm

)
= h(n−m,m) − h(n−m+1,m−1).

This proves (i). Part (ii) then follows by induction, using s(n) = h(n) for
the base case. �

3. ANTISYMMETRIC FUNCTIONS AND THE ABACUS

Fix N ∈ N throughout this section. We define an N-strict partition to
be a partition (β1, . . . , βN) such that `(β) ≤ N and β1 > . . . > βN . Thus
the partition (4, 2, 1, 0, . . .) is 3-strict and 4-strict. We write β `N n to
denote that β is an N-strict partition of n.
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3.1. Antisymmetric functions. Let

Γ = { f ∈ C[x1, . . . , xN ] : f σ = f sgn(σ) for all σ ∈ SymN}.

Let Γn = { f ∈ Γ : f is homogeneous of degree n} and note that Γ =⊕
n∈N0

Γn. Given an N-strict partition β of n, we define

aβ = det


xβ1

1 . . . xβ1
N

... . . . ...
xβN

1 . . . xβN
N

 .

Observe that

(3.1) aβ = ∑
σ∈SymN

xβ1
1 . . . xβN

N σ sgn(σ)

so aβ ∈ Γn. Since the leading term (i.e. the lexicographically greatest
monomial summand) in aβ is xβ, it follows that {aβ : β `N n} is a basis
for Γn. Define

(3.2) δ = (N − 1, N − 2, . . . , 1, 0).

Observe that if β `N n then β has N distinct parts (including perhaps 0)
and so β− δ is a partition. Hence the basis of Γn above is {aλ+δ : |λ +
δ| = n, `(λ) ≤ N}.

If β is an N-strict partition then aβ specializes to 0 if we set xi = xj for
distinct i and j. By unique factorization, aβ is divisible by ∏i<j(xi − xj).
Then, as a special case of this remark,

aδ = det


xN−1

1 . . . xN−1
N

... . . . ...
x1 . . . xN
1 . . . 1


is divisible by ∏i<j(xi− xj). Since each xi has degree N− 1 in the prod-
uct, and also in aδ, and both the product and aδ have leading term xδ,
equality holds. Therefore each aβ is divisible by aδ and aλ+δ/aδ is a
non-zero polynomial for each λ with `(λ) ≤ N.

Remark 3.1. We show in Theorem 4.10 that

(3.3)
aλ+δ

aδ
= sλ(x1, . . . , xN)

for any partition λ with `(λ) ≤ N. For a slightly direct proof, in the
spirit of this section, see Question 24.
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Lecture 63.2. The abacus. Let λ be a partition. The rim of λ consists of all boxes
(i, j) ∈ [λ] such that (i + 1, j + 1) 6∈ [λ]. Imagine walking along the
rim of λ (as drawn by geometric boxes), starting at the SW corner of
the box (λ′1, 1) and ending at the NE corner of the box (1, λ1). For each
step right, put a gap ◦, and for each step up, put a bead •. For exam-
ple, the rim of (3, 3, 1) is encoded by ◦ • ◦ ◦ • •, as shown below. (The
corresponding walk from SW corner to NE corner is→↑→→↑↑.)

Definition 3.2. An abacus representing λ is any sequence obtained by
taking the sequence of beads and gaps encoding the rim of λ, then
prepending any number of beads, and appending any number of gaps.
Beads before the first gap are said to be initial; gaps after the final bead
are said to be final.

We number the positions in abaci from 0. For example the abacus
• ◦ • ◦ ◦ • • ◦ ◦ represents (3, 3, 1), and has beads in positions 0, 2, 5, 6.
The bead in position 0 is initial and the gaps in positions 7 and 8 are
final. The abacus • • ◦ ◦ represents the empty partition ∅. Clearly a
partition can be reconstructed from any of its abaci. The abacus rep-
resentation for partitions is due to G. D. James: see [5, page 78] for a
textbook account.

The following definition is key to the approach in this section. It is
due to Loehr [8].

Definition 3.3. Let λ be a partition with `(λ) ≤ N. Fix the unique
abacus for λ with exactly N beads and no final gaps. A labelled abacus
for λ is any sequence obtained from this abacus by replacing each gap
with 0 and each bead with a unique element of {1, . . . , N}. Let Abc(λ)
be the set of labelled abaci for λ.

The N relevant to Abc(λ) will always be clear from the context. We
write labelled abaci as words, as shown in Example 3.4 immediately
below. Let λ be a partition. The symmetric group SymN acts transitively
on Abc(λ) by

(Aσ)i =

{
0 if Ai = 0
Aiσ if Ai 6= 0.

This action is free, i.e. the stabiliser of each labelled abacus is trivial. Let
A(λ) ∈ Abc(λ) be the unique labelled abacus whose non-zero entries
are decreasing.
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Example 3.4. Let N = 3. The unique 3 bead abacus for (3, 1) with no
final gap is • ◦ • ◦ ◦ •. Thus A(3, 1) = 302001 and

Abc(3, 1) = {302001, 301002, 203001, 201003, 103002, 102003}.
If σ = (1, 2, 3) ∈ Sym3 then 302001σ = 103002. Observe that x0

3x2
2x5

1 is
the leading term in a(3,1)+(2,1,0), and that

a(3,1)+(2,1,0) = x2
2x5

1 − x2
1x5

2 + x2
3x5

1 − x2
1x5

3 + x2
2x5

3 − x2
3x5

2

= ∑
σ∈Sym3

x2
2x5

1 σ sgn(σ)

The example shows why the freedom to have initial beads in abaci is
important. It also motivates the following definition and lemma.

Definition 3.5. Let A ∈ Abc(λ). The weight of A is ∏N
i=1 xαi

i where αi is
the position of A containing i. We write wt(A) or xA for the weight of A.
The sign of A is sgn(σ) where σ ∈ SymN is the unique permutation such
that A(λ)σ = A. We write sgn(A) for the sign of A.

Observe that if A ∈ Abc(λ) and σ ∈ SymN then xAσ = xAσ.

Lemma 3.6. Let λ be a partition with `(λ) ≤ N. Then

aλ+δ = ∑
A∈Abc(λ)

xA sgn(A).

Proof. An unlabelled N bead abacus for λ has beads in positions λi +
N − i for each i ∈ {1, . . . , N}; these are the entries of λ + δ. Hence

aλ+δ = ∑
σ∈SymN

xλ1+(N−1)
1 . . . xλN

N σ sgn(σ)

= ∑
σ∈SymN

xA(λ)σ sgn(σ)

= ∑
A∈Abc(λ)

xA sgn(A)

as required. �

3.3. Pieri’s Rule. Given a partition λ of n and r ∈ N0, we define Pr(λ) =
{µ ` n + r : [µ] is obtained from [λ] by adding r boxes, no two in the
same row}.

Theorem 3.7 (Pieri’s Rule). Let λ be a partition of n with `(λ) ≤ N and let
r ∈ N0. Then

aλ+δer(x1, . . . , xN) = ∑
µ∈Pr(λ)
`(µ)≤N

aµ+δ.

For example, if N = 3 we have

a(1,1)+δe2(x1, x2, x3) = a(2,2)+δ + a(2,1,1)+δ.
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Like the proof of the Jacobi–Trudi Identity, the proof uses a sign-reversing
involution.

Proof. Let

P = {(A, S) : A ∈ Abc(λ), S ⊆ {1, . . . , N}, |S| = r}.

For (A, S) ∈ P define wt(A, S) = xA ∏i∈S xi and sgn(A, S) = sgn(A).
Thus the left-hand side of the claimed identity is

∑
(A,S)∈P

wt(A, S) sgn(A, S).

This sum usually involves some cancellation. For example, if λ =
(1, 1) and r = 2 then the summands for (3021, {2, 3}) and (3012, {1, 3}),
namely x2

2x3
1x2x3 and −x2

1x3
2x1x3, cancel. To capture this we define a

sign-reversing involution J : P → P . Given (A, S) ∈ P , read A right
to left, and try to move each bead labelled by an element of S one step
right in A. (To move the rightmost bead, it may be necessary to first
extend the abacus by a new space at the far right.) There are two cases:

• If there are no collisions, a new labelled abacus B is obtained.
With labels removed, B represents a partition µ ∈ Pr(λ). Since B
has no final gaps, we have B ∈ Abc(µ). Define J(A, S) = (A, S)
and K(A, S) = B.
• Suppose that the first collision occurs when bead j is moved onto

bead k. Then j ∈ S and k 6∈ S. Define J(A, S) = (A(j, k), S(j, k)).
The following claims are fairly easy to check:

(1) J is an involution. Proof: suppose J(A, S) =
(

A(j, k), S(j, k)
)

as
above. Then when we move beads in A(j, k) the first collision
occurs when bead k ∈ S(j, k) bumps bead j. ||

(2) J is weight-preserving. Proof: suppose J(A, S) =
(

A(j, k), S(j, k)
)

as in (1) and that the bead labelled j is in position a. Then the
bead labelled k is in position a + 1. Let g = ∏i xαi

i where the
product is over all i ∈ {1, . . . , N} such that i 6= j, k and αi is the
position of A containing i. We have

wt(A, S) = xa
j xa+1

k g ∏
i∈S

xi

= xa+1
j xa+1

k g ∏
i∈S
i 6=j

xi

= xa+1
j xa+1

k g ∏
i∈S(j,k)

i 6=k

xi

= xa+1
j xa

kg ∏
i∈S(j,k)

xi

= wt
(

A(j, k), S(j, k)
)
. ||
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(3) J is sign-reversing on its non-fixed points.

(4) K is a bijection between the set of fixed points of J and the set⋃
µ∈Pr(λ):`(µ)≤N Abc(µ). Proof: each such partition µ can be ob-

tained in a unique way by moving r beads on an (unlabelled)
N-bead abacus for λ one step to the right. (Note that only par-
titions with at most N parts can be obtained, because only N
beads are present.) Hence, passing to labelled abaci, K is bijec-
tive.

(5) K is weight-preserving. Proof: if K(A, S) = B then each bead
in A labelled by j ∈ S is moved one step to the right in B, so
xB = xA ∏i∈S xi = wt(A, S). ||

(6) K is sign-preserving. Proof: If K(A, S) = B then the bead labels
appear in the same order in A and B. ||

Hence

aλ+δer(x1, . . . , xN) = ∑
(A,S)∈P

wt(A, S) sgn(A, S)

= ∑
(A,S)∈P

J(A,S)=(A,S)

wt(A, S) sgn(A, S)

= ∑
µ∈Pr(λ)
`(µ)≤N

∑
B∈Abc(µ)

wt(B) sgn(B)

= ∑
µ∈Pr(λ)
`(µ)≤N

aµ+δ,

where the second equality holds by (1), (2), (3) and the third by (4), (5)
and (6). �

3.4. Young’s Rule. Given a partition λ of n and r ∈ N0, let Yr(λ) =
{µ ` n + r : [µ] is obtained from [λ] by adding r boxes, no two in the
same column}.

Theorem 3.8 (Young’s Rule). Let λ be a partition of n with `(λ) ≤ N and
let r ∈ N0. Then

aλ+δhr(x1, . . . , xN) = ∑
µ∈Yr(λ)
`(µ)≤N

aµ+δ.

A highly recommended exercise (see Question 16) is to prove Young’s
Rule in a similar way to Pieri’s Rule, replacing the sets S with multisets.
The key idea is to define J(A, S) and the sequence of bead moves so that
we have the analogues of (1) and (2) above: if bead j bumps bead k in
the moves for (A, S) then bead k should bump bead j in the moves for
J(A, S), and wt(A, S) = wt(J(A, S)).

Lecture 7
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Corollary 3.9. Let α be a composition of n. Then

hα(x1, . . . , xN) = ∑
λ`n

`(λ)≤N

|SSYT(λ, α)| aλ+δ

aδ
.

Proof. Multiplying by aδ it is equivalent to prove that the coefficient of
aλ+δ in the antisymmetric polynomial aδhα(x1, . . . , xN) is |SSYT(λ, α)|.
By Theorem 3.8, this coefficient is the number of ways to obtain λ from
∅ by performing Young’s Rule additions of α1 boxes, then α2 boxes,
and so on. Labelling the boxes added in step number i by i we see this
is |SSYT(λ, α)|. �

For example, if α = (3, 2, 1) and N = 3 then, abusing notation by
writing hr for hr(x1, x2, x3), we have

aδev3(h(3,2,1)) = aδh3h2h1

= (a(3)+δ)h2h1

= (a(5)+δ + a(4,1)+δ + a(3,2)+δ)h1

= (a(6)+δ + a(5,1)+δ) + (a(5,1)+δ + a(4,2)+δ + a(4,1,1)+δ)

+ (a(4,2)+δ + a(3,3)+δ + a(3,2,1)+δ).

Thus the coefficient of a(4,2)+δ is 2, corresponding to the semistandard
tableau

1 1 1 2
2 3

, 1 1 1 3
2 2

.

Remark 3.10. Recall that P(α) is the partition obtained from the com-
position α by rearranging the parts into decreasing order. By Proposi-
tion 1.17, which was proved using the Bender–Knuth involution, if λ is
a partition of n and α, β are compositions of n such that P(α) = P(β)
then |SSYT(λ, α)| = |SSYT(λ, β)|. Since hα = hβ, Corollary 3.9 gives an
alternative proof of this fact.

3.5. Rim-hooks. Let λ be a partition. Fix an unlabelled abacus repre-
senting λ. Moving a bead in position b to a gap in position b + r corre-
sponds to adding r boxes to the rim of λ. For an example see Figure 1
above. If the new partition is µ, then we say that µ/λ is an r-rim-hook of
µ. The height of the r-rim-hook µ/λ, denoted ht(µ/λ), is one less than
the number of rows in the Young diagram of [µ] that have a non-empty
intersection with the set [µ]\[λ]. Equivalently ht(µ/λ) is the number of
beads strictly between positions b and b + r. We define the sign of µ/λ

by sgn(µ/λ) = (−1)ht(µ/λ).
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b

b

FIGURE 1. Adding a 7-rim-hook to (6, 4, 4, 3, 1, 1) by moving the bead b in
the abacus ◦ • •b◦ ◦ • ◦ • • ◦ ◦ • from position 2 to position 9 gives an abacus
representing the partition (6, 5, 5, 5, 4, 1). The new gap in position 2 means
we step right (adding a new box) rather than up; we then follow the rim of
λ (making the same steps as before, but in the process adding a new box
each time) until the new bead in position 9 means we step up rather than
right, after walking around the rim of 7 added boxes.

3.6. Murnaghan–Nakayama Rule.

Theorem 3.11. Let λ be a partition of n with `(λ) ≤ N and let r ∈ N. Then

aλ+δ pr(x1, . . . , xN) = ∑
µ`n+r
`(µ)≤N

µ/λ r-rim-hook

sgn(µ/λ)aµ+δ.

Proof. The proof follows the same model as the proof of Pieri’s rule. Let

P =
{
(A, j) : A ∈ Abc(λ), j ∈ {1, . . . , N}

}
.

For (A, j) ∈ P define wt(A, j) = xAxr
j and sgn(A, j) = sgn(A). By

construction

aλ+δ pr(x1, . . . , xN) = ∑
(A,j)∈P

sgn(A, j)wt(A, j).

As before, this sum involves some cancellation. For example, let λ =
(3, 1), r = 3 and N = 3; the summands for (302001, 2) and (301002, 1),
namely x2

2x5
1x3

2 and −x2
1x5

2x3
1, cancel. We capture this cancellation by a

sign-reversing involution J and a bijection K.
Let (A, j) ∈ P and suppose the bead labelled j is in position b.
• If there is a gap in position b + r then define J(A, j) = (A, j) and

K(A, j) = B where B is the labelled abacus obtained from A by
moving the bead labelled j to position b + r. (This may require
some 0s to be appended to A.)
• Otherwise define J(A, j) = (A(j, k), k) where k is the label of the

bead in position b + r.
Then (1) J is an involution, (2) J is weight-preserving (the example
above shows the idea) and (3) J is sign-reversing on its non-fixed points.
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Moreover we have the analogues of (4) and (5): K is a weight-preserving
bijection

{(A, j) ∈ P : J(A, j) = (A, j)} →
⋃

µ`n+r
`(µ)≤N

µ/λ r-rim-hook

Abc(µ).

Finally suppose that K(A, j) = B where B ∈ Abc(µ). If ht(µ/λ) = h
then there are exactly h beads between the bead labelled j in A and the
gap r positions to its right. As noted above, sgn(µ/λ) = (−1)h. If these
beads are labelled i1, . . . , ih then the bead labels, read from left to right,
are

. . . j, i1, . . . , ih . . . in A

. . . i1, . . . , ih, j . . . in B.

Hence if σ, τ ∈ SymN are the permutations such that A(λ)σ = A and
A(µ)τ = B then

τ = σ(j, i1, . . . , ih).

Since an (h + 1)-cycle has sign (−1)h, we have sgn(A) = (−1)h sgn(B).
Hence sgn(B) = sgn(A)(−1)h = sgn(A) sgn(µ/λ). Applying K to the
fixed points of J we get

aλ+δ pr(x1, . . . , xN) = ∑
(A,j)∈P

J(A,j)=(A,j)

sgn(A, j)wt(A, j)

= ∑
µ

B∈Abc(µ)

sgn(µ/λ) sgn(B)xB

= ∑
µ

sgn(µ/λ)aµ+δ

where the sums over µ are as in the statement of the theorem. �

As for Young’s Rule there is an equivalent version of the Murnaghan–
Nakayama rule for multiplication of an antisymmetric polynomial by
a general power sum symmetric polynomial. We need the following
definition. In it we abuse notation slightly by writing λ ⊆ µ to mean
[λ] ⊆ [µ].

Definition 3.12. Let λ ` n and let α |= n. Let α = (α1, . . . , αk). A
border-strip tableau of shape λ and type α is a sequence of partitions

∅ = λ(0) ⊆ λ(1) ⊆ . . . ⊆ λ(k) = λ

such that λ(i)/λ(i−1) is an αi-rim-hook for each i. The sign of this border-
strip tableau is ∏k

i=1 sgn(λ(i)/λ(i−1)). Define

cλ(α) = ∑
T

sgn(T)

where the sum is over all border-strip tableaux T of shape λ and type α.
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For example, there are four border-strip tableaux of shape (3, 2, 1)
and type (1, 2, 2, 1). They are shown below with the rim-hook corre-
sponding to the ith part of α labelled i. The signs are 1, −1, −1, 1, so we
have c(3,2,1)(1, 2, 2, 1) = 0.

1

3 3

4

2 2 1 2 2

3

3

4

1 3 3

2

2

4

1 3

3

4

2

2

Corollary 3.13. Let α be a composition of n.

pα(x1, . . . , xN) = ∑
λ`n

`(λ)≤N

cλ(α)
aλ+δ

aδ
.

Proof. This follows in the same way as Corollary 3.9 by multiplying aδ

by pα using Theorem 3.11. �

It follows, again as in Young’s Rule, that if λ is a partition of n and α

and β are compositions of n such that P(α) = P(β) then cλ(α) = cλ(β).
This gives a quicker way to see that c(3,2,1)(1, 2, 2, 1) = 0: just observe
that P(1, 2, 2, 1) = (2, 2, 1, 1) and that (3, 2, 1) has no 2-rim-hooks.

On the symmetric group side cλ(α) is the value of the irreducible
character of Symn labelled by λ on elements of cycle-type α: see §5.5.

For a further corollaries of the Murnaghan–Nakayama rule see Ques-
tion 17. An alternative proof is outlined in Questions 20 and 21. A
related result on cores is in Question 19.

4. THE LASCOUX–SCHÜTZENBERGER INVOLUTION

Lecture 8The coplactic maps in this section were defined in [10, §5.5] (where
they are called ‘coplactic operations’). For further background see [7].
The exposition here is essentially a greatly expanded version of [12].
The proofs of Lemmas 4.2 and 4.4 are adapted from [18].

4.1. Words. A word is an element of N?, the free monoid on N. The
word of a tableau t, denoted w(t), is obtained by reading the rows of t
from bottom to top, left to right in each row. For example

w
( 1 1 2 3 3

2 3 3 4
4 5

)
= 45233411233.

Note that if t is semistandard then w(t) determines the shape of t, and
so t itself.

Definition 4.1. Let k ∈ N and let w ∈ N?. A k in w is k-unpaired if when
w is read from left to right, this k sets a new record for the excess of ks
over (k + 1)s. Dually, a k + 1 in w is k-unpaired if when w is read right to
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left, this k + 1 sets a new record for the excess of (k + 1)s over ks. The
k-unpaired subword of w is the subword of k-unpaired entries. A k or
k + 1 in w is k-paired if it is not k-unpaired.

We may omit the ‘k-’ in ‘k-paired’ or ‘k-unpaired’ if it will be clear
from the context.

A useful way to identify the k-unpaired entries of a word w is to re-
place each k + 1 in w with a left parenthesis ‘(‘ and each k in w with a
right parenthesis ’)’. Then a k or k + 1 is paired if and only if its paren-
thesis has a pair, according to the usual rules of bracketing. That this
method works can be proved by strong induction on the length of w.
If every k is to the left of every k + 1 then all parentheses are unpaired,
otherwise w has a subword of the form (k + 1)vk where v contains no
k or k + 1; then k + 1 and k correspond to paired parentheses and re-
moving the subword (k + 1)vk from w gives a shorter word to which
the inductive hypothesis applies. For example, if w = 45233411233 is
the word above, then underlining unpaired parentheses:

• If k = 1 the parenthesised word is 45(334))(33. The unpaired
subword is 12 in positions 8 and 9 and removing 23341 gives a
word with only unpaired parentheses.
• If k = 2 the parenthesised word is 45)((411)((. The unpaired

subword is 2333, taken from positions 3, 5, 10 and 11.

Lemma 4.2. Let w ∈ N? and let k ∈ N. The k-unpaired subword of w is of
the form kc(k + 1)d for some c, d ∈ N0. Changing the letters of this subword
so that it becomes kc′(k + 1)d′ where c′ + d′ = c + d gives a new word whose
k-unpaired entries are in the same positions as the k-unpaired entries of w.

Proof. There cannot be an unpaired k to the right of an unpaired k + 1
in w. Therefore all ks after the rightmost unpaired k + 1 are paired.
Similarly there cannot be an unpaired k + 1 to the left of an unpaired k
in w, so each k + 1 before the leftmost unpaired k are paired. Hence the
unpaired subword is as claimed.

When d ≥ 1, changing the letters of the unpaired subword from
kc(k + 1)d to kc+1(k + 1)d−1 replaces the leftmost unpaired k + 1, in po-
sition i say, with a k; since every k + 1 to the left of position i is paired,
this new k is unpaired. The dual result holds when c ≥ 1; together these
imply the lemma. �

For an immediate application of Lemma 4.2 see Question 23, which
gives a short proof of Theorem 15.14 in [6].

Definition 4.3. Let w ∈ N?, let k ∈ N and suppose that w has k-
unpaired subword kc(k + 1)d. Let Sk(w) be the word obtained from w
by changing the letters of the k-unpaired subword to kd(k + 1)c. If
d > 0, let Ek(w) be defined similarly, changing the subword to kc+1(k +
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1)d−1. If c > 0, let Fk(w) be defined similarly, changing the subword to
kc−1(k + 1)d+1.

By Lemma 4.2, Ek and Fk are mutual inverses and Sk is self-inverse.

4.2. Coplactic operations on tableaux. Using the word map w we can
extend the definition of k-unpaired and the maps Ek, Fk and Sk to tableaux
of a fixed shape. Thus an entry of a µ-tableau t is k-unpaired if and only
if it corresponds to a k-unpaired letter in w(t), Ek(t) is the unique µ-
tableau with word Ek(w(t)), and so on. For example, if

t = 1 1 1 2 3
2 4 4 4

then the 3-unpaired entries of t are in positions (2, 2) and (2, 3) and

1 1 1 2 3
2 4 4 4 E3

//

S3
��

1 1 1 2 3
2 3 4 4

F3oo

S3
��

E3

// 1 1 1 2 3
2 3 3 4

F3oo

S3
��

1 1 1 2 3
2 3 3 4 F3

//

OO

1 1 1 2 3
2 3 4 4

E3oo

F3

//

OO

1 1 1 2 3
2 4 4 4

E3oo

OO

To motivate part of the next lemma, observe that S3E3 acts as an in-
volution on the four tableaux with a 3-unpaired 4. Let

ε(k) = (0, . . . , 1,−1, . . . , 0) ∈ ZN ,

where the unique non-zero entries are in positions k and k + 1.

Lemma 4.4. Let µ be a partition and let α be a composition with `(α) ≤ N.
Fix k ∈ {1, . . . , N− 1}. Let SSYTk(µ, α) and SSYTk+1(µ, α) be the sets of all
semistandard tableaux of shape µ and content α that have a k-unpaired k or a k-
unpaired k + 1, respectively. Let α′ = (α1, . . . , αk−1, αk+1, αk, αk+2, . . . , αN).
The maps

Ek : SSYTk+1(µ, α)→ SSYTk
(
µ, α + ε(k)

)
Fk : SSYTk(µ, α)→ SSYTk+1

(
µ, α− ε(k)

)
Sk : SSYTk(µ, α)→ SSYTk+1

(
µ, α′

)
are bijections and the composition SkEk : SSYTk+1(µ, α)→ SSYTk+1(µ, α′−
ε(k)) has inverse SkEk : SSYTk+1(µ, α′ − ε(k))→ SSYTk+1(µ, α).

Proof. The main thing to check is that if t ∈ SSYTk+1(µ, α) then t′ =
Ek(t) is semistandard. Suppose that the leftmost unpaired k + 1 in
w(t) corresponds to the entry t(a, b) in position (a, b) of t; this entry
is changed to k in t′. If t′ is not semistandard then t(a − 1, b) = k. (It
is easy to rule out that t(a, b− 1) = k + 1.) This k is to the right of the
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unpaired k + 1 in w(t), so by Lemma 4.2 it is paired, necessarily with a
k + 1 in row a and some column b′ > b of t. Since

k = t(a− 1, b) ≤ t(a− 1, b′) < t(a, b′) = k + 1

we have t(a− 1, b′) = k. Thus t(a, c) = k + 1 and t(a− 1, c) = k for all
c ∈ {b, . . . , b′}. It follows that the entries in positions (a− 1, b + j) and
(a, b′ − j) of t are paired for each j ∈ {0, 1, . . . , b′ − b}.

. . .

. . .
row a− 1

row a
k)

k + 1(
k)

k + 1(

col b col b′

In particular, the k + 1 in position (a, b) of t is paired, a contradiction.
Hence Ek(t) is semistandard. The proof is similar for Fk, in the case
when t has an unpaired k.

For each t ∈ SSYTk(µ, α), the tableau Sk(t) is of the form Er
k(t) or

Fr
k (t) for some r ∈ N0. Therefore it is semistandard; since the operation

S switches the number of unpaired ks and (k + 1)s, it is in SSYT(µ, α′).
It is now routine to check that EkFk and FkEk are the identity maps

on their respective domains, so Ek and Fk are bijective. If the unpaired
subword of w(t) is kc(k + 1)d then Sk(t) = Ed−c

k (t) if d ≥ c and Sk(t) =
Fc−d

k (t) if c ≥ d. Hence Sk and SkEk are involutions. It is easily checked
that the image of SkEk is as claimed. �

The final part of the claim gives some motivation for the next defini-
tion.

4.3. Dot action. The symmetric group SymN acts on ZN by place per-
mutation: thus if α ∈ ZN and σ ∈ SymN then (ασ)k = αkσ−1 . Note that
the entry αk in position k of α appears in position kσ of ασ. This shows
why the inverse appears in the definition; without it, the action is not a
well-defined right action.

We define the dot action of SymN on ZN by

(4.1) α · (k, k + 1) = α(k, k + 1)− ε(k)

for k ∈ {1, . . . , N − 1}. An equivalent definition is

α · σ = (α + δ)σ− δ

where δ = (N − 1, . . . , 1, 0), as in (3.2) in §3. Since α · σ has ith entry
equal to (α + δ)iσ−1 − δi = αiσ−1 + (N − iσ−1)− (N − i), it follows that

(4.2) (α · σ)i = αiσ−1 − iσ−1 + i.

Definition 4.5. For α a composition with `(α) ≤ N and σ ∈ SymN we
define α ·σ to be the infinite integer sequence obtained from (α1, . . . , αN) ·
σ by appending zeros.
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Note that α · σ may have negative parts, so is not in general a com-
position. By Question 22, if λ is a partition with `(λ) ≤ N and σ ∈
SymN , then λ · σ is a partition if and only if σ = idSymN

. Note that, by
Lemma 4.4, if t ∈ SSYT(µ, α) and Ek(t) is defined then

(4.3) SkEk(t) ∈ SSYT(µ, α · (k, k + 1)).

Lemma 4.9 below gives a close connection between the dot action and
the Jacobi–Trudi Identity. See MathOverflow 80150 for some other ap-
pearances of the dot action.

4.4. Latticed tableaux and the J involution. Say that a word w is lat-
ticed if it has no k-unpaired (k + 1)s, for any k. Equivalently, by Defini-
tion 4.1, for each k, when w is read from right to left, the number of ks is
always equal or greater than the number of (k + 1)s, for every k. If w is
not latticed and the rightmost j-unpaired j + 1 in w is a k + 1, say that w
is k-unlatticed. (This term is not standard but is temporarily useful.) We
extend these definitions to tableaux using the word map.

Definition 4.6. Let λ be a partition of n with `(λ) ≤ N. Let µ be a
partition of n. Let

T =
⋃

σ∈SymN

SSYT(µ, λ · σ).

(If λ · σ has a negative part then take SSYT(µ, λ · σ) = ∅.) Define J :
T → T by J(t) = t if t is latticed and J(t) = SkEk(t) if t is k-unlatticed.

Lemma 4.7. Take notation as in Definition 4.6. The map J is an involution
Lecture 9on T . Let t ∈ SSYT(µ, λ · σ).

(i) If t is k-unlatticed then J(t) ∈ SSYT
(
µ, λ · (σ(k, k + 1))

)
.

(ii) If t is latticed then σ = idSymN
, λ = µ and t is the unique element of

SSYT(λ, λ).

Proof. Let t ∈ SSYT(µ, λ ·σ) be k-unlatticed. The words w(t) and w(J(t))
differ only in their entries lying in the positions of the k-unpaired en-
tries of w(t). If the k-unpaired subword of w(t) is ka(k + 1)b then
the k-unpaired subword of w(J(t)) is kb−1(k + 1)a+1. Let the right-
most k-unpaired k + 1 in w(t) be in position i. Recall that, by Defini-
tion 4.1, a j + 1 is j-unpaired in a word v if and only if it sets a new
record for the excess of (j + 1)s over js when v is read right to left.
Since positions i + 1, . . . , n of w(t) and w(J(t)) are equal, it follows that
the subword in these positions is latticed in both w(t) and w(J(t)).
Since w(J(t))i = k + 1, we see that w(J(t)) is k-unlatticed. Hence
J(J(t)) = SkEk(J(t)). It now follows from Lemma 4.4 that J(J(t)) = t.
Hence J is an involution.

Part (i) follows from (4.3). For (ii), if t is latticed then the content of
t is a partition, so σ = idSymN

by Question 22 and so t ∈ SSYT(µ, λ).
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Considering each row of t in turn, starting with the first row, we see
that the lattice condition implies that µ = λ and all the entries in row i
of t are equal to i, for each i ∈ {1, . . . , `(λ)}. �

Note that (ii) shows that J has a unique fixed point in T if µ = λ and
otherwise none. When the definition of J is extended to skew-tableaux
there may be many fixed points: see Question 30.

Example 4.8. Take λ = (5, 3, 1). The orbit of (5, 3, 1) under the dot
action can be computed by repeatedly applying the transpositions (1, 2)
and (2, 3) using (4.1).

(5, 3, 1)

(5, 0, 4) (−1, 6, 4)

(−1, 3, 7)

(2
, 3
)

(1, 2)

(2, 3)

(2, 6, 1) (2, 0, 7) (1, 2)

(2, 3)

(1, 2)

In fact one can show using the Bruhat order that there is no need to
carry on once a negative entry appears, but it is maybe interesting to
see the braid relation (1, 2)(2, 3)(1, 2) = (2, 3)(1, 2)(2, 3) appearing.

The four compositions (5, 3, 1), (2, 6, 1), (5, 0, 4) and (2, 0, 7) corre-
spond to the four non-zero summands in the Jacobi–Trudi Identity for
s(5,3,1). We have

aδev3s(5,3,1) = aδev3h(5,3,1) − aδev3h(2,6,1) − aδev3h(5,0,4) + aδev3h(2,0,7)

= ∑
µ

(
|SSYT(µ, (5, 3, 1))| − |SSYT(µ, (2, 6, 1))|
− |SSYT(µ, (5, 0, 4))|+ |SSYT(µ, (2, 0, 7))|

)
aδ+µ

where the second line follows from Young’s Rule (Corollary 3.9) for an-
tisymmetric polynomials. Applying the J involution we see that the co-
efficient of aδ+µ is the number of latticed semistandard Young tableaux
of shape µ and content (5, 3, 1). As remarked above, if µ = (5, 3, 1) there
is a unique such tableau, namely

1 1 1 1 1
2 2 2
3

and otherwise there are none. Hence aδs(5,3,1)(x1, x2, x3) = aδ+(5,3,1) and
s(5,3,1)(x1, x2, x3) = aδ+(5,3,1)/aδ.

Two explicit examples of the J involution are given below.

(i) Take µ = (5, 3, 1). Since µ does not dominate P(2, 6, 1) = (6, 2, 1),
P(5, 0, 4) = (5, 4) or P(2, 0, 7) = (7, 2), the set T in Definition 4.6
is simply SSYT((5, 3, 1), (5, 3, 1)), and its unique element is the
fixed point of J shown above.
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(ii) Take µ = (6, 3). Then

T = SSYT((6, 3), (5, 3, 1)) ∪ SSYT((6, 3), (2, 6, 1)) ∪ SSYT((6, 3), (5, 0, 4))

=

{
1 1 1 1 1 2
2 2 3

, 1 1 1 1 1 3
2 2 2

}
∪
{

1 1 2 2 2 2
2 2 3

}
∪
{

1 1 1 1 1 3
3 3 3

}
Label the tableaux t1, t2, t3, t4 from left to right. We have J(t1) =
S1E1(t1) = t3 and J(t2) = S2E2(t2) = t4. Of course this implies
that J(t3) = t1 and J(t4) = t2.

4.5. Equivalence of definitions of Schur functions. The previous ex-
ample shows the main ideas required. We need the following version
of the Jacobi–Trudi Identity (Theorem 2.1).

Lemma 4.9. Let λ be a partition of n with `(λ) ≤ N. Then

sλ = ∑
σ∈SymN

hλ·σ sgn(σ).

Proof. The Jacobi–Trudi Identity states that if `(λ) ≤ M then

sλ = det(hλi−i+j)1≤i,j≤M.

Take M = N. For each τ ∈ SymN , the summand of the determi-
nant given by taking hλi−i+iτ from row i of the matrix, for each i ∈
{1, . . . , N}, is sgn(τ)∏N

i=1 hλi−i+iτ. Therefore

sλ = ∑
τ∈SymN

sgn(τ)
N

∏
i=1

hλi−i+iτ

= ∑
σ∈SymN

sgn(σ)
N

∏
i=1

hλiσ−1−iσ−1+i

= ∑
σ∈SymN

sgn(σ)hλ·σ

where the final equality follows immediately from (4.2). �

In the path model used to prove Theorem 2.1, path tuples for which
the final destination of the path starting at (M− i, 1) is (λiτ + M− iτ, N)
correspond to the summand sgn(τ)∏M

i=1 hλiτ−iτ+i = sgn(τ)hλ·τ−1 in
the expansion of the determinant. (Since the path starting at (M− i, 1)
makes λiτ − iτ + i right steps.) Swapping the final destinations of the
paths starting at (M − i, 1) and (M − j, 1) replaces the terms hλiτ+i−iτ
and hλjτ+j−jτ in this product with hλjτ+i−jτ and hλiτ+j−iτ, respectively.
Thus τ is replaced with (i, j)τ.

Theorem 4.10. Let λ be a partition of n with `(λ) ≤ N. Then sλ(x1, . . . , xN) =
aλ+δ/aδ.
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Proof. By Lemma 4.9 we have

aδsλ(x1, . . . , xN) = ∑
σ∈SymN

aδhλ·σ(x1, . . . , xN) sgn(σ).

By Young’s rule (as stated in Corollary 3.9) we have

hλ·σ(x1, . . . , xN) = ∑
µ`n

`(µ)≤N

|SSYT(µ, λ · σ)|
aµ+δ

aδ
.

Therefore

aδsλ(x1, . . . , xN) = ∑
µ`n

`(µ)≤N

cµaδ+µ

where

cµ = ∑
σ∈SymN

|SSYT(µ, λ · σ)| sgn(σ).

Fix µ. Let T =
⋃

σ∈SymN
SSYT(µ, λ · σ) and let J : T → T be as defined

in Definition 4.6. By Lemma 4.7, if t ∈ SSYT(µ, λ · σ) and J(t) 6= t then
J(t) ∈ SSYT

(
µ, λ · (σ(k, k + 1))

)
for some k ∈ {1, . . . , N − 1}. Using the

disjointness of the union defining T (see Question 22) it follows that
applying J therefore cancels all contributions to cµ except those coming
from tableaux t ∈ T such that J(t) = t. By Lemma 4.7, the unique fixed
point of J on T is the unique element of SSYT(λ, λ) when µ = λ, and
otherwise there are no fixed points. Therefore cλ = 1 and cµ = 0 unless
µ = λ. Hence aδsλ(x1, . . . , xN) = aδ+λ, as required. �

4.6. Results for Schur functions. Using (1.5) in §1.6 it is now routine
to translate all the results in §3 to results on Schur functions. Let λ be
a partition of n and let r ∈ N0. Dividing through by aδ in Pieri’s Rule
(Theorem 3.7) we get

sλ(x1, . . . , xN)er(x1, . . . , xN) = ∑
µ∈Pr(λ)
`(µ)≤N

sµ(x1, . . . , xN)

for all N ∈ N such that `(λ) ≤ N. Provided N ≥ r + n the condition
`(µ) ≤ N always holds, so we have

evN(sλer) = ∑
µ∈Pr(λ)

evN(sµ)

for all N sufficiently large. Hence, by (1.5), sλer = ∑µ∈Pr(λ) sµ. Young’s
Rule and the Murnaghan–Nakayama Rule for Schur functions follow in
the same way. (See Questions 25 and 28.)
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5. INNER PRODUCT ON Λ

Define an inner product 〈 , 〉 : Λ×Λ→ C by extension of

〈sλ, sµ〉 =
{

1 if λ = µ

0 otherwise.

We use the convention that 〈 , 〉 is linear in its first component and
conjugate linear in its second, so the form as a whole is sesquilinear.

5.1. Dual bases. If { fµ : µ ` n} and {gν : ν ` n} are bases of Λn such
that

〈 fµ, gν〉 =
{

1 if µ = ν

0 otherwise,

then we say { fµ : µ ` n} and {gν : ν ` n} are dual bases. Thus {sµ : µ `
n} is a self-dual orthonormal basis of Λn.

The following lemma gives an efficient way to prove duality relation-
ships between the symmetric functions we have studied.

Lecture 10
Lemma 5.1. Suppose that { fµ : µ ` n} and {gν : ν ` n} are bases of Λn
such that

f = ∑
ν`n
〈 f , gν〉 fν

for all f ∈ Λn. Then { fµ : µ ` n} and {gν : ν ` n} are dual bases.

Proof. Taking f = fµ we get fµ = ∑ν`n〈 fµ, gν〉 fν. The result follows by
comparing coefficients. �

Theorem 5.2. The bases {monν : ν ` n} and {hµ : µ ` n} of Λn are dual.

Proof. By the expansion of sλ in the monomial basis in (1.11), we have

sλ = ∑
ν`n
|SSYT(λ, ν)|monν

for all partitions λ of n. By Young’s rule (as stated in Corollary 3.9 in
the antisymmetric setting), we have

hν = ∑
λ`n
|SSYT(λ, ν)|sλ

for all partitions ν of n. Hence 〈sλ, hν〉 = |SSYT(λ, ν)|. Substitut-
ing in the first equation we get sλ = ∑ν`n〈sλ, hν〉monν. Hence f =

∑ν`n〈 f , hν〉monν for all f ∈ Λn. Now apply Lemma 5.1. �

The analogous result for power sum symmetric functions can also be
obtained by this method, but the proof is a little technical. See Proposi-
tion 7.9.3 in [14] for a shorter, and more usual, alternative proof, using
Cauchy’s Identity

∏
1

1− xiyj
= exp

∞

∑
n=1

pn(x)pn(y)
n

.
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It is helpful to use a definition from the character theory of the sym-
metric group. Given a partition µ of n with `(µ) = k, and α a composi-
tion of n, let σα ∈ Symn be a permutation of cycle-type α and let πµ(α)
be the number of ordered set partitions (P1, . . . , Pk) of {1, . . . , n} such
that each Pi is a union of orbits of σα and |Pi| = µi for each i. Thus πµ

is the permutation character of Symn acting on the cosets of the Young
subgroup Symµ = Symµ1

× . . .× Symµ`(µ)
.

For example, take r ≤ n/2. Then π(n−r,r) is the permutation char-
acter of Symn acting on r-subsets of {1, . . . , n} and so π(n−r,r)(σ) is the
number of r-subsets of {1, . . . , n} fixed by σ.

Theorem 5.3. The bases {pµ : µ ` n} and { pν
zν

: ν ` n} of Λn are dual.

Proof. Fix a partition µ of n with `(µ) = k. Given a composition α of
n, having exactly aj parts of size j for each j ∈ {1, . . . , n}, define an α-
packing matrix to be a k × n matrix C such that ∑n

j=1 jCij = µi for each
i ∈ {1, . . . , k} and ∑k

i=1 Cij = aj for each j ∈ {1, . . . , n}.
Claim 1:

πµ(α) = ∑
n

∏
j=1

aj!
C1j! . . . Ckj!

where the sum is over all α-packing matrices C. Proof: put Cij of the
aj orbits of σα of size j in Pi. There are (

aj
C1j,...,Ckj

) ways to choose which

orbits of size j go into each of P1, . . . , Pk. ||
Claim 2:

pα = ∑
µ`n

πµ(α)monµ.

Proof: suppose that when we multiply out

pa1
1 pa2

2 . . . pan
n = (x1 + · · ·+ xN)

a1(x2
1 + · · ·+ x2

N)
a2 . . . (xn

1 + · · ·+ xn
N)

an

we choose to take xj
i from exactly Cij of the aj terms in the product

(xj
1 + · · ·+ xj

N)
aj .

We can do this in (
aj

C1j,...,CNj
) ways, for each j ∈ {1, . . . , n}. Moreover,

the product is xµ if and only if C is an α-packing matrix. Claim 1 now
implies that the coefficient of monµ is πµ(α). ||
Claim 3:

hr = ∑
β`r

pβ

zβ

Proof: This follows from the Cycle Index Formula (Theorem 1.12) and
the following remark.

Claim 4:
hµ = ∑

α`n

pα

zα
πµ(α).
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Proof: This follows by multiplying out the product hµ1 . . . hµk , using
Claim 3. The argument is similar to Claim 2, and is left as an exercise:
see Question 26. ||

By Claim 2 and Theorem 5.2, we have

(5.1) 〈hµ, pα〉 = πµ(α).

Substituting in Claim 4 we get

hµ = ∑
α`n
〈hµ, pα〉

pα

zα
.

Therefore f = ∑α`n〈 f , pα〉 pα
zα

for all f ∈ Λn and the result follows from
Lemma 5.1. �

5.2. Gale–Ryser revisited. By Question 25 we have

hµ = ∑
λ`n
λ�µ

|SSYT(λ, µ)|sλ(5.2)

eν = ∑
λ`n

λ′�ν

|SSYT(λ′, ν)|sλ(5.3)

Hence
〈hµ, eν〉 = ∑

λ`n
ν′�λ�µ

|SSYT(λ, µ)||SSYT(λ′, ν)|.

We saw in Lemma 1.3 that eν = ∑µ`n Nµνmonµ. Taking the inner prod-
uct with hµ we obtain 〈hµ, eν〉 = Nµν. Therefore, to show that if ν′ � µ
then Nµν > 0 it is sufficient to prove the following (related) result on
Kostka Numbers. The proof is the symmetric functions version of The-
orem 2.2.20 in [5].

Lemma 5.4. If λ � µ then |SSYT(λ, µ)| ≥ 1.

Proof. Obviously Kλλ = 1. Let µ and µ? be neighbours in the dominance
order, with µ � µ?, so by Question 2, µ?

i = µi − 1, µ?
j = µj + 1 for some

i < j, and µ?
k = µk if k 6= i, j. Since h(a,b) = h(a+1,b−1) + s(a,b) whenever

a ≥ b, by Corollary 2.4, we have

hµ? =
(
∏

k 6=i,j
hµk

)
hµi−1hµj+1 =

(
∏

k 6=i,j
hµk

)(
hµi hµj + s(µi−1,µj+1)

)
and so if f = ∏k 6=i,j hµk then

Kλµ? = 〈sλ, hµ?〉
= 〈sλ, hµ〉+ 〈sλ, f s(µi−1,µj+1)〉
= Kλµ + 〈sλ, f s(µi−1,µj+1)〉
≥ Kλµ.

The lemma follows. �
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This gives the direction of the Gale–Ryser Theorem not proved in
§1.2. The notes for Question 11 give references for combinatorial proofs
of Lemma 5.4.

5.3. The ω involution. The following definition is maybe best moti-
vated by the connection with characters of the symmetric group, where
it corresponds to multiplication by the sign character: see §5.5.

Definition 5.5. Let ω : Λ → Λ be the C-algebra homomorphism de-
fined by ω(hn) = en.

It follows fairly easily from Newton’s Identity (1.3) that ω(en) = hn:
see Question 10. Thus ω is an involution. The related identities in (1.7)
or Question 3(f) can be used to show that ω(pn) = (−1)n−1 pn for all
n ∈ N. (Again see Question 10.) Hence

(5.4) ω(pλ) = sgn(σλ)pλ

where σλ is a permutation of cycle-type λ.

Lemma 5.6. Let λ be a partition. Then ω(sλ) = sλ′ .

Proof. Comparing (5.2) and (5.3) we get

∑
λ`n
λ�µ

|SSYT(λ, µ)|ω(sλ) = ∑
λ`n

λ′�µ

|SSYT(λ′, µ)|sλ.

Suppose inductively that ω(sλ) = sλ′ for all λ � µ. The previous equa-
tion implies that

ω(sµ) + ∑
λ`n
λ�µ

|SSYT(λ, µ)|ω(sλ) = sµ′ + ∑
λ`n

λ′�µ

|SSYT(λ′, µ)|sλ.

By induction, the left-hand side is

ω(sµ) + ∑
λ`n
λ�µ

|SSYT(λ, µ)|sλ′ .

If λ � µ the coefficient of sλ′ on either side is |SSYT(λ, µ)|. Therefore
cancelling these equal terms we get ω(sµ) = sµ′ , as required. �

Alternative proof. By the Murnaghan–Nakayama rule (rewriting Corol-
lary 3.13 using Theorem 4.10) we have

pµ = ∑
λ`n

cλ(µ)sλ

where cλ(µ) is the sum of the signs of border-strip tableaux of shape λ
and type µ. Taking the inner product with sλ we get

〈sλ, pµ〉 = cλ(µ).
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Hence if λ is a partition of n then, by Theorem 5.3,

sλ = ∑
µ`n
〈sλ, pµ〉

pµ

zµ
= ∑

µ`n
cλ(µ)

pµ

zµ
.

Applying ω we obtain

ω(sλ) = ∑
µ`n

cλ(µ) sgn(σµ)
pµ

zµ
= ∑

µ`n
cλ′(µ)

pµ

zµ
= sλ′

where σµ ∈ Symn is a permutation of cycle-type µ. Here the middle
equality is proved by transposing the border-strip tableaux counted
(with signs) in cλ(µ). �

5.4. Littlewood–Richardson Rule. In the final lecture I sketched a proof
of the Littlewood–Richardson Rule. This needs some extensions to the
results proved above, specifically the Jacobi–Trudi formula for Schur
functions labelled by skew-partitions, and the Lascoux–Schützenberger
involution for skew-tableaux. Essentially the proof is the specialization
of the proof of the SXP rule in [18] (in turn inspired by [12]), replacing
multitableaux with skew-tableaux. See Question 27, 30, and 31 and the
outline answers.

5.5. Connection with the symmetric group. Let n ∈ N0. Let Cl(Symn)
be the set of functions Symn → C that are constant on conjugacy classes.
Thus Cl(Symn) has as a basis the indicator functions 1α for α a partition
of n defined by

1α(σ) =

{
1 if σ has cycle-type α

0 otherwise.

The elements of Cl(Symn) are called class functions. There is an inner
product on Cl(Symn) defined by

〈φ, ψ〉 = 1
n! ∑

σ∈Symn

φ(σ)ψ(σ).

Proposition 5.7. There is a linear isometry Λn → Cl(Symn) defined by
pα
zα
7→ 1α for each α ` n. Under this isometry the ω-involution corresponds

to multiplication by the sign character and the image of sλ is an irreducible
character of Symn.

Proof. By Claim 4 in the proof of Theorem 5.3 we have hµ = ∑α`n
pα
zα

πµ(α).
Therefore the image of hµ is the permutation character πµ. Since

〈hµ,
pα

zα
〉 = πµ(α)

zα
= 〈πµ, 1α〉,

the map is an isometric embedding. Since Λn and Cl(Symn) both have
dimension equal to the number of partitions of n, it is an isometry.
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Applying the ω-involution to Claim 4 and using (5.4) we get eµ =

∑α`n
pα
zα

πµ(α) sgn(σα), where σα is an element of cycle-type α. Therefore
the image of eµ is πµ sgnSymn

, where sgnSymn
is the sign character of

Symn. This proves the second claim.
By (5.2) and (5.3) we have hµ = h + sµ and eµ′ = e + sµ where h is a

sum of Schur functions sλ for λ � µ and e is a sum of Schur functions
sλ for λ � µ. Therefore 〈hµ, eµ′〉 = 1 and so the ordinary characters πµ

and πµ′ sgn have a unique irreducible constituent in common, namely
the image of sµ. �

Given a partition λ of n, let χλ ∈ Cl(Symn) denote the image of sλ. By
Corollary 3.13, taking the inner product of each side with sλ, we have

〈sλ, pα〉 = cλ(α)

where cλ(α) is the sum of the signs of the border-strip tableaux of shape
λ and type α defined in Definition 3.12. Hence cλ(α) = 〈χλ, zα1α〉 =
χλ(σα) where σα has cycle-type α. The Murnaghan–Nakayama rule
therefore gives the values of χλ, as claimed after Corollary 3.13.

In fact it is more common to work with the inverse map, known as
the characteristic isomorphism, defined for φ ∈ Cl(Symn) by

(5.5) φ 7→ 1
n! ∑

σ∈Symn

φ(σ)pρ(σ)

where ρ(σ) is the cycle-type of σ ∈ Symn. Let ch :
⊕

n∈N0
Cl(Symn)→

Λ be the resulting isometry. (We define the inner product of two class
functions of symmetric groups of different degree to be zero.) The left-
hand side

⊕
n∈N0

Cl(Symn) is then a graded ring with product

(5.6) φ ◦ ψ =
(
φ× ψ

)xSymm+n
Symm × Symn

where φ ∈ Cl(Symm) and ψ ∈ Cl(Symn) and the arrow denotes induc-
tion. We have already proved most of the following remarkable theo-
rem. In it, recall from §5.1 that πµ is the permutation character of Symn
acting on the cosets of the Young subgroup Symµ.

Theorem 5.8. The map ch :
⊕

n∈N0
Cl(Symn) → Λ is an isometric ring

isomorphism. It satisfies ch χλ = sλ, ch πµ = hµ and ch 1α = pα
zα

for all
partitions λ, µ, α. Moreover ch(φ sgnSymn

) = ω(ch φ) for all class functions
φ of Symn.

Proof. It only remains to show that ch is a ring homomorphism. Let λ

and µ be partitions of n. We have πλ ◦ πµ = πν where ν is the partition
whose multiset of parts is the union of the multisets of parts of λ and µ.
Therefore

ch (πλπµ) = ch πν = hν = hλhµ = (ch πλ)(ch πµ)
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as required. �

Remark 5.9. Suppose we fix N ∈ N and attempt to define

C[x1, . . . , xN ]
SymN →

⊕
Cl(Symn)

by sλ(x1, . . . , xN) 7→ χλ. There is an immediate problem: this map is not
well-defined because the sλ(x1, . . . , xN) are not linearly independent
when N < `(λ). (Indeed, by Lemma 1.16, we have s(1n)(x1, . . . , xN) = 0
whenever N < n.) This shows that working with infinitely many vari-
ables, i.e. symmetric functions rather than symmetric polynomials, is
essential to get a nice correspondence with the symmetric group.

The corollary below follows from the Littlewood–Richardson rule (in
a more explicit form), but has a much simpler proof using character
theory.

Corollary 5.10. Let µ ` m and ν ` n. Then sµsν is a non-negative integral
linear combination of Schur functions.

Proof. The corresponding claim for symmetric group characters, that

(χµ × χν)↑Symm+n
Symm × Symn

is a non-negative integral linear combination of irreducible characters,
is obvious. �

5.6. The cycle index revisited?. The Cycle Index Formula for the sym-
metric group was seen in Theorem 1.12. It generalizes as follows. Given
σ ∈ Symn, let

cyctype(σ) = (1cyc1(σ), . . . , ncycn(σ))

be the cycle-type of σ. Let G ≤ Symn be a permutation group. The cycle
index of G is defined by

cycG =
1
|G| ∑

σ∈G
pcyctype(σ).

The general cycle index just defined appears in a beautiful theorem of
Polya, stated in §5.7 below and proved using the characteristic isome-
try. Here we give some more immediate motivation for the cycle index
using the results from §1.11.

An explicit definition of the inverse of the characteristic isometry will
be useful. For each partition λ of n, let σλ ∈ Symn be a chosen element
such that cyctype(σλ) = λ. Then ch−1 : Λn → Cl(Symn) is defined on
a general element ∑λ aλ

pλ
zλ
∈ Λn by

(5.7) ch−1
(
∑
λ

aλ
pλ

zλ

)
= φ
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where φ ∈ Cl(Symn) is the class function such that φ(σλ) = aλ for each
partition λ of n.

Example 5.11.
(1) Since Symn has n!/zλ elements of cycle-type λ, cycSymn

= ∑λ
pλ
zλ

.
where the sum is over all partitions of n. Hence by (5.7), we
have ch−1 cycSymn

= 1Symn
, where 1Symn

is the trivial character
of Symn. By the remark following Theorem 1.12, cycSymn

= hn.
Moreover, by (1.9), exp ∑∞

k=1
pk
k tk = ∑∞

n=0 cycSymn
tn. We saw in

§1.11 some of the applications of the cycle index of Symn to enu-
merating permutations.

(2) cyc1 = pn
1 and ch−1 pn

1 = n!1(1n) is the regular character of
Symn; this is the permutation character of Symn acting on itself
by right multiplication. To illustrate that multiplication of sym-
metric polynomials becomes the ‘multiply and induce’ product
on class functions in (5.6), observe that the regular character is
(1S1 × · · · × 1S1) ↑

Sn= 1Sn ↑Sn where 1S1 = ch p1 is the trivial
character of S1.

(3) Let n = 4, let H = 〈(1, 2, 3, 4)〉 and let G = 〈(1, 2, 3, 4), (1, 3)〉 be
the dihedral group. Then

cycH =
1
4
(p(1,1,1,1) + p(2,2) + 2p(4))

= 6mon(1,1,1,1) + 3mon(2,1,1) + 2mon(2,2) + mon(3,1) + mon(4)

cycG =
1
8
(p(1,1,1,1) + 2p(2,1,1) + 3p(2,2) + 2p(4))

= 3mon(1,1,1,1) + 2mon(2,1,1) + 2mon(2,2) + mon(3,1) + mon(4)

and the corresponding class functions on Sym4 are

(1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

ch−1 cycH 6 0 2 0 2
ch−1 cycG 3 1 3 0 1

For instance ch−1 cycH has value 1
42z(4) = 2 on 4-cycles. Ob-

serve that ch−1 cycH is the permutation character of Sym4 acting
on the cosets of H, and similarly for G. We record the monomial
expansions for later use as an example of Theorem 5.14.

More generally we have the following lemma.

Lemma 5.12. Let G ≤ Symn be a permutation group. Then ch−1 cycG is the
permutation character of Symn acting on the cosets of G.

Proof. Suppose that G has mλ elements of cycle-type λ. By (5.7),

ch−1 cycG = φ
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where φ ∈ Cl(Symn) is the class function defined by

(5.8) φ(σ) =
zcyctype(g)

|G| mcyctype(σ).

Let π be the permutation character of Sn acting on the cosets of G. Thus
π(σ) is the number of cosets Gτ such that Gτσ = Gτ, or equivalently,
such that τστ−1 ∈ G. Therefore

(5.9) π(σλ) =
1
|G|
∣∣{τ ∈ Symn : τσλτ−1 ∈ G}

∣∣ = zλ

|G|mλ.

where the second equality uses that zλ is the size of the centralizer of
a permutation of cycle-type λ. Comparing (5.8) and (5.9) we get the
required conclusion. �

5.7. Pólya’s Cycle Index Theorem. Polya’s Theorem concerns the ac-
tion of Symn on the set Wn of words of length n with entries from N.
Given w ∈ Wn let cont(w) be the composition α of n such that αi is
the number of entries of w equal to i. As seen in §4.3, the symmet-
ric group Symn acts on the set of such words by place permutation:
(wσ)i = wiσ−1 . Given a permutation subgroup G ≤ Symn let Wn/G
denote the set of orbits of G on Wn. We write cont([w]) for the common
content of words in the orbit of w. Observe that if α is a composition
rearranging to the partition λ then the number of orbits with content α
and λ agree. We may therefore enumerate all the orbits by the symmet-
ric function

enumG = ∑
λ

cλmonλ

where the sum is over all partitions of n and cλ is the number of orbits
of content λ.

Example 5.13. Let H = 〈(1, 2, 3, 4)〉 ≤ Sym4. Then W4/H is the set of
4-bead necklaces, where two necklaces are identified if they are equal up
to a rotation. There are two necklaces with content (2, 2), namely 1122
and 1212, and six necklaces with content (1, 1, 1, 1), namely 1234, 1243,
1324, 1342, 1423, 1432. Note that, as can be seen from the monomial
expansions in Example 5.11(3), these are the coefficients of mon(2,2) and
mon(1,1,1,1) in cycH. We leave it as an exercise to check the other coeffi-
cients, and the corresponding result for W4/G, thought of as the set of
4-bead necklaces up to both rotation and reflection.

Pólya’s Theorem says this holds in general, i.e. enumG is cycG written
in the monomial basis.

Theorem 5.14. Let G ≤ Symn be a permutation group and let λ be a partition
of n. The coefficient of monλ in cycG is the number of orbits of G on Wn with
content λ.
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Proof. Let mλ be the number of orbits of G on Wn with content λ. The
subset Wλ of Wn of words with content λ is, as a Symn-set, equivalent to
the coset space Symλ \ Symn, where Symλ is the Young subgroup for λ
seen in §5.1. Therefore mλ is the number of double cosets Symλ σG for
σ ∈ Symn. The coefficient in the statement of the theorem is

[monλ] cycG = 〈hλ, cycG〉Λn

= 〈πλ, 1
xSymn

G 〉Symn

= 〈1
xSymn

Symλ
, 1
xSymn

G 〉Symn

= 〈1
xSymn

Symλ

y
G, 1G〉G

= mλ

where the equalities hold by the duality between the monomial and
complete symmetric functions in Theorem 5.2, Lemma 5.12, Theorem 5.8,
the interpretation of πλ as a permutation character, Frobenius reciprocity
and finally Mackey’s Theorem. �

See Exercise 32 below for the connection between Pólya’s Theorem
and the more basic orbit counting method using the result commonly
known as Burnside’s Lemma.

6. PROBLEMS

Hints, references or solutions for these problems are given in the final
section.

(Lecture 1) Gale–Ryser Theorem and dominance order

1. Let λ be a partition.
(a) Show that there is a unique 0-1 matrix with row sums λ and

column sums λ′. [Hint: for existence, use the Young diagram
of λ.]

(b) Suppose that µ � λ′. By the Gale–Ryser Theorem (the direction
not proved in Lecture 1), there is a 0-1 matrix with row sums λ
and column sums µ. Assuming this, prove that there are at least
two such matrices.

2. (a) Let λ and ν be partitions of n. Show that if λ and ν are neigh-
bours in the dominance order (i.e. λ � ν and if λ � µ � ν then
either λ = µ or µ = ν) then [ν] can be obtained from [λ] by mov-
ing a single box down in the Young diagram, and conversely,
after any such move on [λ], we obtain a partition ν with λ � ν.

For example, λ = (3, 2, 2) and ν = (3, 2, 1, 1) are neighbours in
the dominance order, obtained by moving the box (3, 2) ∈ [λ] to
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the first available position (4, 1) ∈ [ν]. If instead (1, 3) is moved
to (4, 1) we get (2, 2, 2, 1), which is a neighbour of ν, but not of
λ:

+

•
�

+

•

�

+

.

(b) Let α and β be partitions of n. Show that α � β if and only if
α′ � β′. (In particular, this implies that the condition λ′ � µ in
the Gale–Ryser theorem is symmetric with respect to λ and µ.)

(Lectures 2 and 3) Newton’s Identities

3. Newton’s Identity ∑n
k=0(−1)khn−kek = 0 was proved using the gen-

erating functions H(t) = ∑∞
n=0 hntn = ∏∞

i=1(1− xit)−1 and E(t) =

∑∞
n=0(−1)nentn = ∏∞

i=1(1− xit) = H(t)−1.

This exercise gives some related identities involving the power sum
symmetric functions pk = mon(k) = xk

1 + xk
2 + · · · that have similar

short proofs using generating functions.

(a) Let Q(t) = ∑∞
k=1 pktk/k. Show that Q(t) = −∑∞

i=1 log(1− xit).

(b) From (a), or directly, prove that ∑∞
k=1 pktk = ∑∞

i=1 xit/(1− xit).

(c) Prove that tH′(t) = tQ′(t)H(t).

(d) Deduce that nhn = ∑n
k=1 pkhn−k.

(e) Prove an identity analogous to (d) for nen.

(f) Prove that pn = ∑n−1
k=0 (−1)k(n− k)hn−kek.

(g) For µ ` n define pµ = pµ1 . . . pµ`(µ)
. Show that {pµ : µ ` n} is a

basis for Λn.

(h) Show that exp Q(t) = H(t).

(Lecture 2) Complete homogeneous symmetric functions and another version
of the complete/elementary duality.

4. Give a combinatorial interpretation to the coefficients Mλµ express-
ing the complete homogeneous symmetric functions in the mono-
mial basis,

hµ = ∑
λ

Mλµmonλ

analogous to Lemma 1.3. In particular show that the matrix M is
symmetric.
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5. Let µ be a partition of n. Define a change of basis matrix R by

hµ = ∑
λ

Rλµeλ.

(a) Show that Rµµ = (−1)n−`(µ).

(b) Show that if Rλµ 6= 0 then µ � λ.

(c) Show that R(1n)µ = 1 for all µ ` n. [Hint: consider the coefficient
of xn

1 in hµ.]

(d) Show that R(2,1n−2)µ = −n + `(µ).

(e) Show that R is self-inverse, or equivalently, eµ = ∑λ Rλµhλ.
[Hint: use the ω involution in Question 10.]

(Lecture 2) MacMahon’s Master Theorem

6. Let a, b, c ∈ N0. Use MacMahon’s Master Theorem to prove the
following generalization of Dixon’s Identity

∑
k
(−1)k

(
a + b
a + k

)(
b + c
b + k

)(
c + a
c + k

)
=

(a + b + c)!
a!b!c!

.

7. Given a composition α of n let v(α) = (1, . . . , 1, . . . , n, . . . , n) where
the number j appears exactly αj times. Let dα be the number of se-
quences (u1, . . . , un) such that {u1, . . . , un} = {1, . . . , n} and ui 6=
v(α)i for any i.
(a) Show that d(1n) is the number of permutations of {1, . . . , n}with

no fixed points. (Such permutations are called derangements.)

(b) Let en be the number of derangements of {1, . . . , n} with sign
+1 and let on be the number of derangements of {1, . . . , n} with
sign −1. By evaluating the determinant of the matrix

0 1 . . . 1
1 0 . . . 1
...

... . . . ...
1 1 . . . 0


in two different ways, show that on − en = (−1)n(n − 1). [For
an alternative proof see Question 9(b).]

Now suppose that `(α) = m. Work with symmetric polynomials in
m variables x1, . . . , xm.

(c) Show that dα = [xα](p1(x)− x1)
α1 . . . (p1(x)− xm)αm where

p1(x) = p1(x1, . . . , xm) = x1 + · · ·+ xm.
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(d) Deduce from MacMahon’s Master Theorem that

dα = [xα]det


1 −x1 . . . −x1
−x2 1 . . . −x2

...
... . . . ...

−xm −xm . . . 1


−1

.

(e) Using (b) and (d) deduce that

dα = [xα]
1

1− e2(x)− 2e3(x)− · · · − (m− 1)em(x)
.

(f) Show that

(1− e2(x)− 2e3(x)− · · · )(1 + d(1)e1 + d(12)e2 + d(13)e3 + · · · ) = 1 + f

where every monomial summand in f is divisible by some x2
i .

Hence show that

d(1n) =

(
n
2

)
d(1n−2) + 2

(
n
3

)
d(1n−3) + · · ·+ (n− 1)

(
n
n

)
d(10)

for every n ∈ N.

(g) Prove more generally that if ` ∈ N and n ≥ ` then

d(1n) =
n!
`!

d(1`) + (−1)`+1
n

∑
m=`+1

(
m− 1
`

)(
n
m

)
d(1n−m).

[This question is based on §71 of MacMahon, Combinatory Analysis Vol. I.
According to MacMahon, the identity in (f) was not known before the
Master Theorem. It has a short proof using generating functions, which
is the only way I know to prove (g); this identity is maybe not so easy
to discover without the Master Theorem.]

(Lecture 3) Power sum symmetric functions and cycle indices.

8. Recall that if λ is a partition of n with exactly ai parts of size i, for
each i ∈ {1, . . . , n}, then

zλ = 1a12a2 . . . nan a1!a2! . . . an!.

(a) Prove that zλ is the size of the centralizer in Symn of an element
of cycle-type λ. (Or, more combinatorially, you might prefer to
prove that n!/zλ is the size of the conjugacy class, and deduce
the result for centralizers.)

(b) Prove that ∑
λ`n

pλ

zλ
= hn.

(c) What is the analogous identity for elementary symmetric func-
tions?
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9. (a) Consider the specialization pk 7→ (−1)k−1 for k ∈ N. Let λ be a
partition of n. Show that pλ 7→ sgn σλ where σλ is a permutation
of cycle-type λ.

(b) Let on be the number of derangements in Symn that are odd per-
mutations, and let en be the number of derangements in Symn
that are even permutations. By specializing the Cycle Index For-
mula, prove that on − en = (−1)n(n− 1) for all n ∈ N0.

(c) [American Mathematical Monthly Problem 11668] Let On be the
number of derangements of {1, 2, . . . , n} with an odd number
of cycles in their disjoint cycle decomposition, and let En be the
number of derangements of {1, 2, . . . , n} with an even number
of cycles in their disjoint cycle decomposition. Prove that On −
En = n− 1 for all n ∈ N0.

10. Let ω : Λ→ Λ be the C-algebra homomorphism defined by ω(hn) =
en. Use Newton’s Identity to show that ω(en) = hn. Show also that
{pλ : λ ` n} is a basis of Λn consisting of eigenvectors for ω and
determine the eigenvalues.

(Lecture 4) Schur functions

11. Let λ and µ be partitions of n.
(a) Show that if SSYT(λ, µ) 6= ∅ then λ � µ.

(b) Show, conversely, that if λ � µ then |SSYT(λ, µ)| ≥ 1.

(c) It follows from (a) that

sλ = ∑
µ�λ

Kλµmonµ

where Kλµ = |SSYT(λ, µ)|. (These are the Kostka numbers.) Show
that Kλλ = 1 and deduce that {sλ : λ ` n} is a basis for Λn.

(d) Show that s(n−a,a)(x1, x2) = ∑a≤b≤n/2 mon(n−b,b)(x1, x2).

(Lecture 4) Jacobi–Trudi Identity

12. Give a proof of the general Jacobi–Trudi Identity by generalizing
Example 2.2. In particular, show that the symmetric polynomial
in x1, . . . , xn obtained by expanding the determinant by choosing
hλjσ−jσ+j from column j for each j ∈ {1, . . . , M} is the sum of the
signed weights of the path tuples (PM, . . . , P1) such that Pj, the path
starting at (M− j, 1), finishes at (M− jσ + λjσ, N) for each j.
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13. Another version of the ‘proof-by-example’ of Theorem 2.1 had an
error, pointed out to me by Darij Grinberg. Suppose, in the setting
of Example 2.2, we define a map K : A\S → A\S on path triples
(P3, P2, P1) with at least one intersection as follows:

(a) choose i minimal such that Pi meets another path;
(b) choose j minimal such that Pi meets Pj;

then (as before) swap Pi and Pj after their first intersection. Show
that K is not an involution.

14. Let λ be a partition with M ≥ `(λ). Applying the ω involution
(jump ahead to Definition 5.5) to the Jacobi–Trudi Identity and using
Lemma 5.6 gives

sλ′ = det


eλ1 eλ1+1 · · · eλ1+(M−1)

eλ2−1 eλ2 · · · eλ2+(M−2)
...

... . . . ...
eλM−(M−1) eλM−(M−2) · · · eλM


Give an involutive proof of this identity.

A polarization identity: see MathOverflow 61884

15. (a) Let N, n ∈ N. Let

P(x1, . . . , xN) = ∑
I⊆{1,...,N}

(−1)n−|I|(∑
i∈I

xi
)n.

Show that

P(x1, . . . , xN) =

{
0 if n < N
N!x1 . . . xN if n = N.

(b) Hence show that if V is a C-vector space and f : V × · · · ×V →
C is an n-multilinear form symmetric in its variables then

f (v1, . . . , vn) =
1
n! ∑

I⊆{1,...,n}
(−1)n−|I|g

(
∑
i∈I

vi
)

where g(u) = f (u, . . . , u) for u ∈ V. (A special case is the
well known polarization identity 2 f (v, v′) = f (v + v′, v + v′)−
f (v, v)− f (v′, v′).)

(c) Express P in the monomial basis of symmetric polynomials in N
variables when n > N.

(Lecture 6) Young’s Rule
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16. Let λ be a partition of n and let r ∈ N0. Let Yr(λ) be the set of
partitions µ such that [µ] is obtained from [λ] by adding r boxes, no
two in the same column. Prove Young’s Rule that

aλ+δhr(x1, . . . , xN) = ∑
µ∈Yr(λ)
`(µ)≤N

aµ+δ

using a sign-reversing involution on the set

P = {(A, S) : A ∈ Abc(λ), S a multisubset of {1, . . . , N}, |S| = r}.

Related to Lecture 7 and Murnaghan–Nakayama rule: cores and quotients of
partitions. See [5, §2.7] for background definitions. Given λ ` n, let f λ =
χλ(1n) be the number of standard tableaux of shape λ.

17. Let ` ∈ N and let λ be a partition of n ∈ N0 with `-core γ. Let
(λ(0), . . . , λ(` − 1)) be the `-quotient of λ. Define w ∈ N0 so that
n = |γ|+ w` and let α = (1|γ|, `w). Show that

χλ(α) = ± f λ(0) f λ(1) . . . f λ(`−1).

18. Use 2-quotients of partitions to prove the following identity of Gauss:
∞

∑
n=0

x
n(n+1)

2 =
(1− x2)(1− x4)(1− x6) . . .
(1− x)(1− x3)(1− x5) . . .

.

19. Let `, m ∈ N be coprime.
(a) Show that `m − ` − m is the largest number that cannot be ex-

pressed in the form a`+ bm where a, b ∈ N0. [Hint: show that if
N is the largest such number then N ≤ `m, N + ` is a multiple
of m and N + m is a multiple of `.]

(b) Using (a) and the abacus, show that there are only finitely many
partitions that are simultaneous `-cores and m-cores.

(c) Prove that the number of simultaneous `-core and m-core parti-
tions is

1
`+ m

(
`+ m
`

)
.

An alternative proof of the Murnaghan–Nakayama rule

20. Observe that p2 = 2h2 − h2
1. Using Young’s rule, show that if λ is

any partition then

sλ(2h2 − h2
1) = ∑

µ=λ+

sµ − ∑
ν=λ+

sν,

where the notation indicates that µ is obtained from λ by adding a 2-
rim-hook consisting of two boxes in the same row, and ν is obtained
from λ by adding a 2-rim-hook consisting of two boxes in the same
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column. Deduce the Murnaghan–Nakayama rule for the product
sλ p2.

21. Generalizing the previous question, use Question 3(f) and the Young
and Pieri rules to prove the Murnaghan–Nakayama rule by a can-
celling involution.

(Lecture 8) Lascoux–Schützenberger involution

22. Let λ be a partition such that `(λ) ≤ N.
(a) Let σ ∈ SymN and suppose that jσ > (j + 1)σ. Show that if

β = λ · σ then β jσ > β(j+1)σ.

(b) Deduce that if τ ∈ SymN and λ · τ is a partition then τ = idSymN
.

(c) Hence show that the orbit {λ · σ : σ ∈ SymN} has size N!. Thus
the union in Definition 4.6 is disjoint.

23. Fix ` ∈ N0. Let S be the set of words of length ` with entries +
and −. Read from left to right, say that a − in w is bad if it sets a
new record for the excess of − over +. A − is good if it is not bad.
For example, in +−−++−−− the − in position 3 and the − in
position 8 are bad and the others are good.

For m, n ∈ N0, let S(m, n) be the set of words in S having − entries
in exactly n positions, such that at least m of these entries are good.
(Note that all words have length `.)
(a) Let m ∈ N0 and let n ∈ N. By adapting the coplactic maps define

a bijection

S(m, n)\S(m + 1, n)→ S(m, n− 1)\S(m + 1, n− 1).

(b) Hence define a bijection S(m, n)\S(m + 1, n)→ S(m, m).

(c) Hence prove Theorem 15.14 in [6].

24. Recall that δ = (N − 1, N − 2, . . . , 2, 1). Let λ be a partition with
`(λ) ≤ N. Let SSYT≤N(λ) denote the set of semistandard λ-tableaux
with entries from {1, . . . , N}. Use a sign-reversing involution and
the coplactic maps to prove that

∑
A∈Abc(∅)

∑
t∈SSYT≤N(λ)

xAxT sgn(A) = ∑
A′∈Abc(λ)

xA′ sgn(A′)

and deduce that sλ(x1, . . . , xN) = aδ+λ/aδ.

(Lecture 9) Corollaries of aλ+δ/aδ = sλ(x1, . . . , xN)
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25. (a) Deduce the equivalent forms of Young’s Rule and Pieri’s Rule,
Theorems 3.8 and 3.7 respectively:

hµ = ∑
λ`n
|SSYT(λ, µ)|sλ

eµ = ∑
λ`n
|SSYT(λ′, µ)|sλ.

(b) The ω-involution was defined by ω(hn) = en for n ∈ N0. Show
that ω(sλ) = sλ′ for all partitions λ.

(Lecture 10) Dual bases

26. Prove Claim 4 in the proof of Theorem 5.3, that

hµ = ∑
α`n

pα

zα
πµ(α).

(Lecture 10) Skew-Schur functions. A skew-tableau is semistandard if its
rows are weakly increasing from left to right and the columns are strictly in-
creasing from top to bottom. For example, the skew-tableau shown below is
semistandard.

1 1
1 2

1 3
4

27. Let λ/ν be a skew-partition of n. Generalizing the combinatorial
definition of Schur functions, define

sλ/ν = ∑
T∈SSYT(λ/ν)

xT.

For α a composition of n, let Kλ/ν,α = |SSYT(λ/ν, α)| be the number
of semistandard Young tableaux of shape λ/ν and content α.
(a) Generalize the Bender–Knuth involution to show that sλ/ν is a

symmetric function.

(b) Use Young’s Rule to show that 〈sλ, sνhα〉 = Kλ/ν,α.

(c) Use the orthogonality of the complete symmetric and monomial
symmetric functions to show that 〈sλ/ν, hα〉 = Kλ/ν,α.

(d) Hence show that 〈sλ, sν f 〉 = 〈sλ/ν, f 〉 for any f ∈ Λ.

Murnaghan–Nakayama Rule for skew-Schur functions

28. Prove the Murnaghan–Nakayama rule for sλ pα using the antisym-
metric version of the rule given in Theorem 3.11.

Jacobi–Trudi Rule for skew-partitions
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29. Let λ/ν be a skew-partition. Let M ≥ `(λ). Prove that

sλ/ν = det


hλ1−ν1 hλ1−ν2+1 · · · hλ1−νM+(M−1)

hλ2−ν1−1 hλ2−ν2 · · · hλ2−νM+(M−2)
...

... . . . ...
hλM−ν1−(M−1) hλM−ν2−(M−2) · · · hλM−νM


Deduce that

sλ/ν = ∑
σ∈SymM

hλ·σ−ν sgn(σ).

Lascoux–Schützenberger involution for skew-tableaux

30. Extend the word map w, the coplactic maps and the Lascoux–Schüt-
zenberger involution to skew-tableaux of a fixed shape and prove a
generalization of Lemma 4.7.

Littlewood–Richardson Rule

31. Let λ/ν be a skew-partition of n and let µ be a partition of m with
`(µ) ≤ N. Let cλ

µν be the number of semistandard λ/ν skew-tableaux
t of content µ such that w(t) is latticed. The Littlewood–Richardson
Rule states that

〈sµsν, sλ〉 = cλ
µν.

Prove the Littlewood–Richardson Rule using this outline.
(a) Show, using Question 26(d), that the Littlewood–Richardson rule

is equivalent to sλ/ν = ∑µ cλ
µνsµ.

(b) Using Theorem 2.1, show that

〈sλ/ν, sµ〉 = ∑
σ∈SymN

〈sλ/ν, hµ·σ sgn(σ)〉.

(c) Deduce from Question 27 that

〈sλ/ν, sµ〉 = ∑
σ∈SymN

|SSYT(λ/ν, µ · σ)| sgn(σ).

(d) Using Question 30, show that the right-hand side above is cλ
µν.

Pólya’s Cycle Index Theorem

32. (a) Let G ≤ Symn be a permutation group and consider the orbits
of G on words in Wn with entries from {1, . . . , c}. Deduce from
Pólya’s Theorem that the number of such orbits is

1
|G| ∑

g∈G
c`(cyctype(g)).
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Remark: this result can also be proved using that the number of
orbits of a group G on a set Ω is 1

|G| ∑g∈G | FixΩ(g)|, i.e. the result
commonly known as Burnside’s Lemma.

(b) Deduce from (a) and Examples 5.11 and 5.13 that the number
of 4-bead necklaces using beads of c colours is 1

4(c
4 + c2 + 2c)

up to rotation, and 1
8(c

4 + 2c3 + 3c2 + c) up to both rotation and
reflection.

7. HINTS, REFERENCES OR SOLUTIONS FOR PROBLEMS

1. For (a), observe that the `(λ)× `(λ′)-matrix A with Aij = 1 if (i, j) ∈
[λ] and Aij = 0 otherwise has row sums λ and column sums λ′. For
(b), let A be a 0-1 matrix with row sums λ and column sums µ. The
positions (i, j) with Aij 6= 1 do not form a partition diagram (since then
we are in the case of (a), with µ = λ′). Therefore there exists (i, j) with
Aij = 0 and either A(i+1)j = 1 or Ai(j+1) = 1. In the former case,
since the row sums of A are non-increasing, there exists j′ with Aij′ = 1
and A(i+1)j′ = 0. Define A′ by swapping 0s and 1s in the positions
(i, j), (i + 1, j), (i, j′), (i + 1, j′) as indicated below:

0 . . . 1
1 . . . 0

−→ 1 . . . 0
0 . . . 1

.

Then A′ has the same row and column sums as A. The latter case is
similar.

2. For (a), see [5, Theorem 1.4.10] (for a stronger result characterizing
neighbours in the dominance order). By (a), α � β if and only if [β] can
be obtained from [α] by repeatedly moving boxes from higher rows to
lower rows, so if and only if [β′] can be obtained from [α′] by repeatedly
moving boxes from lower rows to higher rows. Hence α� β if and only
if β′ � α′.

3. We have

Q(t) =
∞

∑
k=1

pk
tk

k
=

∞

∑
k=1

∞

∑
i=1

xk
i

tk

k
=

∞

∑
i=1
− log(1− xit).

Differentiating with respect to t we get

Q′(t) =
∞

∑
k=1

pktk−1 =
∞

∑
i=1

xi
1− xit

.

On the other hand, differentiating H(t) = ∏∞
i=1 1/(1− xit) using the

product rule gives

(7.1) H′(t) =
∞

∑
i=1

xi
1− xit

H(t)
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so we have H′(t) = H(t)Q′(t). Multiply through by t to get tH′(t) =
H(t)(tQ′(t)); now take coefficients of tn to get nhn = ∑n

k=1 hn−k pk. This
proves (a), (b), (c), (d).

For (e), argue in a similar way using E(t) = ∏∞
i=1(1− xit); (f) then

follows from the identity

tH′(t)E(t) =
∞

∑
i=1

xit
1− xit

= tQ′(t).

The standard argument, used for example in Proposition 1.6, now shows
that {pλ : λ ` n} is a basis for Λn, as stated in (g). See (1.6) for (h).

Remark. See Claim 4 in the proof of Theorem 5.3 for a combinatorial
interpretation of the coefficients in the transition matrix expressing each
hµ as a linear combination of pλ. As observed in Remark (2) in §1.9,
these coefficients are rational but not necessarily integral.

4. Mλµ is the number of `(λ) × `(µ)-matrices with row sums λ, col-
umn sums µ and entries in N. This can be proved in the same way as
Lemma 1.3; use the jth column of such a matrix Z to record the mono-
mial chosen from the jth bracket in

hµ =
`(µ)

∏
j=1

hµj =
`(µ)

∏
j=1

(x
µj
1 + · · ·+ x

µj−1
1 x2 + · · ·+ · · · )

in a sequence of choices whose product is the monomial xλ.

5. By Newton’s Identity (1.3), we have

hk = (−1)k−1ek + (−1)k−2ek−1h1 + · · ·+ (−1)k−j−1ek−jhj + · · ·+ hk−1e1

for each k ∈ N. It follows inductively that if µ ` n then

hµ = (−1)n−`(µ)eµ + f

where f is an integral linear combination of elementary symmetric func-
tions labelled by partitions λ such that µ � λ. This proves (a) and (b).

Let µ ` n. Since [xn
1 ]hµ = 1 whereas [xn

1 ]eµ = 0 unless µ = (1n), we
have R(1n)µ = 1 for any µ. Similarly [xn−1

1 x2]hµ = `(µ), since we must
choose a unique hµj in the product hµ = hµ1 . . . hµ`(µ)

from which to take
x

µj−1
1 x2, whereas

[xn−1
1 x2]eµ =


n if µ = (1n)

1 if µ = (2, 1n−2)

0 otherwise.

.

Since hµ = · · ·+R(2,1n−2)µe(2,1n−2)+ e(1n), it follows that `(µ) = R(2,1n−2)µ +

n, hence R(2,1n−2)µ = −n + `(µ). This proves (c) and (d).
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Finally (e) follows immediately from the ω involution, which swaps
eµ and hµ for each µ. (Is there a combinatorial interpretation of this
symmetry?)

Remark. Computer algebra can be useful for exploring the transition
matrices between the different bases of Λ. In MAGMA [2], the matrix
R above is the transpose of HomogeneousToElementaryMatrix(n). In
SAGE [15] one can create Λ by Sym = SymmetricFunctions(QQ); then
Sym.inject_shorthands() sets up conversions between the different
bases. For example h(e[[3]]) evaluates to h[1,1,1]-2*h[2,1]+h[3],
giving the coefficients in the first column of R when n = 3.

6. See [4].

7. For (a) to (f), see MacMahon’s book, cited in the question. For (g),
which generalizes (f), recall that the exponential generating function
for the derangement numbers d(1n) is exp(−t)/(1− t). Therefore

1
n! ∑

m

(
m− 1
`

)(
n
m

)
d(1n−m)

is the coefficient of tn in(
∑
m

(
m− 1
`

)
tm

m!

)
exp(−t)

1− t
.

(Note that the sum is now over all m, so there is a non-zero contribution
when m = 0.) By the claim below, this simplifies to

(−1)`

1− t
(
1− t +

t2

2!
− · · ·+ (−1)`

t`

`!
)
= A`(t) + (−1)`

d(1`)
`!

t`

1− t
where A`(t) is a polynomial of degree at most ` − 1. Taking out the
contribution from m = 0 we get

(−1)`
d(1n)

n!
+

1
n!

n

∑
m=`+1

(
m− 1
`

)(
n
m

)
d(1n−m) = (−1)`

d(1`)
`!

for all n ≥ `. This rearranges to give the claimed identity.

Claim. If ` ∈ N then

∑
m

(
m− 1
`

)
tm

m!
= (−1)` exp(t)

(
1− t +

t2

2!
− · · ·+ (−1)`

t`

`!
)
.

Proof. Suppose inductively that the left-hand side is exp(t)P`(t) for some
polynomial P`(t). Then for `+ 1 the left-hand side is(

t−(`+1) exp(t)P`(t)
)′ t`+2

`+ 1
.
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Hence the right-hand side for `+ 1 is exp(t)P`+1(t) where

P`+1(t) =
(t− `− 1)P`(t) + tP′`(t)

`+ 1
.

It is routine to check that the polynomials

Q`(t) = (−1)`
(
1− t +

t2

2!
− · · ·+ (−1)`

t`

`!
)

satisfy this recurrence, hence P`(t) = Q`(t) for all ` ∈ N0. �

Remark: Darij Grinberg has sent me an easier proof of (g) by induction.
He also observed that the result also holds when ` = 0.

8. It is worth noting the group-theoretic refinement of (a): the central-
izer of an element of cycle-type λ ` n where λ has exactly ai parts of
size i is the direct product of wreath products ∏i Ci o Symai

, of order zλ.
For (b) use Question 3(h). The analogous identity for en, obtained most
simply by applying the ω involution from Question 10, is

∑
λ`n

(−1)n−`(λ) pλ

zλ
= en.

9. For (b), specialize the version of the Cycle Index Formula in (1.9) by
p1 7→ 0 and pk 7→ (−1)k−1. For (c), specialize by p1 7→ 0, pk 7→ −1; this
gives

∞

∏
k=2

exp
(
−1

k
tk) = ∞

∑
n=0

1
n! ∑

σ∈Symn

(−1)cyc(σ)

where cyc(σ) = cyc1(σ)+ cyc2(σ)+ · · · is the number of disjoint cycles
in σ. The left-hand side is (1− t) exp(t), so taking coefficients of tn we
get

En −On

n!
=

1
n!
− 1

(n− 1)!
=

1− n
n!

hence On − En = n− 1, as claimed.

10. Using Question 3(f), one gets ω(pn) = (−1)n−1 pn. Therefore ω(pλ) =

(−1)n−`(λ)pλ if λ ` n. Note that, as seen in 9(a), (−1)n−`(λ) = sgn σλ,
where σλ ∈ Symn is a permutation of cycle-type λ.

11. Part (b) is not nearly as obvious as it might seem: one proof uses the
coplactic maps in §4 of the notes. An algebraic proof using the Jacobi–
Trudi Identity is given in [5, page 44] and Lemma 5.4 above. For a
combinatorial proof of the lemma see Matthew Fayers’ answer to Math-
Overflow question 226537. A small simplification to this proof is here:
wildonblog.wordpress.com/2016/01/05/non-zero-kostka-numbers/.
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12. See [13, §4.5], or for the more general version of the Jacobi–Trudi
Identity for skew-tableaux, [14, §7.16], where the proof is a short ap-
plication of a more general involution due to Lindström and Gessel–
Viennot.

13. The problem occurs when we define P1 and P3 by swapping P1 and
P3 after their first intersection, and P3 meets P2 after this first intersec-
tion, so P1 now meets P2 = P2. A specific example is shown below.

P3 P1

P2

• • •

• • •

0 1 2 3 4 5 6 7
1

2

3

4

5

14. Outline. We define an involution on M-tuples of paths, as in Exam-
ple 2.2, although the start and end points are now different, and we also
change the definition of weight.

Number the steps of paths from 1. Give a path whose right-steps
are step numbers i1 < i2 < . . . < ik weight xi1 . . . xik . For an involu-
tion defined by swapping paths after a first intersection to be weight
preserving we need this key property: if two paths intersect then when
they reach this intersection they have both made the same number of steps
This is achieved by making the starting points (M − i, i) for 1 ≤ i ≤
M; the weights obtained by the path Pi from (M − i, i) should give
eλi(x1, . . . , xN), so the path must have exactly N steps, of which exactly
λi are right. Therefore Pi ends at (M− i + λi, i + N − λi). (Note that if
N < λ1 then there are no paths at all from (M− 1, 1) to (M− 1+λ1, 1+
N − λ1); correspondingly eλ1(x1, . . . , xN) = 0 and sλ′(x1, . . . , xN) = 0.)

Given a non-intersecting tuple of paths (PM, . . . , P1), let t be the λ′

tableau with entries in column i recording the step numbers of the right-
steps made by Pi. Suppose that t(a, i) > t(a, i + 1). Then Pi has made
strictly more steps before its ath step right than Pi+1; therefore Pi and
Pi+1 meet on or before their ath step right. The converse also holds.
Hence non-intersecting paths are in a weight-preserving bijection with
semistandard tableaux of shape λ′.

15. (a), (c) Since P(x1, . . . , xN) is symmetric, it is determined by the
coefficient of xλ for each λ ` n with `(λ) ≤ N. Let `(λ) = M. The
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monomial xλ appears in (∑i∈I xi)
n if and only if I ⊇ {1, . . . , M}; the

coefficient is (
n

λ1, . . . , λN

)
since we must take xi from exactly λi of the brackets, for each i ∈
{1, . . . , M}. There are exactly (N−M

k−M ) k-subsets of {1, . . . , N} that con-
tain {1, . . . , M}, hence

P(x1, . . . , xN)

= ∑
λ`n

`(λ)≤N

(
n

λ1, . . . , λN

)( N

∑
k=M

(−1)n−k
(

N −M
k−M

))
monλ(x1, . . . , xN).

The inner sum vanishes unless N = M. Hence

P(x1, . . . , xN) = (−1)n−N ∑
λ`n

`(λ)=N

(
n

λ1, . . . , λN

)
monλ(x1, . . . , xN).

This answers (c) and shows that if n < N then P(x1, . . . , xN) = 0 and if
n = N then

P(x1, . . . , xn) =

(
n

1, . . . , 1

)
mon(1,...,1)(x1, . . . , xN) = N!x1 . . . xN .

(b) Symmetric n-multilinear maps V × · · · × V → C correspond to el-
ements of (Symn V)?. There is a map V? → (Symn V)? defined by
θ 7→ θn ∈ (Symn V)?, where θn is defined by

θn(v1 . . . vn) = θ(v1) . . . θ(vn).

The set {θn : θ ∈ V?} is dense in (Symn V)?. Taking f (v1, . . . , vn) =
θn(v1, . . . , vn) = θ(v1) . . . θ(vn) we see that g(u) = f (u, . . . , u) = θ(u)n.
So it is sufficient to prove that if θ ∈ V? then

θ(v1) . . . θ(vn) =
1
n! ∑

I⊆{1,...,n}
(−1)n−|I|θ(∑

i∈I
vi)

n.

Setting θ(vi) = xi, this is precisely the identity in (a).

Remark: for an alternative proof see [16]. Darij Grinberg has shown
me an elegant proof of the strong result that if f (x1, . . . , xn) is any n-
multilinear map then

∑
I⊆{1,...,n}

(−1)n−|I|g(∑
i∈I

vi) = ∑
σ∈Symn

f (v1σ−1 , . . . , vnσ−1)

where g(u) = f (u, . . . , u). This immediately implies (b).

16. See [8, §3.2].

17. An equivalent result is stated after Theorem 1.1 in [3]. The key point
is that the signs of any two border-strip tableaux of shape λ and content
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(1|γ|, `w) agree. This can most easily be seen using the abacus: if A is
an `-runner abacus representing λ and b and b′ are beads on A then in
any sequence of single-step upward bead moves taking A to an abacus
representing γ, the parity of the number of times bead b moves past
bead b′ is the same.

18. See [17, §2.3].

19. (a) If n ≥ `m then the numbers n, n− `, . . . , n− (m− 1)` cover all
residue classes modulo m, and so n = a`+ bm for some a, b ∈ N0. Let
N be the largest number not of this form. If N + ` = a`+ bm then a = 0;
similarly N + m is a multiple of `. Hence N = `m− `−m.

(b) Take an abacus A representing a simultaneous `-core and m-core
partition with beads in all negative positions and a gap in position 0.
If there is a bead in position k of A then there are beads in all positions
k− (a`+ bm) for a, b ∈ N0. Hence k is not of the form a`+ bm, so by (a),
k ≤ `m− `− m. Therefore A has only finitely many beads in positive
positions.

(c) See [1]. There are some simplifications in the case m = `+ 1, when
the number of simultaneous cores is the Catalan number 1

2`+1(
2`+1
` ) =

1
`+1(

2`
` ).

I am grateful to Darij Grinberg for drawing my attention to Drew Arm-
strong’s slides from FPSAC 2017 www.math.miami.edu/~armstrong/

Talks/RCC_FPSAC_17.pdf which, in his words, ‘give gorgeous picture
proofs of all parts of Question 19 (as well as mentioning further re-
sults)’.

20. By two applications of Young’s Rule, sλh2
1 = ∑µ cµsµ where [µ] is

obtained from [λ] by adding two boxes in any way. If these additions
make a rim-hook shape, so the added boxes are either in the same row,
or in the same column, then cµ = 1, otherwise cµ = 2. Another appli-
cation of Young’s Rule to sλh2 now shows that sλ p2 = sλ(2h2 − h2

1) =

∑µ sgn(µ/λ)sµ. This proves the Murnaghan–Nakayama rule for addi-
tion of 2-rim-hooks.

21. By Question 3(f) we have pr = ∑r−1
k=0(−1)k(r− k)hr−kek. Fix a skew-

partition µ/λ of r and let T be the set of all µ/λ-tableaux with entries
from {1, 2} such that

(a) No two 1s appear in the same column;
(b) No two 2s appear in the same row;
(c) Exactly one 1 is distinguished;
(d) Each row and each column is weakly increasing.
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Given t ∈ T , define sgn(t) = (−1)k where k is the number of 2s. By
the Young and Pieri rules, and the identity above, ∑t∈T sgn(t) is the
coefficient of sµ in sλ pr. Note that T is empty unless µ/λ is a disjoint
union of rim-hooks (equivalently, [µ/λ] contains no 2× 2 box), so we
may assume that this is the case.

If ν/λ is a rim-hook in µ/λ, define its terminal box to be the box (i, j) ∈
[ν/λ] such that (i − 1, j) 6∈ [ν/λ] and (i, j + 1) 6∈ [ν/λ]. For example,
the 7-rim-hook shown in Figure 1 has terminal box in position (2, 5).

We define an involution J : T → T as follows: let ν/λ be the high-
est rim-hook in µ/λ not containing the distinguished entry 1?, or the
rim-hook containing 1? if this is the only rim-hook. If 1? is not in the
terminal box of ν/λ then flip the entry in this box; this gives a new
element of T with opposite sign. Otherwise leave t fixed. The invo-
lution J is sign-reversing on its non-fixed-points. Moreover there is a
fixed tableau t if and only if µ/λ is an r-rim-hook, and in this case, t is
unique and the number of 2s in t is ht(µ/λ). Hence

∑
t∈T

sgn(t) =

{
sgn(µ/λ) if µ/λ is a rim-hook
0 otherwise.

as required.

Example: if λ = (1) and µ = (3, 2) then |T | = 5; the unique fixed point
and the two pairs swapped by J are shown below:

1 1?
1 2

, 1? 1
1 2

←→ 1? 2
1 2

, 1 1
1? 2

←→ 1 2
1? 2

.

If λ = (2, 1) and µ = (3, 2, 2) then J has no fixed points, |T | = 8 and J
is defined by

1?
1

1 2
←→

1?
2

1 2
,

1
1?

1 2
←→

2
1?

1 2
,

1
1

1? 2
←→

2
1

1? 2
,

1
2

1? 2
←→

2
2

1? 2
.

Reference: I am grateful to Darij Grinberg for observing that a similar
argument is used to prove Theorem 6.3 in [11].

22. By definition β = λ · σ. By (4.2) we have

(λ · σ)i = λiσ−1 + i− iσ−1.

Hence if jσ > (j + 1)σ then (λ · σ)jσ = λj + jσ− j > λj+1 + (j + 1)σ−
(j + 1) = (λ · σ)(j+1)σ, so β jσ > β(j+1)σ, proving (a). Since jσ > (j +
1)σ, β is not a partition. Therefore if λ · σ is a partition then σ has no
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inversions, and so σ = idSymN
, proving (b). Hence the stabiliser under

the dot action of λ is trivial, so the orbit has size N!, proving (c).

23. (a) Note that S(m, n)\S(m + 1, n), respectively S(m, n− 1)\S(m +
1, n− 1), is the set of +/− words with exactly m good − entries out of
n, respectively n− 1.

Pair up + and − in the expected way, so in the example word + −
−++−−− ∈ S(3, 5) the unpaired − entries are in red. The analogue
of the F1 coplactic map is defined by replacing the rightmost unpaired
− with (an unpaired) +. This does not change the number of good −
entries; by Lemma 4.4 it gives a bijection between the two sets.

(b) Repeatedly apply the bijection in (a) until all− entries are good. The
resulting word is in S(m, m). Note that since each − left of the right-
most unpaired − has the same paired/unpaired status after applying
F1, the map is simply: change all unpaired − entries to +.

(c) In James’ notation,

S(m, n) = s
(
(`− n, m), (`− n, n)

)
,

S(m + 1, n) = s
(
(`− n, m + 1), (`− n, n)

)
= s
(
(`− n, m)A2, (`− n, n)

)
S(m, m) = s

(
(`−m, m), (`−m, m)

)
= s
(
(`− n, m), (`− n, n)R2

)
.

Thus the bijection in (b) is precisely the bijection in James’ Theorem
15.14 for two row partitions. The general case of Theorem 15.14 follows
easily.

Remark 1: to apply the coplactic map, as originally defined, in (a) or (b),
we rewrite + as 2 and− as 1. This goes the opposite way to the notation
in [6], where + corresponds to 1 and − to 2.

Remark 2: This result is used in [6, Chapter 16] to prove the Littlewood–
Richardson rule (for a different proof see Question 31) and in [6, Chap-
ter 17] to prove a very elegant characteristic-free version of Young’s
Rule for the symmetric group.

24. See [8, Theorem 4.2]. (Our proof of Theorem 4.10 is intended to be
a more motivated version of Loehr’s argument; it is somewhat longer
since we go via the Jacobi–Trudi identity.)

25. (a) The equivalent identity for Young’s Rule for symmetric poly-
nomials, with aλ+δ/aδ replacing sλ, was proved in Corollary 3.9; now
apply Theorem 4.10. The required form of Pieri’s Rule can be proved
similarly.

(b) Outline: suppose that ω(sλ) = ∑ν Aνλsλ. Show that AK = K̃ where
Kλµ = |SSYT(λ, µ)| and K̃λµ = |SSYT(λ′, µ)|. Now use that K is unitri-
angular, and so invertible, to determine A.
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26. By Claim 3 in the proof of Theorem 5.3 we have

hµ1 . . . hµk =
k

∏
i=1

∑
β(i)`µi

pβ(i)

zβ(i)
=

k

∏
i=1

∑
β(i)`µi

pβ(i)

n

∏
j=1

1
jBij Bij!

where Bij is the number of parts of β(i) equal to j for each j ∈ {1, . . . , n}.
Suppose that β ` n has exactly aj parts equal to j for each j ∈ {1, . . . , n}.
We get a contribution to the coefficient of pβ from every k-tuple of par-
titions β(1), . . . , β(k) such that ∑i Bij = aj for each j ∈ {1, . . . , n} and
∑j jBij = |β(i)| = µi. Thus the k × n matrix B is an β-packing matrix,
and the coefficient of pβ is

∑
B

k

∏
i=1

n

∏
j=1

1
jBij Bij!

= ∑
B

n

∏
j=1

(
aj

B1j, . . . , Bkj

)
1

aj!j
aj

=
1
zβ

∑
B

n

∏
j=1

(
aj

B1j, . . . , Bkj

)
=

1
zβ

πµ(β)

where the final equality uses Claim 1 in the proof of Theorem 5.3.

27. For (a) see [14, 7.10.2]: the proof given above of Proposition 1.17
generalizes routinely. The identity sνhα = ∑λ`n Kλ/ν,αsλ can be proved
by repeated applications of Young’s Rule, as in Corollary 3.9 (which it
generalizes). By (a), sλ/ν is a symmetric function, so

sλ/ν = ∑
α`n

Kλ/ν,αmonα.

Using the orthogonality of the monomial and complete homogeneous
symmetric functions (see Theorem 5.2) we get

〈sλ/ν, hα〉 = Kλ/ν,α = 〈sνhα, sλ〉.

This proves (c). Since the hα for α form a basis of Λ, this implies that
〈sλ/ν, f 〉 = 〈sλ, f sν〉 for all f ∈ Λ, proving (d).

28. See §7.17 in [14].

29. See [14, Theorem 7.16.2]. Outline. Theorem 2.1 is the special case
ν = ∅. The path model used in the proof generalizes as follows: take
starting points (νi + M− i, 1) and final destinations (λi + M− i, N) for
i ∈ {1, . . . , M}. The sum of the weights of non-intersecting paths is
sλ/ν(x1, . . . , xN). Suppose that the final destination of the path starting
at (νi + M− i, 1) is (λiτ + M− iτ, N) for each i. By (4.2), these paths are
counted in the summand ∏N

i=1 hλiτ−νi−iτ+i = hλ·τ−1−ν of the right-hand
side of

sλ/ν = ∑
σ∈SymM

hλ·σ−ν sgn(σ).
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If we swap the paths starting at (νi + M− i, 1) and (νj + M− j, 1) after
their first intersection, they now end at (λjτ + M − jτ, N) and (λiτ +
M− iτ, N), so as expected, the new permutation is (i, j)τ.

30. See [12, §2] for the definition of the J involution on skew-tableaux:
Proposition 4 is the generalization of Lemma 4.4. The generalization
of Lemma 4.7 is as follows: let α/β be a skew-partition and let µ be a
partition with `(µ) ≤ N. Then J is an involution on⋃

σ∈SymN

SSYT(α/β, µ · σ)

with fixed points precisely the latticed tableaux in SSYT(α/β, µ) and
such that if t ∈ SSYT(α/β, µ · σ) is k-unlatticed (with k chosen in the def-
inition of the involution J as before) then J(t) ∈ SSYT

(
α/β, µ · (σ(k, k +

1))
)
.

31. Each part is a routine application of results already proved.

32. (a) Observe that when we specialize by x1, . . . , xc 7→ 1, and xc+1,
. . .→ 0, the monomial symmetric function monλ where λ ` n is sent to
0 if `(λ) > c and otherwise to the number of different contents of words
in Wn that are rearrangements of λ.

For example, if c = 4 and λ = (2, 1), so we specialize by x1, x2, x3, x4 7→
1 and x5, . . . 7→ 1 then

mon(2,1) = x2
1x2 + x1x2

2 + x2
1x3, · · ·+ x3x3

4 + · · · 7→ 12

corresponding to the 12 different contents (2, 1, 0, 0), (1, 2, 0, 0), (2, 0, 1, 0),
. . . , (0, 0, 1, 2); each is a possible content of a word in W4 and each is a
rearrangement of (2, 1, 0, 0).

By Pólya’s Theorem, the coefficient of monλ in cycG is the number of
orbits of G on words of content λ. Therefore specializing in this way
counts the number of words in Wn whose content is a rearrangement
of λ, up to the action of G. Since pλ specializes to c`(λ), we get that the
number of orbits of G on words in Wn with entries from {1, . . . , c}, is

1
|G| ∑

g∈G
c`(cyctype(g))

as required.

(b) This is a routine application of (a). To illustrate the specialization
above, if c = 3 then 3mon(2,2) = 3(x1x2 + x2x3 + x1x3 + · · · ), seen in
cycG in Example 5.11(3) corresponds to 3 orbits on words with content
(2, 2, 0), and so to 9 orbits of words whose content is a rearrangement
of (2, 2, 0).
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