Representations of Symmetric Groups 1

Question 7 and 8 are taken from problem sheet 4 for the 2009 Oxford course on the symmetric group: see http://people.maths.ox.ac.uk/erdmann/. Question 4 is a generalization of Exercise 1 in §10.7 of Peter J. Cameron, *Combinatorics*, CUP 1994.

- **1.** Let G be a finite group, let F be a field and let Ω be a finite G-set. Let $V = \langle e_{\omega} : \omega \in \Omega \rangle_F$ be an F-vector space with a basis indexed by the elements of Ω .
 - (a) Show that V is an FG-module with (right) action defined by $e_{\omega}g = e_{\omega g}$.
 - (b) Suppose that $\Omega = \Delta_1 \cup \cdots \cup \Delta_d$ is the decomposition of Ω into distinct *G*-orbits. Show that if $v_i = \sum_{\omega \in \Delta_i} e_{\omega}$ then v_1, \ldots, v_d is an *F*-basis for

$$V^G = \{ v \in V : vg = v \text{ for all } g \in G \}.$$

- (c) Now suppose that $F = \mathbf{C}$. Let π be the ordinary character of V.
 - (i) Show that $\pi(g) = |\operatorname{Fix} g|$ for each $g \in G$.
 - (ii) Explain why dim $V^G = \langle \chi, 1_G \rangle$, where 1_G is the trivial character of G.
 - (iii) Using (b), prove the orbit counting formula (credited variously to Frobenius and Burnside):

$$d = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix} g|.$$

- (d) How many ways are there to colour the faces of a cube with 3 colours, if two cubes are regarded as the same if one can be rotated into the other?
- **2.** Let G be a transitive permutation group acting on the set Ω . Let H be the point stabiliser of $\omega \in \Omega$. Let $\pi(g) = |\operatorname{Fix} g|$ be the permutation character of G.
 - (a) Prove that $\pi = 1_H \uparrow^G$. (Here the up-arrow denotes induction and 1_H is the trivial character of H.)
 - (b) Prove that $\langle \pi, \pi \rangle_G$ is the number of orbits of H on Ω .
 - (c) Show that $\pi = 1 + \chi$ where χ is irreducible if and only if G acts 2-transitively on Ω .

[A group G acts 2-transitively on a set Ω if given any two elements $(\alpha, \beta), (\alpha', \beta') \in \Omega \times \Omega$ such that $\alpha \neq \beta$ and $\alpha' \neq \beta'$, there exists $g \in G$ such that $\alpha g = \alpha'$ and $\beta g = \beta'$.]

3. Let p(n) denote the number of partitions of $n \in \mathbf{N}_0$. Prove that $p(n) \leq p(n-1) + p(n-2)$ for all $n \geq 2$. Hence show that there exists a constant c < 17/10 such that $p(n) < c^n$ for all $n \in \mathbf{N}_0$.

- 4. Let λ be a partition and let s be a λ -tableau. Show that if we sort the columns of s into increasing order, to obtain a column-standard tableau t, and then sort the rows of t into increasing order, to obtain a row-standard tableau u, then u is standard.
- 5. Let $n \geq 2$ and let V denote the Specht module $S^{(n-1,1)}$, defined over a field F of characteristic p.
 - (a) Show that if p = 0 or $p \not\mid n$ then V is irreducible.
 - (b) Show that if p divides n then V has a unique non-trivial proper submodule.
 - (c) Describe the character of V in the case when $F = \mathbf{C}$.
- 6. Let $n \geq 2$ and let U denote the Specht module $S^{(2,1^{n-2})}$, defined over \mathbb{Z} . For $i \in \{1, 2, \ldots, n\}$, let t_i denote the unique $(2, 1^{n-2})$ -tableau which has i in the rightmost box of its first row, and whose first column increases when read from top to bottom. Let $v_i = e(t_i)$ denote the polytabloid corresponding to t_i .
 - (a) Show that any element of U is a **Z**-linear combination of v_1, \ldots, v_n .
 - (b) Show that v_2, \ldots, v_n is a **Z**-basis for U.
- 7. Let G be a finite group. Let Ω be a G-set and let $\Omega^{(2)}$ denote the G-set of all 2-element subsets of Ω . Let $M = F\Omega$ and $N = F\Omega^{(2)}$ be the corresponding permutation modules (defined using the same construction as Q1). Define linear maps $S: M \to N$ and $T: N \to M$ by

$$e_{\alpha}S = \sum_{\beta \neq \alpha} e_{\{\alpha,\beta\}}$$
 and $e_{\{\alpha,\beta\}}T = e_{\alpha} + e_{\beta}$

where $\alpha, \beta \in \Omega$.

- (a) Check that these maps are FG-module homomorphisms.
- (b) Write down a formula for $e_{\alpha}(S \circ T)$. Hence find the matrix of the linear map $S \circ T$ with respect to the basis $\{e_{\omega} : \omega \in \Omega\}$.
- (c) Find the eigenvalues of this matrix. When if $S \circ T$ invertible?
- 8. Let F be a field, and $\lambda = (\lambda_1, \dots, \lambda_k)$ be a partition of $n \in \mathbb{N}$. Let M^{λ} be the FS_n -permutation module with basis all tabloids of shape λ .
 - (a) Show that M^{λ} is isomorphic to the permutation module $F\Omega$, where Ω is the set of (right) cosets of the Young subgroup S_{λ} in S_n .
 - (b) Show that dim $M^{\lambda} = n! / \prod_{i=1}^{k} \lambda_i!$.