Representations of Symmetric Groups 1

Question 7 and 8 are taken from problem sheet 4 for the 2009 Oxford course on the symmetric group: see http://people.maths.ox.ac.uk/erdmann/. Question 4 is a generalization of Exercise 1 in $\S 10.7$ of Peter J. Cameron, Combinatorics, CUP 1994.

1. Let G be a finite group, let F be a field and let Ω be a finite G-set. Let $V=$ $\left\langle e_{\omega}: \omega \in \Omega\right\rangle_{F}$ be an F-vector space with a basis indexed by the elements of Ω.
(a) Show that V is an $F G$-module with (right) action defined by $e_{\omega} g=e_{\omega g}$.
(b) Suppose that $\Omega=\Delta_{1} \cup \cdots \cup \Delta_{d}$ is the decomposition of Ω into distinct G-orbits. Show that if $v_{i}=\sum_{\omega \in \Delta_{i}} e_{\omega}$ then v_{1}, \ldots, v_{d} is an F-basis for

$$
V^{G}=\{v \in V: v g=v \text { for all } g \in G\} .
$$

(c) Now suppose that $F=\mathbf{C}$. Let π be the ordinary character of V.
(i) Show that $\pi(g)=\mid$ Fix $g \mid$ for each $g \in G$.
(ii) Explain why $\operatorname{dim} V^{G}=\left\langle\chi, 1_{G}\right\rangle$, where 1_{G} is the trivial character of G.
(iii) Using (b), prove the orbit counting formula (credited variously to Frobenius and Burnside):

$$
\left.d=\frac{1}{|G|} \sum_{g \in G} \right\rvert\, \text { Fix } g \mid \text {. }
$$

(d) How many ways are there to colour the faces of a cube with 3 colours, if two cubes are regarded as the same if one can be rotated into the other?
2. Let G be a transitive permutation group acting on the set Ω. Let H be the point stabiliser of $\omega \in \Omega$. Let $\pi(g)=\mid$ Fix $g \mid$ be the permutation character of G.
(a) Prove that $\pi=1_{H} \uparrow^{G}$. (Here the up-arrow denotes induction and 1_{H} is the trivial character of H.)
(b) Prove that $\langle\pi, \pi\rangle_{G}$ is the number of orbits of H on Ω.
(c) Show that $\pi=1+\chi$ where χ is irreducible if and only if G acts 2-transitively on Ω.
[A group G acts 2-transitively on a set Ω if given any two elements $(\alpha, \beta),\left(\alpha^{\prime}, \beta^{\prime}\right) \in$ $\Omega \times \Omega$ such that $\alpha \neq \beta$ and $\alpha^{\prime} \neq \beta^{\prime}$, there exists $g \in G$ such that $\alpha g=\alpha^{\prime}$ and $\beta g=\beta^{\prime}$.]
3. Let $p(n)$ denote the number of partitions of $n \in \mathbf{N}_{0}$. Prove that $p(n) \leq p(n-1)+$ $p(n-2)$ for all $n \geq 2$. Hence show that there exists a constant $c<17 / 10$ such that $p(n)<c^{n}$ for all $n \in \mathbf{N}_{0}$.
4. Let λ be a partition and let s be a λ-tableau. Show that if we sort the columns of s into increasing order, to obtain a column-standard tableau t, and then sort the rows of t into increasing order, to obtain a row-standard tableau u, then u is standard.
5. Let $n \geq 2$ and let V denote the Specht module $S^{(n-1,1)}$, defined over a field F of characteristic p.
(a) Show that if $p=0$ or $p \nmid n$ then V is irreducible.
(b) Show that if p divides n then V has a unique non-trivial proper submodule.
(c) Describe the character of V in the case when $F=\mathbf{C}$.
6. Let $n \geq 2$ and let U denote the Specht module $S^{\left(2,1^{n-2}\right)}$, defined over Z. For $i \in\{1,2, \ldots, n\}$, let t_{i} denote the unique $\left(2,1^{n-2}\right)$-tableau which has i in the rightmost box of its first row, and whose first column increases when read from top to bottom. Let $v_{i}=e\left(t_{i}\right)$ denote the polytabloid corresponding to t_{i}.
(a) Show that any element of U is a \mathbf{Z}-linear combination of v_{1}, \ldots, v_{n}.
(b) Show that v_{2}, \ldots, v_{n} is a \mathbf{Z}-basis for U.
7. Let G be a finite group. Let Ω be a G-set and let $\Omega^{(2)}$ denote the G-set of all 2-element subsets of Ω. Let $M=F \Omega$ and $N=F \Omega^{(2)}$ be the corresponding permutation modules (defined using the same construction as Q1). Define linear maps $S: M \rightarrow N$ and $T: N \rightarrow M$ by

$$
e_{\alpha} S=\sum_{\beta \neq \alpha} e_{\{\alpha, \beta\}} \quad \text { and } \quad e_{\{\alpha, \beta\}} T=e_{\alpha}+e_{\beta}
$$

where $\alpha, \beta \in \Omega$.
(a) Check that these maps are $F G$-module homomorphisms.
(b) Write down a formula for $e_{\alpha}(S \circ T)$. Hence find the matrix of the linear map $S \circ T$ with respect to the basis $\left\{e_{\omega}: \omega \in \Omega\right\}$.
(c) Find the eigenvalues of this matrix. When if $S \circ T$ invertible?
8. Let F be a field, and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ be a partition of $n \in \mathbf{N}$. Let M^{λ} be the $F S_{n}$-permutation module with basis all tabloids of shape λ.
(a) Show that M^{λ} is isomorphic to the permutation module $F \Omega$, where Ω is the set of (right) cosets of the Young subgroup S_{λ} in S_{n}.
(b) Show that $\operatorname{dim} M^{\lambda}=n!/ \prod_{i=1}^{k} \lambda_{i}$!.

