Representations of Symmetric Groups 2

Question 1 should probably be attempted after reading Example 5.2 in James' lecture notes. In Questions 2 and 3 it will be helpful to use Question 2 from Sheet 1. Mackey's Formula for the restriction of an induced character may also be helpful.

1. Let $n \in \mathbf{N}$. Let $M \cong M_{\mathbf{F}_{2}}^{(n-2,2)}$ be the permutation module of S_{n} acting on 2-subsets of $\{1,2, \ldots, n\}$, defined over \mathbf{F}_{2}.
(a) Show that the elements of M are in bijection with graphs on $\{1,2, \ldots, n\}$.
(b) Show that, under this bijection, $S_{\mathbf{F}_{2}}^{(n-2,2)}$ is spanned linearly by the graphs shown below, for $1 \leq i \leq j \leq k \leq l \leq n$.

$$
\varlimsup_{i}^{j} \int_{l}^{k} \longleftrightarrow\{i, j\}+\{j, k\}+\{k, l\}+\{l, i\}
$$

(c) Show that $S_{\mathbf{F}_{2}}^{(n-2,1,1)}$ is isomorphic to the submodule spanned by all triangles $\{i, j\}+\{j, k\}+\{k, i\}$ for $1 \leq i<j<k \leq n$
(d) Hence prove a generalization of Example 4.5 in the lecture notes: if $n \equiv 3$ $\bmod 4$ and $n \geq 7$ then $S^{(n-2,1,1)} \cong S^{(n-2,2)}+S^{(n)}$. [Hint: the complete graph on n vertices generates a copy of the trivial module inside M.]
2. Let π^{λ} denote the character of the Young permutation module M^{λ}, defined over \mathbf{C}. Show that if $0 \leq r \leq n / 2$ then

$$
\left\langle\pi^{(n-r, r)}, \pi^{(n-r, r)}\right\rangle=r+1 .
$$

3. Let $G \leq S_{n}$. Let π be the permutation character of S_{n} acting on the cosets of G. Suppose that G has r_{k} orbits in its action on the set of k-subsets of $\{1,2, \ldots, n\}$, where $1 \leq k \leq n$.
(a) Show that $\left\langle\pi, \chi^{(n-1,1)}\right\rangle=r_{1}-1$.
(b) Show that for each k such that $1 \leq k \leq n / 2$ there is a unique irreducible character that appears in $\pi^{(n-k, k)}$ but not in $\pi^{(n-k+1, k-1)}$. Show moreover that if this character is denoted $\chi^{(n-r, r)}$, then

$$
\pi^{(n-r, r)}=\chi^{(n)}+\chi^{(n-1,1)}+\cdots+\chi^{(n-r, r)} .
$$

and

$$
\left\langle\pi, \chi^{(n-k, k)}\right\rangle=r_{k}-r_{k-1}
$$

(c) Use Theorem 4.3 to show that $\chi^{(n-r, r)}$ is the character of the Specht module $S_{\mathrm{C}}^{(n-r, r)}$ and deduce the decomposition of $M_{\mathrm{C}}^{(n-r, r)}$ stated after Example 4.5 in the lecture notes.
4. Let T_{n} be the character table of S_{n}, with any order of the rows and columns. Show that $\left|\operatorname{det} T_{n}\right|$ is the product of all parts of all partitions of n. (For example, if $n=3$ then the partitions are (3), $(2,1)$ and $(1,1,1)$ and $\left|\operatorname{det} T_{3}\right|=3 \times 2 \times 1^{4}=6$.)
5. Let $n \in \mathbf{N}$ and let F be a field. Determine the matrix of the restriction of \langle,$\rangle to S^{(n-1,1)}$ and find $S^{(n-1,1)} \cap\left(S^{(n-1,1)}\right)^{\perp}$. (The answer will depend on the characteristic of F.)
6. Let F be a field and let λ be a partition of n. Let t be a fixed λ-tableau and let $a_{t}=\sum_{g \in R(t)} g$ where $R(t)$ is the row-stabiliser group of t.
(a) Show that $M_{F}^{\lambda} \cong a_{t} F S_{n}$.
(b) Show that $S_{F}^{\lambda} \cong a_{t} b_{t} F S_{n}$.
(c) Show that $\left(a_{t} b_{t}\right)^{2}=\gamma a_{t} b_{t}$ for some $\gamma \in F$.
7. Let G be a finite group and let F be a field. Given an $F G$-module V, we define the dual module V^{\star} to have underlying vector space $\operatorname{Hom}_{F}(V, F)$ and G-action given by

$$
v(\varphi g)=\left(v g^{-1}\right) \varphi \quad \text { for } v \in V, \varphi \in V^{\star} \text { and } g \in G
$$

(a) Check that V^{\star} is a well-defined $F G$-module.
(b) We say that V is self-dual if $V \cong V^{\star}$ as $F G$-modules. Show that V is self-dual if and only if there is a non-degenerate G-invariant bilinear form on $V \times V$ taking values in F.
(c) Show that if $V=\mathbf{C}$ then V is self-dual if and only if its character takes only real values.
[A bilinear form $\beta: V \times V \rightarrow F$ is G-invariant if $\beta(v g, v g)=\beta(v, v)$ for all $v \in V$, $g \in G$.]
8. Let t be a tableau of shape λ where λ is a partition of n. Let $g \in S_{n}$. Show that $g \notin R(t) C(t)$ if and only if there exist transpositions $h \in C(t)$ and $k \in R(t)$ such that $k g h=g$.

