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Abstract. We prove combinatorial rules that give the minimal and

maximal partitions labelling the irreducible constituents of a family of

characters for the symmetric group that generalize Foulkes permuta-

tion characters. Restated in the language of symmetric functions, our

results determine all minimal and maximal partitions that label Schur

functions appearing in the plethysms sν ◦ s(m). As a corollary we prove

two conjectures of Agaoka on the lexicographically least constituents of

the plethysms sν ◦ s(m) and sν ◦ s(1m).

1. Introduction

Fix m, n ∈ N and let Sm oSn ≤ Smn be the transitive imprimitive wreath

product of the symmetric groups Sm and Sn. The Foulkes character φ(m
n)

is the permutation character arising from the action of Smn on the cosets

of Sm o Sn. Finding the decomposition of φ(m
n) into irreducible characters

of Smn is a long-standing open problem that spans representation theory

and algebraic combinatorics; a solution to this problem would also solve

Foulkes’ Conjecture (see [6, end §1]). Equivalently, one may ask for the de-

composition of Symn(SymmE) into irreducible GL(E)-modules, where E is a

finite-dimensional rational vector space, or, taking formal characters, for the

decomposition of the plethysm s(n) ◦ s(m) as an integral linear combination

of Schur functions. The problem of finding a clearly positive combinatorial

rule for these coefficients was identified by Stanley in Problem 9 of [24] as

one of the key open problems in algebraic combinatorics. We survey the

existing results in Section 2 below.

In this paper we study a generalization of Foulkes characters. Let ν be

a partition of n. Let InfSmoSnSn
χν denote the character of Sm o Sn inflated

from the irreducible character of χν of Sn using the canonical quotient map

Sm o Sn → Sn. Let

φ(m
n)

ν = (InfSmoSnSn
χν)
xSmn
SmoSn .
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We call these characters twisted Foulkes characters. The corresponding poly-

nomial representation of GL(E) is Symν
(
SymmE

)
, and the corresponding

plethysm is sν ◦ s(m).

The two main results of this paper give combinatorial rules that deter-

mine the minimal partitions and the maximal partitions in the dominance

order that label the irreducible constituents of these characters. As a corol-

lary, we prove two conjectures of Agaoka [1] on the lexicographically least

constituents of the plethysms sν ◦ s(m) and sν ◦ s(1m).

To state our main results we need the following definitions. Let λ′ denote

the conjugate partition to a partition λ and let � denote the dominance

order on partitions.

Definition 1.1.

(i) A set family P of shape (mn) is a collection of n distinct m-subsets of N.

The type of the set family P, if defined, is the partition λ such that the

number of sets in P that contain i is λ′i.

(ii) Let P1, . . .Pc be set families. Then (P1, . . . ,Pc) is called a set family

tuple. The type of the set family tuple (P1, . . . ,Pc), if defined, is the par-

tition λ such that the total number of sets in the set families P1, . . . ,Pc
that contain i is λ′i.

Not all set family tuples possess a type, but we shall be primarily con-

cerned with those that do. A set family P of type λ is minimal if there is

no set family R of type µ � λ that has the same shape as P. A set family

tuple (P1, . . . ,Pc) of type λ is called minimal if there is no set family tuple

(R1, . . . ,Rc) of type µ� λ such that each Ri has the same shape as Pi.
We now make a similar definition replacing sets by multisets.

Definition 1.2.

(i) A multiset family Q of shape (mn) is a collection of n distinct multisets

each of cardinality m having elements in N. The type of the multiset

family Q, if defined, is the partition λ such that λ′i is the total number

of occurrences of i in the multisets contained in Q.

(ii) Let Q1, . . .Qc be multiset families. Then (Q1, . . . ,Qc) is called a multi-

set family tuple. The type of the multiset family tuple (Q1, . . . ,Qc), if

defined, is the partition λ such that λ′i is the total number of occurrences

of i in the multisets contained in Q1, . . . ,Qc.

Minimal multiset family tuples are then defined in the same way as min-

imal set family tuples.

Given a character ψ of Sr and a partition λ of r ∈ N, we say that χλ is

a minimal constituent of ψ if 〈ψ, χλ〉 ≥ 1, and λ is minimal in the domi-

nance order on partitions of r with this property. The definition of maximal

constituent is analogous.
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Our two main results are as follows.

Theorem 1.3. Let ν be a partition of n and let λ be a partition of mn. Set

κ = ν if m is even and κ = ν ′ if m is odd. Let k be the first part of κ. Then

χλ is a minimal constituent of φ
(mn)
ν if and only if there is a minimal set

family tuple (P1, . . . ,Pk) of type λ such that each Pj has shape (mκ′j ).

Theorem 1.4. Let ν be a partition of n with first part ` and let λ be a

partition of mn. Then χλ is a maximal constituent of φ
(mn)
ν if and only if

there is a minimal multiset family tuple (Q1, . . . ,Q`) of type λ′ such that

each Qj has shape (mν′j ).

We pause to give a small example of these theorems. This example is

continued in Section 4.3.

Example. We shall determine the minimal and maximal constituents of

φ
(24)
(2,1,1). In the notation of the above theorems, m = 2, n = 4 and ν =

(2, 1, 1) = κ, so k = 2 = `. We seek minimal set family tuples (P1,P2)
with P1 of shape (23) and P2 of shape (21), and minimal multiset family

tuples (Q1,Q2) with Q1 of shape (23) and Q2 of shape (21). We show

in Section 4.1 that each set family in a minimal set family tuple is closed

under the majorization order �, defined in that section. An analogous result

holds for minimal multiset family tuples. From the poset diagrams shown

in Figure 1, we see that there are two possibilities for (P1,P2):({
{1, 2}, {1, 3}, {1, 4}

}
,
{
{1, 2}

})
and

({
{1, 2}, {1, 3}, {2, 3}

}
,
{
{1, 2}

})
,

of type (4, 2, 1, 1) and (3, 3, 2) respectively. As these partitions are incom-

parable in the dominance order, there are, by Theorem 1.3, precisely two

minimal constituents of φ
(24)
(2,1,1), namely χ(4,2,1,1) and χ(3,3,2). Similarly, us-

ing Theorem 1.4, the maximal constituents of φ
(24)
(2,1,1) are χ(6,1,1) and χ(5,3),

corresponding to the minimal multiset family tuples({
{1, 1}, {1, 2}, {1, 3}

}
,
{
{1, 1}

})
and

({
{1, 1}, {1, 2}, {2, 2}

}
,
{
{1, 1}

})
,

of type (3, 15) = (6, 1, 1)′ and (2, 2, 2, 1, 1) = (5, 3)′ respectively.

To prove Theorem 1.3 we construct an explicit module affording the char-

acter φ
(mn)
ν , using the plethysm functor from representations of Sn to rep-

resentations of Smn defined in Section 3.2 below. We then define explicit

homomorphisms from Specht modules into this module. These constructions

are of independent interest. In Section 8.3 we show that our homomorphisms

give irreducible characters appearing in φ
(mn)
ν beyond those predicted by our

two main theorems.
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{1, 2}

{1, 3}

{1, 4} {2, 3}

(A) Sets

{1, 1}

{1, 2}

{1, 3} {2, 2}

(B) Multisets

Figure 1. Part of the poset of (A) sets and (B) multisets

under the majorization order.

The maximal constituents of φ
(mn)
ν are in bijection with the minimal con-

stituents of sgnSmn×φ
(mn)
ν . To prove Theorem 1.4 we define explicit mod-

ules affording these characters and determine their minimal constituents by

adapting the arguments used to prove Theorem 1.3.

The outline of this paper is as follows. The common preliminary results

we need are collected in Sections 3 and 4. We give a complete proof of

Theorem 1.3 when m is even in Section 5, and indicate in Section 6 the

modifications required for odd m. By contrast, it is possible to prove both

cases of Theorem 1.4 in an almost uniform way: we do this in Section 7.

We end in Section 8 with a number of corollaries of the main theorems.

In particular, we prove the two conjectures of Agaoka mentioned above by

determining the lexicographically least and greatest constituents of the char-

acters φ
(mn)
ν . We also give a necessary and sufficient condition for φ

(mn)
ν to

have a unique minimal or maximal constituent, and find an SL(E)-invariant

subspace in the polynomial representation corresponding to certain twisted

Foulkes characters. Finally we show that φ
(2n)
(1n) has the interesting property

that all its constituents are both minimal and maximal; we use our two

main theorems to give a new proof of the decomposition of this character

into irreducible characters.

We remark that Theorem 2 in the authors’ earlier paper [22] is the special

case of Theorem 1.3 when m is odd and ν = (n). The authors recently

learned of work by Klivans and Reiner [17, Proposition 5.10] which gives

a result equivalent to this special case. The proofs in this paper use some

similar ideas to [22], but are considerably shorter, and give more general

results.

2. Background on plethysms

Let ν be a partition of n. Under the characteristic isomorphism φ
(mn)
ν is

sent to the plethysm of Schur functions sν ◦ s(m) (see [20, I, Appendix A,
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(6.2)]). The existing results on the characters φ
(mn)
ν are limited and have

mainly been obtained using the methods of symmetric polynomials. We

shall use this language throughout this section. The following plethysms of

the form sν ◦ s(m) have a known decomposition into Schur functions:

(i) s(12) ◦ s(m), s(2) ◦ s(m), s(n) ◦ s(12) and s(n) ◦ s(2); see Littlewood [19],

(ii) s(3) ◦ s(m); see Thrall [25, Theorem 5] or Dent and Siemons [4, The-

orem 4.1],

(iii) sν ◦ s(m) when ν is a partition of 4; see Theorem 27 of Foulkes [7]

for an explicit decomposition in a special case and the remarks on

the general case immediately following,

(iv) sν ◦ s(m) when ν is a partition of 2, 3 or 4; see Howe [13, Section 3.5

and Remark 3.6(b)]. Howe’s statements are usually more convenient

than Foulkes’.

There are several further results which, like our two main theorems, give

information about constituents of a special form. The Cayley–Sylvester

formula states that the multiplicity of s(mn−d,d) in s(n) ◦ s(m) is equal to the

number of partitions of d whose Young diagram is contained in the Young

diagram of (mn). A striking generalization due to Manivel [21] states that

the two-variable symmetric function (s(nk) ◦ s(m+k−1))(x1, x2) is symmetric

under any permutation of m, n and k. Taking k = 1 and swapping m and n

gives the Cayley–Sylvester formula, while taking k = 1 and swapping k and n

gives (s(n) ◦ s(m))(x1, x2) = (s(1n) ◦ s(m+n−1))(x1, x2). In [18] Langley and

Remmel used symmetric functions methods to determine the multiplicities

in sν◦sµ of the Schur functions s(mn−d,1d), s(mn−d−s,s,1d) and s(mn−d−2t,2t,1d),

for any partitions µ of m and ν of n. Giannelli [11, Theorem 1.2] later used

character-theoretic methods to determine the multiplicities of a much larger

class of ‘near hook’ constituents of s(n) ◦ s(m).

For sufficiently small partitions ν and µ, the plethysm sν◦sµ can readily be

calculated using any of the computer algebra systems Magma [3], Gap [10]

or Symmetrica [16]. A new algorithm for computing s(n)◦s(m) was given in

[5, Proposition 5.1], and used to verify Foulkes’ Conjecture (see [6, end §1])

for all m and n such that m+ n ≤ 19.

Applying the ω involution (see [20, Ch. I, Equation (2.7)]) gives further

results for the plethysms sν ◦ s(1m), via the relation

ω(sν ◦ s(m)) =

sν′ ◦ s(1m) if m is odd

sν ◦ s(1m) if m is even,
(1)

which follows from [20, Ch. I, Equation (3.8) and §8, Example 1(a)]. This

equation is reformulated in terms of modules and characters in Section 3.3.
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Finally we note that the lexicographically greatest constituent of sν ◦ sµ
was determined by Iijima in [14, Theorem 4.2], confirming a conjecture of

Agaoka [1, Conjecture 1.2]. We give a short proof of the special cases of

Iijima’s result when µ = (m) or µ = (1m) in Section 8 below.

3. Specht modules and plethysm

In this section we recall a standard construction of Specht modules as

modules defined by generators and relations. We then give a functorial

interpretation of plethysm for categories of modules for symmetric groups.

This leads to an explicit construction of modules affording the characters

φ
(mn)
ν and sgnSmn×φ

(mn)
ν .

3.1. Garnir elements. Let λ be a partition of r ∈ N. We use the stan-

dard definition [15, Definition 4.3] of the rational Specht module Sλ as the

QSr-submodule of the Young permutation module Mλ spanned by the λ-

polytabloids et for t a λ-tableau. It is well known that Sλ affords the irre-

ducible character χλ.

Following Fulton (see [8, Chapter 7, Section 4]), we define a λ-column

tabloid to be an equivalence class of λ-tableaux up to column equivalence.

We denote the column tabloid corresponding to a tableau t by |t| and rep-

resent it by omitting the horizontal lines from the representative t. The

symmetric group acts in an obvious way on the set of λ-column tabloids:

let U ∼= Mλ′ denote the corresponding permutation module for QSr. We

define M̃λ = sgnSr ⊗ U . (This is equivalent to Fulton’s definition using ori-

entations.) By a small abuse of notation we write |t| for the element of M̃λ

corresponding to the λ-tableau t. Thus if s differs from t by a transposition

of two elements in the same column then |s| = −|t|. There is a canonical

surjective homomorphism of QSr-modules M̃λ → Sλ defined by |t| 7→ et.

It follows from the corollary on page 101 of [8] and the proof of The-

orem 8.4 of [15] that the kernel of the canonical surjection M̃λ → Sλ is

spanned by all elements of M̃λ of the form

|t|
∑

σ∈SX∪Y

σ sgn(σ) (2)

where t is a λ-tableau, X is a subset of set of all entries in column i of t

and Y is a subset of the entries in column i+1 of t such that |X|+ |Y | > λ′i.

By Exercise 16 on page 102 of [8], we need only consider the case when Y

is a singleton set; note that this result requires that the ground field has

characteristic zero. An easy calculation now shows that, if t is any fixed

λ-tableau, then the kernel is generated, as a QSr-module, by the t-Garnir

elements |t|
∑

σ∈SX∪{y} σ sgn(σ), where X is the set of entries in column i
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of t and y is the entry at the top of column i + 1 of t. (This term is not

standard, but will be convenient in this paper.)

3.2. The plethysm functor P . Let m, n ∈ N and let ν be a partition

of n. Let Smn act naturally on the set Ω of size mn. Given a module V for

QSn we define

P (V ) =
(
InfSmoSnSn

V
)xSmn

SmoSn .

Since P is the composition of an inflation and an induction functor, P is an

exact functor from the category of QSn-modules to the category of QSmn-

modules. By definition P (Sν) affords the irreducible character φ
(mn)
ν .

We now give an explicit model for the modules P (Mν), P (M̃ν) and

P (Sν). These modules have bases defined using tableaux, tabloids and col-

umn tabloids with entries taken from the set of m-subsets of the set Ω of

size mn; we shall refer to these objects as set-tableaux, set-tabloids and col-

umn set-tabloids. Let Sm oSn ≤ Smn have {∆1, . . . ,∆n} as a system of blocks

of imprimitivity. As a concrete module isomorphic to InfSmoSnSn
Mν , we take

the rational vector space W with basis the set of set-tabloids of shape ν

with entries from {∆1, . . . ,∆n}. Let W ′ denote the rational vector space

with basis the set of all set-tabloids of shape ν such that the union of all the

m-subsets appearing in the set-tabloids is Ω. Then W ′ is a QSmn-module of

dimension |Smn|/|SmoSn|dimW , generated by the Q(SmoSn)-submodule W .

Hence W ′ ∼= W↑SmnSmoSn and so W ′ ∼= P (Mν). By the functoriality of P the

canonical inclusion map Sν ↪→Mν induces a canonical inclusion

P (Sν) ↪→ P (Mν).

An entirely analogous construction with set-tableaux and column set-tabloids

gives modules isomorphic to P (QSn) and P (M̃ν), respectively, with canon-

ical quotient maps

P (M̃ν) � P (Sν).

We illustrate this construction in Section 4.3 below.

3.3. The signed plethysm functor Q. Let s̃gn denote the unique 1-

dimensional module for Sm oSn that restricts to the module sgn ⊗ · · · ⊗ sgn

of the base group Sm × · · · × Sm and on which the complement Sn acts

trivially. Given a module V for QSn we define

Q(V ) = (s̃gn⊗ InfSmoSnSn
V )
xSmn
SmoSn .

Again Q is an exact functor from the category of QSn-modules to the cate-

gory of QSmn-modules.

We define ψ
(mn)
ν to be the character of Q(Sν). The twisted Foulkes char-

acters φ
(mn)
ν are related to the characters ψ

(mn)
ν via a sign-twist. We have

sgnSmn ⊗ P (V ) =
(

sgn
ySmn
SmoSn ⊗ InfSmoSnSn

V
)xSmn

SmoSn .
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The restriction of sgnSmn to SmoSn is s̃gn ifm is even and s̃gn⊗ InfSmoSnSn
sgnSn

if m is odd. Therefore

sgnSmn ⊗ P (V ) ∼=

Q(V ) if m is even

Q(sgnSn ⊗ V ) if m is odd.
(3)

Using the isomorphism

sgnSn ⊗ S
ν ∼= (Sν

′
)∗ (4)

(see, for example, [15, Theorem 6.7]), and that Specht modules are self-dual

over the rationals (see [15, Theorem 4.12]), we obtain the reformulation of

Equation (1) for characters:

sgnSmn ×φ
(mn)
ν =

ψ
(mn)
ν if m is even

ψ
(mn)
ν′ if m is odd.

(5)

3.4. Connection with Schur functors. We remark very briefly on an

alternative definition of these functors. Let ∆λ be the Schur functor cor-

responding to the partition λ (see [9, page 76] or [23, page 273]). Let E

be a rational vector space of dimension at least mn. If F is the func-

tor defined in [12, Section 6.1] from polynomial representations of GL(E)

of degree r to representations of Sr then, by [20, I, Appendix A, (6.2)],

F
(
∆ν(SymmE)

)
= P (Sν), corresponding to the plethysm sν ◦ s(m), and

F
(
∆ν(

∧mE)
)

= Q(Sν), corresponding to the plethysm sν ◦ s(1m). We use

this interpretation of P and Q in Section 8.4 below.

4. Further preliminary results and an example

4.1. Closed set families. Let A and B be m-subsets of N. Let ar be the

rth smallest element of A, and let br be the rth smallest element of B. We

say that B majorizes A, and write A � B, if ar ≤ br for all r. We say

that a set family P of shape (mn) is closed if whenever B ∈ P and A is an

m-subset of N such that A � B, then A ∈ P. We say that a set family tuple

(P1, . . . ,Pk) is closed if Pj is closed for each j. It is easily seen that closed

set families and closed set family tuples have well-defined types.

If (P1, . . . ,Pk) is a minimal set family tuple then it is closed. For if not

there is a set family Pj , a set A ∈ Pj and an element i+1 ∈ A, such that the

set B = A\{i+ 1} ∪ {i} is not in Pj . A new set family tuple can be formed

by replacing A by B in Pj and this process repeated until a closed set family

tuple (P ′1, . . . ,P ′k) is obtained: this set family tuple has a well-defined type.

By construction, P ′j has the same shape as Pj for each j, and the type of

(P ′1, . . . ,P ′k) is strictly dominated by the type of (P1, . . . ,Pk), contradicting

minimality. This argument also shows that if (P1, . . . ,Pk) is a minimal set

family tuple then each set family Pj is minimal.
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Closed multiset family tuples are defined analogously and the same argu-

ment shows that minimal multiset family tuples are closed.

4.2. Symbols. When defining maps from Sλ or from M̃λ, it will be conve-

nient to think of Smn as the symmetric group on the set Ωλ whose elements

are the formal symbols ij for i and j such that 1 ≤ i ≤ λ1 and 1 ≤ j ≤ λ′i.

We say that ij has number i and index j. Let tλ be the λ-tableau such

that column i of tλ has entries i1, . . . , iλ′i when read from top to bottom.

Let C(tλ) be the column stabilising subgroup of tλ; note that C(tλ) per-

mutes the indices of the symbols in Ωλ, while leaving the numbers fixed.

Let btλ =
∑

σ∈C(tλ)
σ sgn(σ).

4.3. Example. This example illustrates the definitions so far, and many

of the ideas in the proofs of Theorem 1.3 and Theorem 1.4 to follow. Let

m = 2, let ν = (2, 1, 1) and let P = ({{1, 2}, {1, 3}, {1, 4}}, {{1, 2}}) be

the minimal set family tuple of type λ = (4, 2, 1, 1) seen in the introduc-

tion. We identify S8 with the symmetric group on the set Ω(4,2,1,1) =

{11, 12, 13, 14, 21, 22, 31, 41} and choose S2 o S4 ≤ S8 to have blocks of im-

primitivity {11, 21}, {12, 31}, {13, 41}, {14, 22}. Let T be the set-tableau

{11, 21} {14, 22}
{12, 31}
{13, 41}

.

The column set-tabloid |T | generates InfS2oS4

S4
M̃ν as a Q(S2 oS4)-module and

P (M̃ν) as a QS8-module. For example

|T |(11, 12) =

{12, 21} {14, 22}
{11, 31}
{13, 41}

= −
{11, 31} {14, 22}
{12, 21}
{13, 41}

.

There is a unique homomorphism of QS8-modules M̃ (4,2,1,1) → P (M̃ (2,1,1))

sending |t(4,2,1,1)| to |T |bt(4,2,1,1) . We shall see in the proof of Proposition 5.2

below that the kernel of this homomorphism contains all the t(4,2,1,1)-Garnir

elements. Hence there is a well-defined homomorphism of QS8-modules

S(4,2,1,1) → P (M̃ (2,1,1)) defined by et(4,2,1,1) 7→ |T |bt(4,2,1,1) . After composition

with the canonical surjection P (M̃ (2,1,1))→ P (S(2,1,1)) the image of et(4,2,1,1)
is eT btλ ∈ P (S(2,1,1)) ⊆ P (M (2,1,1)). As we argue in Lemma 5.3 below, the

coefficient of the tabloid {T} in eT btλ is 1, and so this map is non-zero.

Hence 〈φ(2
4)

(2,1,1), χ
(4,2,1,1)〉 ≥ 1.

Observe that if T is a set-tableau having an entry containing symbols ij

and ik with j 6= k then |T |(ij , ik) = |T |, whereas etλ(ij , ik) = −etλ . Thus

the entries of T must come from set families. (This remark is made pre-

cise in the proof of Proposition 5.5 below.) We shall see in Section 7 that
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the maximal constituents of φ
(24)
(2,1,1) are determined by homomorphisms into

Q(S(2,1,1)) ∼= sgnS8
⊗ P (S(2,1,1)). In this setting, thanks to the sign-twist,

the two signs agree. This gives one indication why set-tableaux with entries

given by multiset families, rather than set families, are relevant to maximal

constituents.

5. Proof of Theorem 1.3 for m even

Fix an even number m. Let ν be a partition of n with first part k. The

proof of Theorem 1.3 for even m has two steps. In the first we construct

an explicit homomorphism Sλ → P (Sν) for each closed set family tuple

of type λ. We then use these homomorphisms to show that the minimal

constituents of the character φ
(mn)
ν are as claimed in the theorem. We must

begin with one more definition.

Let (P1, . . . ,Pk) be a set family tuple of type λ such that Pj has shape

(mν′j ) for each j. Let A(P1, . . . ,Pk) be the set of all ordered pairs (j, B)

such that 1 ≤ j ≤ k and B ∈ Pj . We totally order A(P1, . . . ,Pk) so that

(i, A) ≤ (j, B) if and only if i < j or i = j and A ≤ B, where the final

inequality refers to the lexicographic order on sets.

Definition 5.1.

(i) The column set-tableau corresponding to (P1, . . . ,Pk) is the unique set-

tableau T of shape ν such that if Pj = {A1, . . . , Aν′j} then the entries

in column j of T are obtained by appending indices to the numbers in

the sets A1, . . . , Aν′j , listing the sets in lexicographic order and choosing

indices in the order specified by the order on A(P1, . . . ,Pk).
(ii) The column set-tabloid corresponding to (P1, . . . ,Pk) is |T | ∈ P (M̃ν),

where T is the column set-tableau corresponding to (P1, . . . ,Pk) .

Observe that the union of the entries in the column set-tableau corre-

sponding to (P1, . . . ,Pk) is the set Ωλ. For example, the set-tableau T in

Section 4.3 is the column set-tableau corresponding to the set family tuple({
{1, 2}, {1, 3}, {1, 4}

}
,
{
{1, 2}

})
.

Let (P1, . . . ,Pk) be a closed set family tuple of type λ such that Pj has

shape (mν′j ) for each j. Let |T | ∈ P (M̃ν) be the column set-tabloid cor-

responding to (P1, . . . ,Pk). Let tλ be the λ-tableau defined in Section 4.2,

and let

f(P1,...,Pk) : M̃λ → P (M̃ν)

be the unique QSmn-homomorphism such that

|tλ|f(P1,...,Pk) = |T |btλ .

Proposition 5.2. The kernel of f(P1,...,Pk) contains every tλ-Garnir ele-

ment.
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Proof. Let 1 ≤ i < λ1 and let X = {i1, . . . , iλ′i} be the set of entries in

column i of tλ. We have

|tλ|GX∪{(i+1)1}f(P1,...,Pk) = |T |
∑

τ∈C(tλ)

τGX∪{(i+1)1} sgn(τ).

To prove that the right-hand side is zero we shall construct an involution on

C(tλ), denoted τ 7→ τ?, with the following two properties:

(a) if τ = τ? then |T |τGX∪{(i+1)1} = 0,

(b) if τ 6= τ? then |T |
(
τ sgn(τ) + τ? sgn(τ?)

)
GX∪{(i+1)1} = 0.

Let τ ∈ C(tλ). Consider |T |τ . If there exists a symbol ix ∈ X such

that there is an entry in |T |τ containing both ix and (i+ 1)1, then we have

|T |τ(1− (ix, (i+1)1)) = 0. Taking coset representatives for 〈(ix, (i+1)1)〉 ≤
SX∪{(i+1)1}, it follows that |T |τGX∪{(i+1)1} = 0. Hence if we define τ? = τ

in this case then (a) holds.

Now suppose that no entry in |T |τ contains both (i + 1)1 and a symbol

ix ∈ X. Let the entry of |T |τ containing (i+ 1)1 be

B(i+1)1 = {c(1)b(1), . . . , c(m− 1)b(m−1), (i+ 1)1}.

Suppose that B(i+1)1 lies in column j of |T |τ . This column is defined

using the set family Pj . Since Pj is closed, there exists unique symbols

c(1)a(1), . . . , c(m− 1)a(m−1) and iu such that the multiset

A(i+1)1 = {c(1)a(1), . . . , c(m− 1)a(m−1), iu}

is also an entry in column j of |T |τ . Define

π = (c(1)a(1), c(1)b(1)) . . . (c(m− 1)a(m−1), c(m− 1)b(m−1)) ∈ C(tλ)

and define τ? = τπ. Since the column set-tabloids |T |τ and |T |τ? differ only

in indices attached to numbers other than i and i + 1, we have τ?? = τ .

Since m is even we have sgn(τ) = − sgn(τ?) and since π(iu, (i+ 1)1) swaps

two entries in column j of |T |τ we have

|T |τ?(iu, (i+ 1)1) = |T |τπ(iu, (i+ 1)1) = −|T |τ.

Using this relation to eliminate τ? we obtain(
|T |τ sgn(τ) + |T |τ? sgn(τ?)

)(
1− (iu, (i+ 1)1)

)
= 0.

Hence
(
|T |τ sgn(τ) + |T |τ? sgn(τ?)

)
GX∪{(i+1)1} = 0, as required in (b). �

It now follows from Section 3.1 that f(P1,...,Pk) induces a homomorphism

Sλ → P (M̃ν). Let

f̄(P1,...,Pk) : Sλ → P (Sν)
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denote the composition of this homomorphism with the canonical quotient

map P (M̃ν)→ P (Sν). Thus f̄(P1,...,Pk) is defined on the generator etλ of Sλ

by

etλ f̄(P1,...,Pk) = eT btλ .

Lemma 5.3. The homomorphism f̄(P1,...,Pk) : Sλ → P (Sν) is non-zero.

Proof. Since btλ permutes the indices attached to numbers, while leaving

the numbers fixed, it is clear that the coefficient of the set-tabloid {T} in

{T}btλ is 1. This is also the coefficient of {T} in eT btλ . �

We summarize the results proved so far in the following corollary. We

show in Section 8.3 that this corollary gives constituents of φ
(mn)
ν beyond

those predicted by Theorem 1.3.

Corollary 5.4. Let m be even and let ν be a partition of n with first part k.

If there is a closed set family tuple (P1, . . . ,Pk) of type λ such that Pi has

shape (mν′i) for each i, then 〈φ(m
n)

ν , χλ〉 ≥ 1.

Proof. This follows immediately from Proposition 5.2 and Lemma 5.3 �

The final ingredient in the proof of Theorem 1.3 in the case when m is

even is a result that goes in the opposite direction to Corollary 5.4.

Proposition 5.5. Let m be even and let ν be a partition of n with first

part k. If χµ is a constituent of φ
(mn)
ν then there is a set family tuple

(R1, . . . ,Rk) of type µ such that Rj has shape (mν′j ) for each j.

Proof. Let ζ be the character of P (M̃ν). We have 〈ζ, χµ〉 ≥ 〈φ(m
n)

ν , χµ〉 ≥ 1.

Hence there is a non-zero QSmn-module homomorphism f : Sµ → P (M̃ν).

Identify Smn with the symmetric group on the symbols Ωµ. Let T be a

set-tableau such that the coefficient of |T | in etµf is non-zero. Let ij and ij′

be symbols appearing in tµ. If there is an entry in T containing both ij

and ij′ then we have |T |(ij , ij′) = |T |, whereas etµ(ij , ij′) = −etµ , a con-

tradiction. Now suppose that there is a column of T containing entries

{c(1)a(1), . . . , c(m)a(m)} and {c(1)b(1), . . . , c(m)b(m)} that are equal up to the

indices attached to numbers. Let

ρ = (c(1)a(1), c(1)b(1)) . . . (c(m)a(m), c(m)b(m)).

Since ρ swaps two entries in the same column of |T |, we have |T |ρ = −|T |.
But since ρ is even, etµρ = etµ , so again we have a contradiction. It follows

that removing the indices attached to the numbers in column j of |T | gives

a set family Rj of shape (mν′j ). Since the union of the entries in |T | is Ωµ,

the set family tuple (R1, . . . ,Rk) has type µ, as required. �
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We are now ready to prove Theorem 1.3 for even values of m. Suppose

that (P1, . . . ,Pk) is a minimal set family tuple of type λ such that each Pj
has shape (mν′j ). We saw in Section 4.1 that any minimal set family tuple

is closed. Hence, by Corollary 5.4, 〈φ(m
n)

ν , χλ〉 ≥ 1. If µ is a partition of mn

such that λ� µ and 〈φ(m
n)

ν , χµ〉 ≥ 1 then, by Proposition 5.5, there is a set

family tuple (R1, . . . ,Rk) of type µ such that Rj has shape (mν′j ) for each j.

But (P1, . . . ,Pk) is minimal, so we must have λ = µ. Hence χλ is a minimal

constituent of φ
(mn)
ν .

Conversely suppose that χλ is a minimal constituent of φ
(mn)
ν . By Propo-

sition 5.5 there is a set family tuple (R1, . . . ,Rk) of type λ such that Rj
has shape (mν′j ) for each j. Hence there is a minimal set family tuple

(P1, . . . ,Pk) of type µ where λ � µ such that Pi has shape (mν′j ) for each

j. Once again we have 〈φ(m
n)

ν , χµ〉 ≥ 1. But χλ is a minimal constituent of

φ
(mn)
ν so we must have λ = µ. Hence (R1, . . . ,Rk) is a minimal set family

tuple. This completes the proof.

6. Proof of Theorem 1.3 for m odd

Theorem 1.3 can be proved for odd values of m by modifying the proof

in the case of m even, following the same logical structure of Section 5. We

give the required changes in detailed outline.

Let ν be a partition of n with precisely k parts and let (P1, . . . ,Pk) be a

set family tuple of type λ such that Pj has shape (mνj ) for each j. Define

the totally ordered set A(P1, . . . ,Pk) of pairs (j,X) with 1 ≤ j ≤ k and

X ∈ Pj as before. We define the row set-tableau T and the set-tabloid {T}
corresponding to (P1, . . . ,Pk) by analogy with Definition 5.1. Thus T and

{T} have shape ν, the entries in row j of T and {T} are determined by the

order on A(P1, . . . ,Pk), and the union of all the entries in T or {T} is Ωλ.

Let (P1, . . . ,Pk) be a closed set family tuple of type λ as above and let

{T} ∈ P (Mν) be the corresponding set-tabloid. We define

g(P1,...,Pk) : M̃λ → P (Mν)

by |tλ|g(P1,...,Pk) = {T}btλ . We now follow Section 5, making the following

changes.

(1) Proposition 5.2. The proof of the analogue of Proposition 5.2 goes

through almost unchanged. Now swapping two entries in the same

row of a set tabloid {T} leaves the sign unchanged, but the per-

mutation π is even. The pattern of cancellation in
(
{T}τ sgn(τ) +

{T}τ? sgn(τ?)
)
GX∪{(i+1)1} is therefore the same.

(2) Definition of homomorphisms into P (Sν). Let {u} ∈ Mν be a

fixed tabloid. By [15, Equation (6.8)], there is a surjective QSn-

homomorphism Mν → sgnSn ⊗ Sν
′

defined on the generator {u}
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by {u} 7→ w ⊗ eu′ , where u′ is the tableau conjugate to u and

w generates sgnSn . Applying P gives a canonical quotient map

P (Mν)→ P (sgnSn ⊗S
ν′). Composing the map induced by g(P1,...,Pk)

on Sλ with this surjection gives a homomorphism ḡ(P1,...,Pk) : Sλ →
P (sgnSn ⊗S

ν′) sending etλ to (w⊗eT ′)btλ , where T ′ is the conjugate

set-tableau to T . The isomorphisms sgnSn ⊗ S
ν′ ∼= (Sν)∗ ∼= Sν seen

in Equation (4) and the following remark in Section 3.3 now identify

the codomain of ḡ(P1,...,Pk) with P (Sν).

(3) Lemma 5.3. Thinking of the codomain of ḡ(P1,...,Pk) as a submodule

of P (sgnSn ⊗M
ν′) it follows by looking at the coefficient of {T ′} in

etλ ḡ(P1,...,Pk) that ḡ(P1,...,Pk) is non-zero.

(4) Corollary 5.4. The analogous result holds with the same proof.

(5) Proposition 5.5. The use of characters at the start of the proof can

be avoided as follows: given a non-zero homomorphism f : Sµ →
P (Sν), composing with the map induced by the canonical inclusion

Sν → Mν gives a non-zero homomorphism f : Sµ → P (Mν). Then

take a set-tabloid {T} with non-zero coefficient in the image of etµ , as

before. The proof goes through changing columns to rows. Observe

that swapping two entries in a row of {T} leaves {T} unchanged but

the permutation ρ is now odd, so etµρ = −etµ .

The end of the proof goes through essentially unchanged.

7. Proof of Theorem 1.4

In this section we prove the following theorem which determines the min-

imal constituents of the characters ψ
(mn)
ν defined in Section 3.3.

Theorem 7.1. Let ν be a partition of n and λ be a partition of mn. Set

κ = ν if m is even and κ = ν ′ if m is odd. Let k be the first part of κ.

Then χλ is a minimal constituent of ψ
(mn)
ν if and only if there is a minimal

multiset family tuple (Q1, . . . ,Qk) of type λ such that each Qj has shape

(mκ′j ).

Theorem 1.4 then follows at once by Equations (4) and (5) in Section 3.3.

The proof of Theorem 7.1 again follows the same structure as that of

Theorem 1.3, although this time we are usually able to treat the even and

odd cases together. We give full details since there are several places where

the change from sets to multisets means that new ideas are required.

Let ν, κ and k be as in Theorem 7.1. Let (Q1, . . . ,Qk) be a closed multiset

family tuple of type λ such thatQj has shape (mκ′j ) for each j. We define the

column multiset-tableau T and column multiset-tabloid |T | corresponding to



CONSTITUENTS OF FOULKES CHARACTERS 15

(Q1, . . . ,Qk) by replacing sets with multisets in Definition 5.1. Note that T

and |T | both have shape κ. Let v span sgnSmn . Let

h(Q1,...,Qk) : M̃λ → sgnSmn ⊗ P (M̃κ)

be the unique QSmn-homomorphism such that

|tλ|h(Q1,...,Qk) = (v ⊗ |T |)btλ .

Proposition 7.2. The kernel of h(Q1,...,Qk) contains every tλ-Garnir ele-

ment.

Proof. As before, let 1 ≤ i < λ1 and let X = {i1, . . . , iλ′i} be the set of

entries in column i of tλ. We have

|tλ|GX∪{(i+1)1}h(Q1,...,Qk) =
∑

τ∈C(tλ)

(v ⊗ |T |τ)GX∪{(i+1)1} sgn(τ).

To show the right-hand side is zero, it suffices to construct an involution on

C(tλ), denoted τ 7→ τ?, with the following two properties:

(a) if τ = τ? then (v ⊗ |T |τ)GX∪{(i+1)1} = 0,

(b) if τ 6= τ? then (v ⊗ |T |τ + v ⊗ |T |τ∗)GX∪{(i+1)1} = 0.

Let τ ∈ C(tλ). Consider |T |τ . Suppose that |T |τ has a column with

two entries both entirely contained in X ∪ {(i + 1)1}. Let these entries be

{id(1), id(2), . . . , id(m)} and {(i+ 1)1, ie(2), . . . , ie(m)}. Set

ϑ = (id(1), (i+ 1)1)(id(2), ie(2)) · · · (id(m), ie(m)) ∈ SX∪{(i+1)1}.

We have |T |τϑ = −|T |τ since ϑ swaps two entries in the same column of |T |τ .

Since v sgn(ϑ)ϑ = v, we get

(v ⊗ |T |τ)(1 + sgn(ϑ)ϑ) = v ⊗ |T |τ + v ⊗ |T |τϑ = 0.

Taking coset representatives for 〈ϑ〉 ≤ SX∪{(i+1)1}, it follows that (v ⊗
|T |τ)GX∪{(i+1)1} = 0. Hence if we define τ∗ = τ in this case then (a) holds.

We now assume that each column of |T |τ has at most one entry contained

in X ∪ {(i+ 1)1}. Let the entry of |T |τ containing (i+ 1)1 be

B(i+1)1 = {ie(1), . . . , ie(s), (i+ 1)1, c(1)b(1), . . . , c(m− s− 1)b(m−s−1)},

where s ∈ N0 and c(1), . . . , c(m − s − 1) 6= i. Suppose that B(i+1)1 lies

in column j of |T |τ . This column is defined using the multiset family Qj .
SinceQj is closed, there exist unique symbols id(1), . . . , id(s), id(s+1), c(1)a(1),

. . . , c(m− s− 1)a(m−s−1) such that the multiset

A(i+1)1 = {id(1), . . . , id(s), id(s+1), c(1)a(1), . . . , c(m− s− 1)a(m−s−1)}

is also an entry in column j of |T |τ . Define

ϑ = (id(1), ie(1)) · · · (id(s), ie(s))(id(s+1), (i+ 1)1) ∈ SX∪{(i+1)1},
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and

π = (c(1)a(1), c(1)b(1)) · · · (c(m−s−1)a(m−s−1), c(m−s−1)b(m−s−1)) ∈ C(tλ).

Our assumption ensures that π is not the identity. Set τ∗ = τπ. Since

the column set-tabloids |T |τ and |T |τ? differ only in indices attached to

numbers other than i and i + 1, we have τ?? = τ . Since πϑ swaps two

entries in column j of |T | we have |T |τπϑ = −|T |τ . Hence

(v ⊗ |T |τ + v ⊗ |T |τ∗)(1 + sgn(ϑ)ϑ) =

v ⊗ |T |τ + v ⊗ |T |τϑ+ v ⊗ |T |τπ + v ⊗ |T |τπϑ = 0.

It follows that (v⊗ |T |τ + v⊗ |T |τ∗)GX∪{(i+1)1} = 0, as required in (b). �

Therefore h(Q1,...,Qk) induces a homomorphism Sλ → sgnSmn ⊗ P (M̃κ),

sending etλ to (v ⊗ |T |)btλ . Let h̄(Q1,...,Qk) : Sλ → sgnSmn ⊗ P (Sκ) denote

the composition of this homomorphism with the canonical quotient map

sgnSmn ⊗ P (M̃κ)→ sgnSmn ⊗ P (Sκ). Thus etλ h̄(Q1,...,Qk) = (v ⊗ eT )btλ .

We now obtain the analogues of Lemma 5.3, Corollary 5.4 and Proposi-

tion 5.5.

Lemma 7.3. The homomorphism h̄(Q1,...,Qk) : Sλ → sgnSmn ⊗ P (Sκ) is

non-zero.

Proof. The coefficients of v⊗{T} in (v⊗eT )btλ and (v⊗{T})btλ agree. Since

(v ⊗ {T})σ sgn(σ) = v ⊗ {T}σ, this coefficient is the order of the subgroup

of C(tλ) that permutes amongst themselves the indices appearing in each

entry of T . In particular this coefficient is non-zero. �

Corollary 7.4.

(i) If there is a closed multiset family tuple (Q1, . . . ,Qk) of type λ such

that Qi has shape (mκ′i) for each i, then 〈ψ(mn)
ν , χλ〉 ≥ 1.

(ii) If there is a closed multiset family tuple (Q1, . . . ,Q`) of type λ such

that Qi has shape (mν′i) for each i, then 〈φ(m
n)

ν , χλ
′〉 ≥ 1.

Proof. If m is even then, by Equation (3) in Section 3.3, the codomain

of h̄(Q1,...,Qk) is isomorphic to Q(Sν). If m is odd then the codomain of

h̄(Q1,...,Qk) is sgnSmn ⊗ P (Sν
′
), and by Equations (3) and (4), we have iso-

morphisms sgnSmn ⊗ P (Sν
′
) ∼= Q(sgnSn ⊗ S

ν′) ∼= Q
(
(Sν)?

) ∼= Q(Sν). Since

Q(Sν) affords the character ψ
(mn)
ν , part (i) now follows from Lemma 7.3.

Part (ii) then follows from part (i) using Equation (5) in Section 3.3. �

Proposition 7.5. If χµ is a constituent of ψ
(mn)
ν then there is a multiset

family tuple (R1, . . . ,Rk) of type µ such that Rj has shape (mκ′j ) for each j.

Proof. Arguing as in the proof of Proposition 5.5 if m is even and as in

Remark (5) in Section 6 if m is odd, there a non-zero QSmn-module homo-

morphism f : Sµ → sgnSmn ⊗P (M̃κ). Let T be a set-tableau such that the
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coefficient of v⊗|T | in etµf is non-zero. Suppose that there is a column of T

containing entries {c(1)a(1), . . . , c(m)a(m)} and {c(1)b(1), . . . , c(m)b(m)} that

are equal up the indices attached to numbers. Let

ρ = (c(1)a(1), c(1)b(1)) . . . (c(m)a(m), c(m)b(m)).

Then etµρ = sgn(ρ)etµ , whereas

(v ⊗ |T |)ρ = sgn(ρ)v ⊗ (−|T |) = − sgn(ρ)(v ⊗ |T |),

since ρ swaps two entries in a column of T . It follows that removing the

indices attached to the numbers in column j of |T | gives a multiset family of

shape (mκ′j ). The multiset family tuple obtained has type µ since the union

of the entries in |T | is Ωµ. �

The proof of Theorem 7.1 is completed in exactly the same manner as

that of Theorem 1.3.

8. Corollaries

In this section we present a number of corollaries of Theorems 1.3 and 1.4.

These include a description of the lexicographically least partitions labelling

an irreducible constituent of φ
(mn)
ν or ψ

(mn)
ν , confirming two conjectures of

Agaoka [1].

8.1. The conjectures of Agaoka. Let ν be a partition of n and set κ = ν

if m is even and κ = ν ′ if m is odd. Let k be the first part of κ. It fol-

lows from Theorem 1.3 that the lexicographically least partition λ labelling

an irreducible constituent of φ
(mn)
ν is the lexicographically least type of a

set family tuple (P1, . . . ,Pk) such that each Pj has shape (mκ′j ). We draw

an analogous conclusion from Theorem 7.1 regarding ψ
(mn)
ν . We therefore

have the following corollary, which was conjectured by Agaoka in [1, Con-

jecture 2.1].

Corollary 8.1. The lexicographically least partition labelling an irreducible

constituent of φ
(mn)
ν (respectively ψ

(mn)
ν ) is obtained by taking the join of the

lexicographically least partitions labelling an irreducible constituent of each

φ
(m

κ′j )
(κ′j)

(respectively ψ
(m

κ′j )
(κ′j)

).

The lexicographically least set families are given by the colexicographic

order on m-subsets on N. This order is defined on distinct m-sets A and B

by A < B if and only if max(A\B) < max(B\A). Given an m-subset B of N,

let B≤ denote the initial segment of the colexicographic order ending at B;

that is, B≤ = {A ⊆ N : |A| = m,A ≤ B}. If A is an m-subset of N, and r

is minimal such that r ∈ A and r + 1 6∈ A, then the successor to A in the

colexicographic is the set B = {1, . . . , s} ∪ {r + 1} ∪ (A\{1, . . . , r}) where s
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is chosen so that |B| = m. Thus the colexicographic order minimizes the

size of the largest element in B\A. It follows that if B is an m-subset of N
then B≤ is the lexicographically least set family of its shape.

An explicit construction of the lexicographically least set family of shape

(mn) follows from the basic results on the colexicographic order in [2, Chap-

ter 5]. Pick p1 such that
(
p1
m

)
≤ n <

(
p1+1
m

)
and let P(1) be the set of

all m-subsets of {1, 2, . . . , p1}. Then, for each i ∈ {2, . . . ,m} such that

n >
∑i−1

j=1

( pj
m+1−j

)
, pick pi such that(

pi
m+ 1− i

)
≤ n−

i−1∑
j=1

(
pj

m+ 1− j

)
<

(
pi + 1

m+ 1− i

)
and let P(i) be the union of P(i−1) with the set of all sets of the form

X ∪ {pi−1 + 1, . . . p1 + 1} where X is a (m + 1 − i)-subset of {1, 2, . . . pi}.
The process terminates with p1 > p2 > · · · > pr > 0 such that n =∑r

j=1

( pj
m+1−j

)
. The final set family P(r) has shape (mn).

The construction of the lexicographically least multiset family of shape

(mn) is entirely analogous. Let
((

q
m

))
denote the number

(
q+m−1
m

)
of mul-

tisets of cardinality m with elements taken from {1, . . . , q}. We adapt the

above construction and express n as
∑s

j=1

((
qj

m+1−j

))
for q1 ≥ q2 ≥ · · · ≥

qs > 0, with weak inequalities since repetitions are allowed.

Corollary 8.2. Set κ = (1n) if n is even and κ = (n) if m is odd.

(i) Let p1, . . . , pr be as just defined. The lexicographically least partition

labelling an irreducible constituent of φ
(mn)
κ is(

(p1 + 1)a1 , pb1−a11 , (p2 + 1)a2 , pb2−a22 , . . . , (pr−1 + 1)ar−1 , p
br−1−ar−1

r−1 , pbrr
)
,

where ai = n−
∑i

j=1

( pj
m+1−j

)
and bi =

(
pi−1
m−i

)
for each i ∈ {1, . . . , r}.

(ii) Let q1, . . . , qs be as just defined. The lexicographically least partition

labelling an irreducible constituent of ψ
(mn)
κ is(

(q1 + 1)c1 , qd1−c11 , (q2 + 1)c2 , qd2−c22 , . . . , (qs−1 + 1)cs−1 , q
ds−1−cs−1

s−1 , qdss
)
,

where ci = n−
∑i

j=1

((
qj

m+1−j

))
and di =

((
qi+1
m−i

))
for each i ∈ {1, . . . , s}.

Proof. Let λ be the partition in (i). We note that it is possible that pi =

pi+1 + 1 for one or more indices i; in this case bi − ai may be negative, and

(. . . , pbi−aii , (pi+1 + 1)ai+1 , . . .)

should be interpreted as (. . . , p
bi−ai+ai+1

i , . . .). By Theorem 1.3, it is suf-

ficient to prove that λ is the type of the lexicographically least set family

of shape (mn), as constructed above. Of course this also shows that λ is a

well-defined partition.
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Let 1 ≤ x ≤ p1 + 1. Note that if x ≤ pj then x is contained in exactly bj

sets in P(j)\P(j−1). It follows that if pj+1 + 1 < x ≤ pj then x lies in

b1 + · · · + bj sets in P(j) and in no other sets in P(r). This is the number

of parts of λ not less than x. If x = pi + 1 then x ≤ pi−1 and so x lies in

b1 + · · · + bi−1 sets in P(i−1) and also in all ai sets in P(r)\P(i). Hence the

total multiplicity of x is b1 + · · · + bi−1 + ai, which is again the number of

parts of λ not less than x.

The proof of (ii) is similar, replacing sets with multisets, and noting that if

x ∈ {1, . . . , q1} then the number of multisubsets of {1, . . . , q1} of cardinality

m that contain x with multiplicity at least ` is
((

q1
m−`

))
, and so the number

of occurrences of x in all multisubsets of {1, . . . , q1} of cardinality m is given

by
∑m

`=1

((
q1
m−`

))
=
((

q1+1
m−1

))
. We note that it is possible that qi = qi+1 for

one or more indices and, in this case, it will be necessary to rearrange the

parts in the expression given in (ii) to ensure that it is weakly decreasing. �

This result was conjectured by Agaoka in [1, Conjecture 4.2].

Agaoka also conjectured the form of the lexicographically greatest Schur

function appearing in sν ◦ sµ in [1, Conjecture 1.2]. This was proved by was

Iijima in [14, Theorem 4.2]. Our results provide an alternative proof in the

cases µ = (n) and (1n). Suppose that ν has exactly k parts and largest

part `. By Theorem 1.4, the lexicographically greatest constituent of φ
(mn)
ν

is χ((m−1)n+ν1,ν2,...,νk), corresponding to the closed multiset family tuple with

lexicographically greatest conjugate type, namely (Q1, . . . ,Q`) where

Qi =
{
{1, . . . , 1, 1}, {1, . . . , 1, 2}, . . . , {1, . . . , 1, ν ′i}

}
for each i. Similarly, by Theorem 1.3 and Equation (5), the lexicographically

greatest constituent of ψ
(mn)
ν is χ(nm−1,ν1,ν2,...,νk), corresponding to the set

family tuple (P1, . . . ,P`) where

Pi =
{
{1, 2, . . . ,m−1,m}, {1, 2, . . . ,m−1,m+1}, . . . , {1, 2, . . . ,m−1,m+ν ′i}

}
for each i.

8.2. Unique minimal or maximal constituents. It is natural to ask

when φ
(mn)
ν has a unique minimal or maximal constituent. This is easily

answered using our results.

Corollary 8.3. Let ν be a partition of n. If m = 1 then φ
(mn)
ν = χν . If

m > 1 then φ
(mn)
ν has χλ as a unique minimal constituent if and only if

(i) m is even, ν = (n) and λ = (mn);

(ii) m is even, ν = (n− r, r) and λ =
(
(m+ 1)r,mn−2r, (m− 1)r

)
where

1 ≤ r ≤ n/2;

(iii) m is odd, ν = (1n) and λ = (mn);
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(iv) m is odd, ν = (2r, 1n−2r) and λ =
(
(m+ 1)r,mn−2r, (m−1)r

)
where

1 ≤ r ≤ n/2.

Proof. Suppose that m > 1 and r ≥ 3. Let P be the lexicographically least

set family of shape (mr). Let X = {1, . . . ,m− 1} and let

R =
{
X ∪ {m}, X ∪ {m+ 1}, . . . , X ∪ {m+ r − 1}

}
.

It is easily seen that R is a minimal set family and that P and R have

different types. If r ≤ 2 then there is a unique closed set family of shape

(r2). It now follows from Theorem 1.3 that if m is even then φ
(mn)
ν has a

unique minimal constituent, of the type claimed in (i) and (ii), if and only

if ν ′1 ≤ 2. The proof is similar when m is odd. �

Corollary 8.4. Let ν be a partition of n. If m > 1 then φ
(mn)
ν has a unique

maximal constituent if and only if ν has at most two rows. The unique

maximal constituent of φ
(mn)
(n) is χ(mn) and the unique maximal constituent

of φ
(mn)
(n−r,r) is χ(mn−r,r).

Proof. Let P be the lexicographically least multiset family of shape (mr),

let R =
{
{1, 1, . . . , 1, 1}, {1, 1, . . . , 1, 2}, . . . , {1, 1, . . . , 1, r}

}
, and argue as in

Corollary 8.3, replacing Theorem 1.3 with Theorem 1.4. �

8.3. Further constituents. We remark that since there are closed set fam-

ilies and closed multiset families that are not minimal, Corollary 5.4 is not

implied by Theorem 1.3 and neither is Corollary 7.4 implied by Theorem 1.4.

For example, let P1 denote those 2-sets majorized by {2, 4} and let P2 be

those majorized by {1, 5}. Let R1 be obtained from P1 by replacing {2, 4}
with {1, 5}, and let R2 be obtained from P2 by replacing {1, 5} with {2, 3}.
Then the set family tuple (P1,P2) is closed but not minimal since (R1,R2)

has strictly smaller type.

8.4. Rectangular partitions. As in Section 3.4, let ∆λ be the Schur func-

tor corresponding to the partition λ. Let a, b ∈ N. By Section 3.4, χ(ab) is a

constituent of φ
(mn)
ν if and only if ∆(ab)(E) appears in ∆ν

(
SymmE

)
, where

E is a rational vector space of dimension at least b. If E has dimension

exactly b then ∆(ab)(E) ∼= (
∧bE)⊗a and so ∆(ab)(E) affords the polynomial

representation g 7→ det(g)a of GL(E). It follows that there is a non-zero

SL(E)-invariant subspace of ∆ν
(
SymmE

)
. This observation motivates the

following result.

Corollary 8.5. Let a ∈ N be such that a ≥ m.

(i) If m is odd let ν denote the partition (
(
a
m

)
, . . . ,

(
a
m

)
) where there are

exactly k parts and, if m is even, let ν denote the conjugate of this
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partition. Set n = k
(
a
m

)
and b = k

(
a−1
m−1

)
. Then

〈φ(mn)ν , χ(ab)〉 ≥ 1.

(ii) Let ν denote (
((
a
m

))
, . . . ,

((
a
m

))
) where there are exactly k parts. Set

n = k
((
a
m

))
and b = k

((
a+1
m−1

))
. Then

〈φ(mn)ν , χ(ba)〉 ≥ 1.

Proof. Consider the set family tuple (P, . . . ,P) where P consists of all m-

subsets of {1, . . . , a}. The shape of P is (m( am)) and the type of the set

family tuple is (ak(
a−1
m−1)). Since P is clearly closed, the first statement in

the corollary now follows from Corollary 5.4, and its analogue for m odd.

Replacing P with the set of all multisets of cardinality m with entries taken

from {1, . . . , a}, the counting argument in the proof of Corollary 8.2 shows

that we obtain a multiset family tuple of type (ak((
a+1
m−1))). The second

statement now follows similarly from Corollary 7.4(ii). �

For example, φ
(38)
(4,4) contains χ(46); the corresponding set family is P ={

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}
}

. In fact, by Section 8.1, every closed

set family tuple or closed multiset family tuple whose type is a rectangular

partition arises from the construction in Corollary 8.5. We note that in gen-

eral there are further constituents of φ
(mn)
ν labelled by rectangular partitions

that are not given by this construction. For example, χ(42) appears in φ
(24)
(2,2).

8.5. The decomposition of φ
(2n)
(1n). Let ϑn = φ

(2n)
(1n). Remarkably every

constituent of ϑn is both minimal and maximal. We end by proving this as

part of the following corollary, which gives a new proof of the decomposition

of φ
(2n)
(1n). A notable feature of this proof is that each constituent is determined

by an explicitly defined homomorphism. For an earlier proof of Corollary 8.6

using symmetric functions see [20, I. 8, Exercise 6(d)].

Given a partition α of n with distinct parts (α1, . . . , α`), let 2[α] denote

the partition λ of 2n whose Young diagram has main diagonal (i, i) for

i = 1, 2, . . . , ` and has αi boxes strictly to the right of (i, i) and αi− 1 boxes

strictly below (i, i). For example, 2[4,3,1] = (5,5,4,2).

Corollary 8.6. For any n ∈ N we have

ϑn =
∑
α

χ2[α]

where the sum is over all such partitions α of n with distinct parts.

Proof. By Theorem 1.3, the minimal constituents of ϑn are given by the

types of the minimal set families P of shape (mn). By Theorem 1.4, the

maximal constituents of ϑn are given by the conjugates of the types of
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the minimal multiset families Q of shape (mn). The closed set families of

shape (2n) are ⋃̀
i=1

{
{i, i+ 1}, . . . , {i, i+ αi}

}
for any α1 > α2 > · · · > α` with

∑`
i=1 αi = n. Such a set family has type

2[α]. All such partitions 2[α] of 2n are incomparable in the dominance order

and therefore all label minimal constituents of ϑn. However, 2[α]′ is the type

of the closed multiset family⋃̀
i=1

{
{i, i}, . . . , {i, i+ αi − 1}

}
and hence every minimal constituent is also maximal. We conclude that ϑn

has no further constituents. �
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