NOTES ON THE WEYL CHARACTER FORMULA

The aim of these notes is to give a self-contained algebraic proof of the
Weyl Character Formula. The necessary background results on modules
for sly(C) and complex semisimple Lie algebras are outlined in the first two
sections. Some technical details are left to the exercises at the end; solutions
are provided when the exercise is needed for the proof.

1. REPRESENTATIONS OF slz(C)

=6 8) =) = (00)

and note that (h, e, f) = slo(C). Let u,v be the canonical basis of £ = C2.
Then each Sym? F is irreducible with u? spanning the highest-weight space

Define

of weight d and, up to isomorphism, Sym? E is the unique irreducible slo(C)-
module with highest weight d. (See Exercises 1.1 and 1.2.) The diagram
below shows the actions of h, e and f on the canonical basis of Sym? E:
loops show the action of A, arrows to the right show the action of e, arrow
to the left show the action of f.

d—2c—2 d—2c d—2c+2

In particular

(a) the eigenvalues of h on Sym? E are —d, —d+2,...,d —2,d and each
h-eigenspace is 1-dimensional,
(b) if w e Sym? F and h-w = (d — 2c)w then f-e-w = c(d — ¢+ 1)w.
If V is an arbitrary sla(C)-module then, by Weyl’s Theorem (see [1, Ap-
pendix BJ or [3, §6.3]), V' decomposes as a direct sum of irreducible slz(C)-
submodules. Let V, ={v € V : h-w =rv} for r € Z. Then (a) implies

(c) if r > 0 then the number of irreducible summands of V' with highest
weight r is dim V;, — dim V2.
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2. PREREQUISITES ON COMPLEX SEMISIMPLE LIE ALGEBRAS

In this section we recall the basic setup of a Cartan subalgebra H inside
a complex semisimple Lie algebra L, a lattice of weights A C Hﬁ and a
root system ® C A. The mathematically most interesting parts are that
H is self-centralizing (see Exercise 2.2) and the trick used to construct an
slo(C)-subalgebra corresponding to each root. For an example of all the

theory below, see Exercise 2.7.

Cartan subalgebras. We define a Cartan subalgebra of L to be a Lie sub-
algebra H of L maximal subject to the condition that adh : L — L is
diagonalizable for all h € H. It is an interesting fact (see Exercise 2.1) that
any Cartan subalgebra is abelian. We may therefore decompose L as a direct
sum of simultaneous eigenspaces for the elements of H. To each simultane-
ous eigenspace V' we associate the unique v € H* such that (ad h)z = a(h)x
forallhe€ H and x € V. For a« € H* let

Lyo={x€L:(adh)z =a(h)zforallhe H, x € V}

and let @ be the set of all non-zero o € H* such that L, # 0. The elements
of ® are called roots and L, is the root space corresponding to a € ® and

L=rLo® (€D La).

aed

we have

Note that Lg is the centralizer of H in L. It is an important and non-
obvious fact (see Exercise 2.2) that Ly = H, so H is self-centralizing: An

easy calculation shows that

(1) [LQ,LB] - La+5 for all a, 8 € Py.

Killing form. The Killing form on L is the bilinear form k(z,y) = Tr(ad z o
ady). By Cartan’s Criterion x is non-degenerate. It follows from (1) that
if v € L, and y € Lg where o, 8 € ®g, then adx o ad y is nilpotent, unless
a+ B = 0. Therefore if o, 8 € ®g then L, L Lg unless § = —«a. Hence « is
a root if and only if —« is a root and the restriction of k to L, x L_, is non-
degenerate. In particular, the restriction of k to H x H is non-degenerate.
For each o € ®, let t,, € H be the unique element of H such that

K(ta,h) = a(h) for all h € H.

sly subalgebras. Choose e € L, and f € L_, such that (e, f) # 0. By the
associativity of the Killing form

k(h,[e, f]) = k([h, €], ) = a(h)k(e, f) for all h € H.
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Since k is non-degenerate on H, there exists h € H such that a(h) =
K(ta,h) # 0. Since k(e, f) # 0, the previous equation then implies that
[e, f] # 0. Consider the Lie subalgebra

(e, f, e, f])
of L. Since [e, f] € [La,L_o] € H we have [[e, f],e] = a([e, f])e and
[le, 1, f] = —alle, fD -

If a([e, f]) = O then [e, f] is central in (e, f, [e, f]). By Exercise 2.3 below
le, f] is nilpotent. But [e, f] € H and all the elements of H are semisim-
ple. So [e, f] = 0, which contradicts the previous paragraph. Therefore
a(fe, f]) # 0 and we can scale e so that a(le, f]) = 2 and so (e, f,[e, f]) =
sl(C).

For each o € ® let (eq, fo, ha) be a subalgebra of L constructed as above
so that

[ea, fa] = has  [hasea] = 2€ay  [ha, fa] = 2fa-
We may suppose that these elements are chosen so that e_, = f, and

f—a = eq for each a € .

Relationship between t,, and ho. By choice of t, we have k(tq, h) = a(h) for
all h € H. By associativity of the Killing form we also have

K([eas fal, h) = K(ea, [fa, h]) = K(ea, a(h)fa) = a(h)k(ea; fa)-
Hence
H(tQ—M h) —0 forallheH.

K(ea, fa)’
Since the restriction of K to H x H is non-degenerate it follows that
ha

2 to = ———.
® K(eas fa)
Since K(tq,ta) = a(ta), this implies the useful relations

K(ha, ha)
3 2=0a(hy) = k(ta, he) = ———— = K(€aq, fa)k(ta, ta)-
3) (1) = lte ho) = 2280 = (e fo) (o o)

Transport of the Killing form to Hﬁ. We saw earlier that for all & € ® there
exists h € H such that a(h) # 0. It follows that ® spans H* and there is a

unique bilinear form (, ) on H* such that
(o, B) = K(ta,tg) for a,f € ®.

By (2) and (3) we have the fundamental formula

2(,8) _ 2ts \ _ —a
(4) 55~ e, ) = ltasha) = alha)

Note also that a(hg) is an eigenvalue of hg in the finite-dimensional sl(3)-

module L. It follows that ( , ) takes real values on the roots and from the
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equation k(h,k) = > cpa(h)a(k) for h,k € H, we see that it is a real-
valued inner-product on Hl’; = (o : a € P)g. Exercise 2.4 shows that the
angles between the roots are determined by (4). (In fact if L is a simple Lie
algebra then @ is a connected root system and (, ) is completely determined
by (4) and (o, @) for any single root o € ®.)

Angled brackets notation. It will be convenient to define

_ 2\ )
<Nu>_(mu)

for A\, € Hf. Note that the form ( , ) is linear only in its first component.

This notation will often be used when p € ®, in which case (4) implies that
(A, B) = Alhg).

Fundamental dominant weights. Recall that {a1,...,a} is a base for @ if
element of ® can be written uniquely as either a non-negative or non-positive
integral linear combination of the «;. (For a proof that every root system
has a basis, see [1, Theorem 11.10] or [3, Theorem 10.1].) Fix, once and for

all, a base {a1,...,ay} for ® and let ®* be the set of positive roots with

respect to this basis. There exist unique wi,...,wpy € H* such that, for all
i?j E {1"' * 76}7
1 ifi=j
wi(ha,) = e
0 ifisj.

Let A = <wl,...,wg>z - H™.

Weight space decomposition. The elements of H act semisimply in any finite-
dimensional L-module (see [3, Corollary 6.3]). By Section 1, the eigenvalues
of each h,; are integral. Hence if V' is a finite-dimensional L-module then

Vig= DV

A€EA
where

Vi={veV:h-v=Ah)vforal he H}.

(The root spaces defined earlier are weight spaces for the action of L on itself
by the adjoint representation.) We shall say that an element of V' lying in
some non-zero V) is a weight vector. Starting with any weight vector, and
then repeatedly applying the elements e, for a € &7, it follows that V
contains a weight vector v such that e, -v = 0 for all « € ®*. Such a vector
is said to be a highest-weight vector with respect to the base {aq,...,a}.
By Exercise 2.6, the submodule of V' generated by a highest weight vector
is irreducible.
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3. FREUDENTHAL’S FORMULA

Let V' be an irreducible L-module of highest weight © € A. Let n, =
dim V}, for each v € A. The aim of this section is to prove Freudenthal’s
Formula, that if A € A then

(Il + 312 = A+ 82 =2 37 3 nsma(A + mas )

acdt+ m=1

where § = 23 4+ . The key idea in this proof (which is based on [5,
VIII.2]) is to calculate the scalar by which a central element in the universal
enveloping algebra U(L) acts on V, using the theory of slo(C)-modules in
Section 1. The following lemma gives a construction of such central elements.

Lemma 3.1. Suppose that x1,...,x, and y1,. .., Y, are bases of L such that
1 ifi=j
0 ifi#j.

Then Yy i, xiy; is in the centre of U(L).

K(xi,yj) =

Proof. See Exercise 3.3. (]

Let o, 8 € ®. By (1) we have s(eq, fg) = 0 whenever a # 3 and by (3)
we have k(eq, fo) = 2/k(ta,ta) = 2/(a,a) and K(ty, he) = 2 for all a € ®.

Lemma 3.1 therefore implies that

l
a, 1
F: Z ( 2 )faea+2ztajhaj
j=1

acd

is in the centre of U(L). We may assume that if o € ®* then e_, = f, and
foa =eq. Hence f_ne_o = eqfa = ha + faea and
l
a, o 1
P= 3 @ S (@0 faca t b Dt o,
agdt agdt Jj=1
The action of each of the three summands of I" preserves the weight

spaces V). The next three lemmas determine the traces of these summands

on each V). The first explains the appearance of § in Freudenthal’s Formula.
Lemma 3.2. If A\ € A and v € V) then
3 (O";‘) ha - v = (X, 26).

aedt

Proof. Using (4) we get
> )

acdt acdt

]
]
B
£
[\
>
£
I
]
>
£
]
>
<

as required. O
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Lemma 3.3. If o € ® and A € A then

(o, @) Try, (fa€a) =2 Z Na+ma (A + ma, a).

m=1

2(A+ma,a)

oa) = (A +ma, ), it is equivalent to prove that

Proof. Since

Try, (fa€a) = Z Natma (A + ma, a).

m=1
Let W = @,cz Va+ca- Note that W is a direct sum of weight spaces for the
action of H, and that W is an sl(«)-submodule of V. We may write

W:U(U@...@U(d)

where each U® is an irreducible sl(a)-module.

Assume first of all that A(hs) > 0. Suppose that U>(\i) # 0. Choose m
maximal such that U )(\Z-‘v)-m ., # 0. Then U® has highest weight (A +ma)(ha)
as an sl(a)-module and by (b) in Section 1, the scalar by which fye, acts

on a vector in U >(\i) is
m((A +ma)(ha) —m+1) =m(A(ha) + m+1).

It follows from (c) in Section 1 that the number of summands U® with

highest weight (A + ma)(ha) as an sl(a)-module is nxima — Mrt(mt1)a-

Hence
TI'VA (faea) = Z (n)\+ma - n>\+(m+1)o¢)m()‘(hoz) +m+ 1)
m=0

= Z Natma (MA(ha) + m+ 1) — (m — 1)(A(ha) +m))
m=1

= Z n)\eroz()‘(ha) + Qm)'
m=1

as required. Note that this equation holds even when V) = 0, since the
argument just given shows that both sides are zero.

If A(ha) < 0 then a similar calculation (see Exercise 3.4) shows that fueq
acts as the scalar — > 2  na—pa (A — b, @) on Vi. Now Y07 naiea(X+
ca, a) = 0 since each irreducible summand U® contributes the sum of the
he eigenvalues on U, which is 0 by (a) in Section 1. Adding these two

equations we get the required formula. O

Lemma 3.4. Let A€ A. If v € V) then

1

O |

L
D tajha; v =(\A)v
j=1
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Proof. We saw earlier that %tal, cee %tw and hq,, ..., hq, are dual bases of
H* with respect to the Killing form x on H x H. By Exercise 3.2(ii)

1 l

5 2 Mta,)A(hay) = (A, A)

i=1

as required. O

Since T is central in U(L) it acts as a scalar on V, say 7. Let A € A. By
Lemmas 3.2, 3.3 and 3.4, we have

nyy = Try, (fa€a) = (X, 28)n) + 2 Z Z Natma (A + ma, a) + (A, AN)ny.

acdt m=1
Recall that V has highest weight p. Since eq -V, =0 for all « € &1, n, = 1,
and (), 26) + (A, A) = ||\ + d]|> — ||]|?, the previous equation implies

v = i+ 07 = 118%]l.

Comparing these two equations we obtain

(4P = 1A+ 0P =2 > ) naymalX + ma, a)

acdt m=1
as stated in Freudenthal’s Formula. For an immediate application of Freuden-

thal’s Formula see Exercise 3.5 below.

4. STATEMENT OF WEYL CHARACTER FORMULA

Formal exponentials and characters. For each A € A we introduce a formal
symbol e(\) which we call the formal exponential of A. Let Q[A] denote the
abelian group with Z-basis {e(\) : A € A}. We make Q[A] into an algebra
by defining the multiplication on basis elements by

e(Ne(X) =e(A+X) for \, N € A.

Note that e(0) = 1 and that each e(\) is invertible, with inverse e(—\). This
definition is motivated by l-parameter subgroups: see Exercise 4.1. Given
an L-module V', we define the formal character of L by
xv =Y _(dimVy)e()) € Q[A].
AEA
Weyl group. Let Sg : Hg — Hpg denote the reflection corresponding to
B € & as defined by
2(6,5)
(8, 8)
The alterative forms Sg(0) = 60 — (0, 3)3 = w — 6(hg)a are often useful. By
definition the Weyl group of L is the group generated by the Sg for 3 € ®.

Ss(0) =6 — B for 6 € H.

We define e(w) = 1 if w is a product of an even number of reflections, and
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g(w) = —1 otherwise. The Weyl group W acts on Q[A] by w-e(A) = e(w(N))
for w e W and A € A.

Symmetric and antisymmetric elements. We say that an element f € Q[A]
is symmetric if w- f = f for all w € W and antisymmetric if w- f = e(w) f
for all w € W. By Exercise 4.3(iv), f € Q[A] is antisymmetric if and only if
F=93 c(w)w-e(s)
weW

for some symmetric g.

Weyl Character Formula. We may now state the main result. By the result
on antisymmetric elements of Q[A] just mentioned, the right-hand side in
the formula below is a well-defined symmetric element of Q[A].

Theorem 4.1 (Weyl Character Formula). Let V' be the irreducible L-module
of highest weight p € A. Then
= Zuarcw)w el t+9)
Ywew E(w) w - e(5)
Some applications of the Weyl Character Formula are given in Exer-

cises 4.4, 4.5 and 4.6. Kostant’s Multiplicity Formula (see for instance [2,
§8.2]) is also a quick corollary.

5. PROOF OF THE WEYL CHARACTER FORMULA

The following proof is adapted from Igusa’s notes [4]. For calculations
it will be convenient to extend Q[A] to a larger ring Q[%A] by adjoining a
square oot e(3a) for each @ € ®. We then complete Q[3A] to the alge-
bra Q[[3A]] of formal power series generated by the e(3A) for A € A. For
example, in Q[[2A]] we have 20 e(N)* = 1_2(/\).

We shall also need the Laplacian operator A : Q[[3A]] — Q[[3A]], defined
by A(e(X)) = ||A|]?e(A) for A € $A, and the bilinear form { , } on Q[[3A]]
defined by

{e(N),e(w)} = (A pwe(A+p)  for A, p € A

See Exercise 4.3(i) and (iv) for some motivation for A. These gadgets are
related by the following lemma.

Lemma 5.1. Let f,g € Q[[3A]]. Then
A(fg) = fA(g) + A(f)g +2{/. g}

Proof. By linearity it is sufficient to prove the lemma when f = e(\) and
g = e(p) for some A\, p € %A. In this case it states that

X+ plPe(A + 1) = eV |plPe(w) + [N |le(Ne(w) + 2(A, p)e(X + p)

which is obvious. (]
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Proof of Weyl Character Formula. Let () denote the denominator in the
Weyl Character Formula. We begin the proof with Freudenthal’s formula in
the form

(e + 81 — 151 ma = (N2 + A 28)ma +2 57 S (A4 ma, )

aedt m=1
Multiply both sides by e(\) and sum over all A € A to get
(5) (Il + 81 = 1181P)xv = Alxv) + D (A, 28)nre(N) + X
AEA

where

X =2 Z Z Z (A 4+ ma, @)nytmac(N)

AEA aedt m=1

=2 Z Z Z (A, a)nre(A — ma)

AEAN aedt m=1

~23 3 o) 2

AEA aedt

Now multiply through by @ and replace 26 with ) 4+ o to combine the

second two summands on the right-hand side of (5). This gives

e(a) +1

(Il 40l = 11617)Qxv = QALV) +Q Y > N ameN =1

AEA acdt

Since Qxy is antisymmetric, it follows from Exercise 4.3(i) that Qxy =

> wew E(W)w - e(u+ 8) if and only if A(Qxv) = ||u+ §|[*Qxv. Again by
this exercise, A(Q) = ||0]|2Q. Hence it is sufficient to prove

(6) AQxv)—A@xv —QANV)=QD_ D (N a)nse(A EZ; Jﬁ
AEA acd+

By Lemma 5.1, the left-hand side in (6) is 2{@, xv }. So finally, it is sufficient
to prove that

Z{Q,ZnAe )} =Q Z Z Z (A, a)nye(N)
AEA a€<I>+ )\EA

which, by linearity, follows from the relation

Q{Q, } Q Z Z ,a)e(v) for v e A,
a€¢+

proved in Exercise 5.2 below. O
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EXERCISES

Exercise 1.1. Let E = (u,v) be the natural 2-dimensional sly(C)-module.
Show that Sym? E is irreducible for each d € N.

Exercise 1.2. Let V be a finite-dimensional sl (C)-module.

(i) Show that V contains an h-eigenvector v such that e - v = 0.
(ii) Show that the submodule of V' generated by V is d-dimensional if
and only if A - v = dv.
(iii) Deduce that any irreducible sly(C)-module is isomorphic to Sym? E
for some d € Npy.

Exercise 2.1. Show that a Cartan subalgebra (as defined in Section 2) is

abelian.

Solution. Given h, k € H, we can write k as a sum of ad h eigenvectors,
say k = ko + Y.y ki where (adh)kg = 0 and (adh)k; = A;k;. Hence
(adh)"k = > | Alk;. A useful linear algebra lemma shows that all the k;
are in the Lie subalgebra of H generated by h and k. Now [h, k| = \ik;
and so (adk;)?x = [k, [ki,x]] = [ki, —\iki] = 0; since k; € H, adk; is
diagonalizable, and so we must have (ad k;)x = 0. Hence [h, k] = 0.

Exercise 2.2. The aim of this exercise is to show that if H is a Cartan
subalgebra of L then H is self-centralizing.

(i) Show that Lo is nilpotent. [Hint: use Engel’s theorem and the

abstract Jordan decomposition.]

(ii) Show that there is a basis of Lo in which all adz : L — L for z € L
are represented by upper-triangular matrices.

(iii) Show that if € Lo and adx : L — L is nilpotent then Tr(adx o
ady) = 0 for all y € Lg. Deduce that z = 0.

(iv) Deduce that every element of Ly is semisimple and hence show that
Lo=H.

Exercise 2.3. Let V be a complex vector space. Show that if z and y €
gl(V') are such that [z,y] commutes with x then [z,y] is nilpotent. [Hint:
there is a quick solution using Lie’s Theorem. For an ad-hoc proof (which
then allows this exercise to be used as part of a proof of Lie’s Theorem) first
show that Tr[x,y]” = 0 for all n € N.]

Exercise 2.4. Let « and § be non-perpendicular roots in a root system.
Use the fundamental relation (4) to find the possible angles between a and
B and the possible values of ||a]|/||5]]-

Exercise 2.5. Find the Killing form of sly(C) with respect to the basis e, f, h

and hence calculate ||a||> where « is the unique root of sla(C). (In practice
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the previous exercise always gives enough information, so this calculation
is unnecessary. For example, this remark applies to Freudenthal’s formula,
since mn) is expressed as a quotient of norms, and to Exercise 4.6, for the
same reason. )

Exercise 2.6. Let V be a finite-dimensional L-module and let v € V be
a highest-weight vector. Show that the submodule of L generated by v is

irreducible.

Exercise 2.7. Let H be the Cartan subalgebra of diagonal matrices in
sl3(C). Fori € {1,2,3}, let&; : H — C be the function sending diag(ay, a2, a3)
to a;. Let @« = &1 —e9 and let § =9 — €3.
(i) Show that {«, 8} is a base for the root system ®.
(ii) Show that ||«|| = ||f]| and that the angle between o and f is 27/3.
(iii) Find the fundamental dominant integral weights wi, we correspond-
ing to this base in terms of o and .
(iv) Show that wy = €1 and wy = €1 + €2. (Since €1 + 2 + €3 = 0 other,
equivalent, expressions for w; and wy are also possible.)
(iv) Express the highest weight of the natural, dual natural and adjoint
representations of sl3(C) as Z-linear combinations of w; and wy.

Exercise 3.1. Recall that § = £ " o+ @ and that B = {oq,..., o} is a
base for .
(i) Show that if 3 € ®T and 8 # «; then S,,(3) € &+
(ii) Show that S,,(d) = d — «a for all 4.
(iii) Show that 6 = w; + - + wy and deduce that § € A.
Solution. (i) Since 5 # «; and kay; is a root if and only if & € {+1, —1} (see,
for example, [1, Proposition 10.9]), there exists j such that o appears with a

strictly positive coefficient in the expression for 5 as a Z-linear combination
of ai,...,an. Now a; has the same coefficient in

Saz(ﬂ) = ﬁ - <B7ai>ai>
and so it follows that S,,(3) € ®+.

(ii) Since S,, permutes ®T\{;} and S,,(a;) = —a;, we have
Sai((s) = % Z Soei(/@) = % Z Sai(,@) —a; =0 — oy
ped® Bed

as required.

(iii) By definition (a;,w;) =0 if ¢ # j and (a;,w;) = 1. Hence

J4 0 l 0
Saj(Zwi) = Zwi*WijSaj(wj') = Zwi —wj twj —aj = Zwi—aj.
i=1 =1

i=1 i=1
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Hence by (ii), —6 + Zf | w; is invariant under the generators Sy, ,. .., S,
of W. Henceé—zl Lwi €A

Exercise 3.2. Let B : V — V be a non-degenerate symmetric bilinear form
on an n-dimensional vector space V. Suppose that x1,...,x, and y1,...,yn
are dual bases for V, so

1 ifi=j
0 ifi#j.

Let # € V* and let ty be the unique element such that B(tg,v) = 6(v) for
allveV. Letve V.

(i) Show that v =1, B(zi,v)y; = > iy B(v,y;j)z;
(ii) Hence show that B(tg,tg) = > p_q 0(zk)0(yk)-

Solution. (i) For each j we have B(Y.7" | B(zi,v)yi, ;) = B(zj,v), hence
B(—v+ Y B(w,v)yi,x;) = 0 for all j. Since x1,...,2, is a basis of V

and B is non-degenerate, it follows that v = Y_." | B(z;, v)y;, zj, as required.
Similarly one finds that v = > ", B(v,y;)z;.

(i) We have tg = > i_ | B(wi,tp)y; and tg = > 7_, B(tp,y;j)z;. Hence

n
(to,tg) =Y Bla, to) B(to, y) = Zte k) to (Yk)
k=1

as required.

Exercise 3.3. Prove Lemma 3.1. [Hint: Show that > ;_,[zryr, w] =
Yoo Trlyrw] + > [zrwlyg for w € L, and then use Exercise 3.2(i) to
express [yk, w| as a linear combination of y1,...,y, and [rg,w] as a linear

combination of x1,...,z,.]

Solution. Since U(L) is generated, as an algebra, by L, it is sufficient to
prove that [>)_; zryk, w] = 0 for each w € L. A routine calculation gives
the result stated in the hint that

n n n
D lwryew] = wklyr, w] + Y[z, wly
=1 k=1 k=1

By Exercise 3.2(1) we have [yg,w] = Y i k(i [yg, w])y; and [zg, w] =
> i—1 k([zks w],yj)x;. Substituting we get

n

n n
> lrkyr,w] =Y 0wl e, w xkyﬂrzz [k, w], y;) Ty
k=1

k=1 i=1 k=1 j=1
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Now change the summation variables in the second sum and use the asso-

ciativity of the Killing form to get

n
Zl’kyk:a ZZ K (@i, [Yr, w $kyz+zz [, w], yk)Tkyi
k=1

k=1 1i=1 =1 k=1
n

_ZZ w(wi, [w, yr]) + K[z, w], yr)) Tryi

k=1 1i=1
=0

as required.

Exercise 3.4. Take the notation from Lemma 3.3. Suppose that A(h,) < 0.

(i) Deduce from (b) in Section 1 that if U® is a summand with lowest
weight (A — ba)(h,) where b € Ny, then fye, acts on U/@ as the
scalar (b — A(hq))(b+1).

(ii) Show that the number of summands U® with lowest weight (A —

ba)(ha) is N —ba — n>\_(5+1)a.
(iii) Hence show that f,eq acts on V) as the scalar —> ;7 na_pa (A —
ba, o), as claimed in the proof of Lemma 3.3.

Solution. (i) If U®) has lowest weight (A — ba)(he) then U® has highest
weight —(\ — ba)(ha). T v € UL then
h-v=AMh)=(=X—ba)(hy) —2(b—Ahy))
and so taking ¢ = b — A(hq) in (b) in Section 1 gives
fre-v=(b=Aha)((=A = ba)(ha) — (b= A(ha)) + 1)v
=(b—Aha))(b+1)v
as required. Now (ii) follows from (a) in Section 1, in the same way as (c)

did, and (iii) is an immediate corollary of (i) and (ii).

Exercise 3.5. Let w;i,ws be the fundamental dominant weights for sl3(C)
(see Exercise 2.7). Use Freudenthal’s Formula to determine the dimensions
of the weight spaces for the sl3(C)-module with highest weight 2w; + ws.

Exercise 4.1. Let 7 : L — gl(V') be a representation of L. Let G be the
simply connected Lie group corresponding to L and let p : G — GL(V) be

the corresponding representation of GG, as defined by
plexpz) = exp(r(z)) for z € L.

(This defines p on a generating set for G.) Let A € A. Show that if h € H
and v € V) then p(exp h)v = exp(A(h))v.

Exercise 4.2. Show that if V' is an L-module then xy € Q[A] is symmetric.
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Exercise 4.3. Let Agom be the set of strictly dominant weights in A.

(i) Given A € A define a(A) = Y,y e(w) w-e(X). Show that A(a(\)) =
[[A||?a()\) and deduce that {a(\) : A € Agom} is a Z-basis of A-
eigenvectors for the set of all antisymmetric elements of Q[A].

(ii) Show that

e(—0) H (e(a) — 1) = H (e(%a) - e(—%a))

and that either side is antisymmetric.
(iii) Show that

> ew)w-e@d) = [] (el3a) —e(-3a))

weWw acdt

(iv) Prove that f € Q[1A] is antisymmetric if and only if

F=9 I (eGGa) = e(=3a))

acdt

for some symmetric g.

Solution. (i) Fix a total order on A refining the dominance order. Define
the degree of an antisymmetric element f to be the greatest weight p in
this order such that e(u) has a non-zero coefficient in f. If p is the greatest
weight of f then p € Agom and p is acted on regularly by the Weyl group.
Hence f — 3 ey (w)w - e(p) has strictly smaller weight. The result now

follows by induction.

(ii) The equality is routine. Recall that {aq,...,a} is a base for ®. It
follows from Exercise 3.1(i) and (ii) that

—e lai (§] —lOéi
S (T (e300 —e(4o0) = 222020 T (et — (o)
! o aedt

= _ H (e(%a) — e(—%a)).

acdt

Hence the right-hand side is antisymmetric.

(iii) Both sides are anti-symmetric and the coefficients of e(d) agree. The
result now follows from (i) since, by Exercise 3.1(iii), J is the smallest element

OfAdmm

(iv) Sketch: it is sufficient to prove that each a(A) is divisible by [T ,cq+ (e(30)—
e(—%a)). This follows using that Q[3A] is a UFD.

Exercise 4.4. Let w be the unique fundamental dominant weight for sly(C),
so w € (h)* is defined by w(h) = 1.
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(i) Use the results of Section 1 to show that V' is the irreducible sly(C)-
module with highest weight dw then

xv = e(dw) +e((d — 2)w) + - - + e(—dw).
(ii) Check that this is consistent with the Weyl Character Formula.

Exercise 4.5. Let wy,wy be the fundamental dominant weights for sl3(C)
(see Exercise 2.7).

(i) Use the Weyl Character Formula to determine the characters of the
finite-dimensional irreducible sl3(C)-module V' with highest weight
aw1 + bwy where a,b € Ny.

(ii) Give a necessary and sufficient condition on a and b for V' to have a

weight space of dimension at least two.
Exercise 4.6. Deduce from the Weyl Character Formula that if V' is the
irreducible L-module with highest weight A then

[Toco+ (A +6,a)
[ocor (X @)

Exercise 5.1. Show that if f, g, h € Q[[A]] then {fg,h} = f{g,h}+{f, h}g.

dimV =

Exercise 5.2. Recall that ) is the denominator in the Weyl Character
Formula. Use Exercise 4.3(iii) and Exercise 5.1 to show that

2Q e} =Q 3 81( a)e(v)
acdt

Solution. By the generalization of Exercise 5.1 to arbitrary products we
have

@)} =2 I roy= ooy )

acdt

as required.
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