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1. Introduction

There are several results concerning double cosets of Young subgroups
of symmetric groups which are often proved as corollaries of more general
results about Coxeter groups. In this note we give a selection of these results
and give them short combinatorial proofs.

The replacement for the machinery of Coxeter groups consists of some
simple combinatorial arguments involving tableaux. Inevitably we must
repeat a few definitions from and standard lemmas from Coxeter theory,
but I have tried to keep this to a minimum.

The idea behind this approach is well known to experts (see for instance
[1] and [2, Ch. 13]), but I have not yet seen a really explicit account of it.
(The introduction of ‘labelled’ tableaux in Remark 3.2 may be new.)

2. Preliminaries

Permutations. Let Sn be the symmetric group of degree n. If g ∈ Sn we
write jg for the image of j ∈ {1, 2, . . . , n} under g. This convention means
that permutations should be composed from left to right. For example, the
composition of the transposition (12) and the 3-cycle (123) is (12)(123) =
(23).

Given a permutation g ∈ Sn and numbers i, j ∈ [n] we say that (i, j) is
an inversion of g if i < j and ig > jg. If (i, i+ 1) is an inversion of g then
we say that g has a descent in position i. The length of g, denoted `(g) is
defined as the total number of inversions of g. The reason for this name is
given by the following lemma.

Lemma 2.1. The permutation g ∈ Sn has length ` if and only if the shortest
expression of g as a product of basic transpositions (12), (23), . . . has length `.
Moreover, if si = (i i+1) for 1 ≤ i < n then

`(sig) =

{
`(g) + 1 if i is not a descent of g,

`(g)− 1 if i is a descent of g.

and

`(gsi) =

{
`(g) + 1 if i is not a descent of g−1,

`(g)− 1 if i is a descent of g−1.
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Proof. The first part follows by an easy induction on `(g). The formula for
`(sig) is immediate from the definition. Since `(h) = `(h−1) for any permuta-
tion h, the second formula follows from the first, applied to (gsi)

−1 = sig
−1.

Alternatively, one may note that (ig−1, (i + 1)g−1) is an inversion of gsi if
and only if ig−1 < (i+ 1)g−1, and this holds if and only if (i i+ 1) is not an
inversion of g−1. �

Compositions. A composition of n is a tuple of strictly positive integers
whose sum is n. We write ν |= n to indicate that ν is a composition of n.
We say that a composition (ν1, . . . , νk) is a refinement of the composition
(µ1, . . . , µ`) if there exist a0 < a1 < . . . < a` with a0 = 0, a` = k and

ai∑
j=ai−1+1

νj = µi

for each i ∈ {1, . . . , `}. The diagram of a composition (ν1, . . . , νk) is, by the
formal definition, the set

{(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ νi},
which we represent by a Young diagram in the usual way. For example, the
composition (5, 2, 3) is represented by

.

We refer to the elements of a Young diagram as nodes. Finally we define
the Young subgroup Sν corresponding to (ν1, . . . , νk) by

Sν =
k∏
i=1

S{ν1+···+νi−1+1,...,ν1+···+νi}.

3. The Model

Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be two fixed compositions of n,
fixed throughout this note.

A µ-tableau of type λ is a function from the nodes of µ to N which
takes each value i ∈ {1, . . . , r} exactly λi times. We represent tableaux
by drawing the diagram of µ and then writing the image of each node inside
the corresponding box. For example

2 3 1 2
1 1

is a (4, 2)-tableau of type (3, 2, 1). We fix a map from the nodes of the
diagram of µ to the numbers {1, . . . , n}, as shown below for µ = (4, 2).

1 2 3 4

5 6

Note this labelling gives a total ordering on the nodes of the diagram of µ.
Given a tableau t we write mt for the image of the mth node under t.

We now let Sn act on the set of all µ-tableaux by place permutation. If t
is a µ-tableau of type λ and g ∈ Sn we define a new tableau tg by

m(tg) = (mg−1)t for m ∈ {1, . . . , n}.
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The entry in box mg of tg is the entry in box m of t, so the boxes of t
have, as claimed, been permuted by g. Therefore tg is another µ-tableau of
type λ. For example

2 1 2 3
1 1

(123)(45) = 2 2 1 1
3 1

.

The stabiliser of t in the action of Sn is a conjugate of the Young subgroup
Sλ. The set of all µ-tableaux of type λ is therefore a model for the right
coset space Sλ\Sn. The advantage of our approach is that it is very easy to
restrict the action of Sn to Sµ, and so obtain a model for the double cosets,
Sλ\Sn/Sµ.

4. Lengths of elements in double cosets

Given λ and µ compositions of n, let tµλ be the unique µ-tableau of type
λ whose entries are increasing when we read the boxes in the order fixed
above. For instance,

t
(4,2)
(3,2,1) = 1 1 1 2

2 3
.

Theorem 4.1. Let λ and µ be compositions of n and let g ∈ Sn. Then
x ∈ SλgSµ is of minimal length in its double coset if and only if

(i) tµλx has weakly increasing rows,
(ii) if i < j and the ith and jth positions of tµλ are equal then ix < jx.

Proof. ‘Only if ’ : Suppose that the number in position i of tµλx is greater
than the number in position i+ 1. Then, by definition of the action, ix−1 >
(i+ 1)x−1. Hence x−1 has a descent in position i, and so by Lemma 2.1, xsi
has shorter length than x. Therefore i and i + 1 must label positions in
different rows and so the rows of tµλx are weakly increasing. Similarly, if
(ii) fails then there is an i such that nodes i and i + 1 of tµλ have the same
number and ix > (i+ 1)x; now six has shorter length than x.

‘If ’ : We may find h ∈ Sλ and k ∈ Sµ such that `(hxk) is minimal. By
the ‘only if’ part, we know that hxk satisfies conditions (i) and (ii). By (i),
this can only happen if tµλhxk = tµλx. So far, all this says is that hxk = h′x
for some h′ ∈ Sλ. However, by (ii), both x and hxk preserves the relative
order of boxes of tµλ containing the same number, so we must have h′ = 1.
Thus x = hxk is the unique minimal element. �

Remark 4.2. A convenient way to work with condition (ii) uses the following
definition. Say that a labelled µ-tableau of type λ is an injective function t
from the nodes of µ to N×N such that (i, j) is in the image of t if and only
if j ∈ {1, . . . , λi}. We represent labelled tableaux by putting subscripts on
numbers; for example,

11 12 13 21

22 31

is one of 6 labelled tableaux corresponding to

t
(4,2)
(3,2,1) = 1 1 1 2

2 3
.
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More generally, let tµλ be the labelled µ-tableau of type λ obtained from tµλ
by allocating labels as in the example above. For ease of reference we shall
say that the symbol ij has number i and index j.

As before, Sn acts on the set of labelled µ-tableaux of type λ by place
permutation. Using this action we can rewrite condition (ii) as

(ii)′ If i < j then ri appears in an earlier position than rj in tµλx (as-
suming both appear)

Here is an alternative proof of the ‘if’ part of the proof of Theorem 4.1 using
labelled tableaux. Let x ∈ SλgSµ satisfy (i) and (ii)′. As before, choose
h ∈ Sλ and k ∈ Sµ such that hxk has minimum length. By the ‘only if’ part,
hxk satisfies (i) and (ii)′. But tµλx and tµλhxk have the same set of numbers
in each row (since h permutes indices, leaving numbers unchanged, and k
permutes the symbols within each row), and by (i) and (ii)′ the symbols in
each row appear in the same order in tµλx and tµλhxk. Hence

tµλx = tµλhxk.

Since a labelled tableau is only stabilised by the identity element, this implies
that x = hxk.

Theorem 4.3. Let x be a minimal length double coset representative for a
Sλ\Sn/Sµ double coset. If g ∈ SλxSµ then there exist h ∈ Sλ and k ∈ Sµ
such that g = hxk and `(g) = `(h) + `(x) + `(k).

Proof. We work by induction on `(g). If `(g) = `(x) then by Theorem 4.1,
g = x so we may take h = k = 1. Now suppose that `(g) > `(x). By
the proof of Theorem 4.1, either g does not satisfy condition (i), in which
case we may find i such that si ∈ Sµ and `(gsi) < `(g), or g does not
satisfy condition (ii), in which case we may find i such that si ∈ Sλ and
`(sig) < `(g). The result now follows by induction. �

A general element of the double coset SλxSµ is given by starting with the
labelled tableau tµλx, and then applying a permutation of the indices (this
corresponds to an element of Sxλ), then a permutation of the rows (corre-
sponding to an element of Sµ). The corresponding algebraic formulation

hxk = x(x−1hx)k = xhxk

where h ∈ Sλ and k ∈ Sµ makes it clear that the non-uniqueness in these
expressions comes from Sxλ ∩ Sµ. This is made more precise in the next
theorem.

Theorem 4.4. Let x be a minimal length double coset representative for an
Sλ\Sn/Sµ double coset. Let H = Sxλ ∩ Sµ. Let g ∈ SλxSµ.

(i) There are exactly |H| ways to express g in the form hxk with h ∈ Sλ
and k ∈ Sµ.

(ii) There is a unique element hmin ∈ Sλ of minimal length such that
hminxSµ = gSµ, or equivalently, such that the rows of the labelled
tableaux tµλhminx and tµλg agree setwise. If g = hminxk where k ∈ Sµ
then `(g) = `(hmin) + `(x) + `(k).

(iii) There is a unique element kmin ∈ Sµ of minimal length such that
Sλxkmin = Sλg, or equivalently, such that the labelled tableaux tµλxkmin
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and tµλg agree up to a permutation of indices. If g = hxkmin where
h ∈ Sλ then `(g) = `(h) + `(x) + `(kmin).

Proof. Part (i) is clear from the displayed equation immediately before the
theorem.

For (ii), first note that if g, g′ ∈ Sn then, by the action of Sµ on labelled
tableaux, the rows of tµλg and tµλg

′ agree setwise if and only if gSµ = g′Sµ.
Let hmin ∈ Sλ be a permutation of minimum length such that the rows of
tµλhx and tµλg agree setwise, and whenever i < j and ri and rj both appear
in different rows of tµλhminx, ri appears in a higher row than rj . It is then
clear that hminx ∈ gSµ and that any other permutation h ∈ Sλ such that
hx ∈ gSµ has strictly more inversions than hmin. Finally if hminxk = g, then
applying k to tµλhminx increases the number of inversions by `(k).

Part (iii) is analogous to (ii). �

Here is an example to illustrate all the results in this section.

Example 4.5. Let λ = (3, 3, 2) and let µ = (5, 3). We work with po-
sition permutations of labelled (5, 3)-tableaux of type (3, 3, 2), with nodes
numbered from 1 up to 8 as shown below.

1 2 3 4 5

6 7 8

We have

t
(5,3)
(3,3,2) = 11 12 13 21 22

23 31 32

Let g = (2, 3, 6)(4, 5, 7, 8). We will find a minimal length double coset rep-
resentative x and elements h ∈ Sλ, k ∈ Sµ such that hxk = g.

First note that

t
(5,3)
(3,3,2)g = 11 23 12 32 21

13 22 31

.

The permutation of minimum length such that condition (ii)′ holds per-
mutes the elements 21, 22, 23 as the 3-cycle (212223) and the elements 31, 32

as the transposition (3132). We have xk = h−1g, we will must take h−1 =
(465)(78). Hence h−1g = (23674) and

t
(5,3)
(3,3,2)h

−1g = 11 21 12 31 22

13 23 32

.

The unique permutation k−1 such that the rows of t
(5,3)
(3,3,2)h

−1gk−1 satisfy (i)

and (ii)′ is k−1 = (23)(45). Set

x = h−1gk−1 = (36754).

We check that

t
(5,3)
(3,3,2)x = 11 12 21 22 31

13 23 32

satisfies (i) and (ii)′. Therefore g = hxk where where h = (456)(78), x =
(36754) and k = (23)(45) and g ∈ SλxSµ where x is the unique minimal
length element in its double coset.

However, this h does not have minimum possible length. It was unneces-
sary to permute the indices so that (ii)′ holds: it is sufficient if 21, 22 and 31

are in the first row. In fact the minimal length element of S(3,3,2) acts as the
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product of transpositions (2223)(3132). So we take h−1min = (56)(78). Now

h−1ming = (236745) and

t
(5,3)
(3,3,2)h

−1
ming = 11 22 12 31 21

13 23 31

.

We now take k′−1 = (2453) to straighten out the first row. As expected we
have g = hminxk

′.
Since `(x) = 4 we have `(g) = `(h) + `(x) + `(k) = 3 + 4 + 2 = 9. This

agrees with `(g) = `(hmin) + `(x) + `(k′) = 2 + 4 + 3.

5. Permutation actions

We say that a tableau is row semistandard if its rows are non-decreasing.
As an corollary of the proof of Theorem 4.1 we have the following useful
result.

Corollary 5.1. Let X be the set of minimal length representatives for the
double cosets Sλ\Sn/Sµ. The map sending x ∈ X to tµλx gives a bijection
between X and the set of row semistandard µ-tableaux of type λ.

Hence the orbits of Sµ on Sλ\Sn are canonically labelled by row semis-
tandard µ-tableaux of type λ.

Proposition 5.2. Let λ and µ be compositions of n. If x ∈ Sn is of minimal
length in its coset xSµ then (Sλ)x ∩ Sµ is a Young subgroup of Sn.

Proof. First note that if x has minimum length in xSµ then the (unlabelled)
tableau tµλx is row semistandard. Since (Sλ)x is the stabiliser of tµλx, we see
that (Sλ)x∩Sµ is the subgroup of Sµ that permutes the equal entries within
each row. Since tµλx is row semistandard, these entries form contiguous
blocks and so (Sλ)x ∩ Sµ is a Young subgroup. �

In particular, the hypotheses of the lemma are satisfied whenever x has
minimum length in the double coset SλxSµ. For example, x = (456) is a
minimal length coset representative for S(3,2,1)\S6/S(4,2), corresponding to
the tableau

1 1 1 3
2 2

.

We can read off from this tableau that

(S(3,2,1))
(456) ∩ S(4,2) = S{1,2,3} × S{5,6}.

Remark 5.3. The converse of Proposition 5.2 does not hold. For example,
if λ = (2, 1) and µ = (3) then (S(2,1))

(123) = S{2,3} is a Young subgroup, but
(123) is not of minimal length in the coset (123)S3 = S3.

The definition of a µ-tableau of type λ is asymmetric between λ and
µ. For row semistandard tableaux there is an alternative description which
removes this asymmetry.

Lemma 5.4. Let t be a row semistandard µ-tableau of type λ. Define a
matrix T by letting Tij be the number of entries of row i of t equal to j.
This gives a bijection between row semistandard µ-tableaux of type λ and
non-negative integral matrices with row sums µ and column sums λ. 2
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An immediate consequence is that the number of row semistandard µ-
tableaux of type λ is equal to the number of row semistandard λ-tableaux
of type µ. (See Corollary 5.7 below for another remark along these lines.)
The next definition is most easily given in terms of matrices.

Definition 5.5. Say that a non-negative integral matrix T has content ν if
when we read the entries row-by-row, reading rows from left to right, starting
at the top row and finishing at the bottom row, the non-negative entries
form the composition ν. Let mµ

λ(ν) be the number of non-negative integral
matrices with row sums µ, column sums λ and content ν.

Using our bijection, we may also refer to the content of a row semistandard
tableau, which is obtained by counting numbers of equal entries in each row.
For example, the (3, 1)-tableaux of type (2, 2)

1 1 2
2

and 1 2 2
1

correspond to the matrices(
2 1
0 1

)
and

(
1 2
1 0

)
and have contents (2, 1, 1) and (1, 2, 1) respectively.

Proposition 5.6. Let Ωλ denote the coset space Sλ\Sn. If we restrict the
action of Sn to Sµ then the following Mackey formula holds:

Ωλ =
⋃
ν

mµ
λ(ν) Sν\Sµ.

where the union is over all compositions ν refining µ.

Proof. By Corollary 5.1, if we identify Sλ\Sn with the set of µ-tableaux of
type λ then each orbit of Sµ contains a unique row semistandard tableau.
Let t be such a tableau, with content ν say. It follows immediately from the
definition of content that ν is a refinement of µ and that Sν is the stabiliser
of t in the action of Sµ. The result follows. �

Corollary 5.7. The number of orbits of Sλ on Ωµ is equal to the number
of orbits of Sµ on Ωλ. 2

This corollary can also be proved using character theory. I am grateful to
Darij Grinberg for pointing out a short proof: the orbits of Sµ on Ωλ are in
bijection with the double cosets Sλ\Sn/Sµ (via the map that sends an orbit

to the union of the cosets in it), and similarly, the orbits of Sλ on Ωµ are in
bijection with the double cosets Sµ\Sn/Sλ. The two sets of double cosets
are in bijection by the map defined by SλgSµ 7→ Sµg

−1Sλ.

Corollary 5.8.

Ωλ × Ωµ =
⋃
ν|=n

mµ
λ(ν)Ων .

Sketch proof. This follows from the well known result that if G is a group
acting transitively on sets Ω and Γ and ω ∈ Ω then there is a bijection
between the orbits of the point stabiliser Gω on Γ and the orbits of G on
Ω× Γ. This bijection is given by mapping γGω to (ω, γ)G. �
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The analogues of the two previous corollaries for permutation modules
are as follows.

Corollary 5.9. If Mλ denote the ZSn permutation module obtained from
the action of Sn on Ωλ then

Mλ
y
Sµ

=
⊕
ν

mµ
λ(ν)Z

xSµ
Sν
,

Mλ ⊗Mµ =
⊕
ν

mµ
λ(ν)Mν

where the sums are over all compositions ν refining µ.

In particular, the last formula implies that if πλ is the permutation char-
acter of Ωλ then

πλπµ =
∑
ν|=n

mµ
λ(ν)πν .

This is a shadow of the multiplication formula in the Solomon Descent Al-
gebra. For an introduction see [3].

Remark 5.10. In fact, there are already signs that the non-commutative
setting is the more natural one. For example, if the parts of the compositions
ν and ρ may be rearranged to give the same partition of n then Ων ∼= Ωρ

as Sn-sets, and Mν ∼= Mρ as ZSn-modules. (In each case the converse
also holds.) So the right-hand-sides in the last corollary are not sums over
‘independent’ elements. For example, we can write

Mλ ⊗Mµ =
⊕

cµλ(ν)Mν

where the sum is over all partitions ν, and the coefficients are defined by

cµλ(ν) =
∑
ρ∼ν

mµ
λ(ρ).

(Here ρ ∼ ν means that when we arrange the parts of ρ in order, we ob-
tain ν.) But in the non-commutative setting we can replace Mλ with the
element Ξλ of the Solomon Descent Algebra, and obtain the coefficients
mµ
λ(ν) as structure constants using the formula

ΞλΞµ =
∑
ν|=n

mµ
λ(ν)Ξν .

6. Gale–Ryser Theorem

We conclude with a remark related to the Gale–Ryser Theorem. Recall
that this theorem states that there is a 0 − 1 matrix with row sums λ and
column sums µ if and only if λ � µ′. The following proposition gives an
algebraic formulation:

Proposition 6.1. Let λ and µ be partitions of n. There is a double coset
SλgSµ containing |Sλ||Sµ| elements if and only if λ� µ′.

Proof. There is such a coset if and only if there is a row semistandard µ-
tableau of type λ such that no entry is repeated in any row. The matrix
corresponding to such a tableau is a 0 − 1 matrix with row sums µ and
column sums λ. �
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