
Fast and fun results:
functional programming
for mathematicians

Mark Wildon

I Please ask questions.

I Full solutions to all problems are on my website: see
www.ma.rhul.ac.uk/~uvah099/Talks/FuncProg.nb.

I Any comments or suggestions for things you’d have liked to
see covered are very welcome.

I Do not try to use the free online version of Mathematica
for the exercises. It is very slow and buggy.

I Remember: Shift-Return after each input line. It you just
press return Mathematica will not evaluate it.

www.ma.rhul.ac.uk/~uvah099/Talks/FuncProg.nb

“What I mean is that if you really want to understand something,

the best way is to try and explain it to someone else. That forces

you to sort it out in your own mind. And the more slow and

dim-witted your pupil, the more you have to break things down

into more and more simple ideas. And that’s really the essence

of programming. By the time you’ve sorted out a complicated

idea into little steps that even a stupid machine can deal with,

you’ve certainly learned something about it yourself.”

Douglas Adams, Dirk Gently’s Holistic Detective Agency (1987)

I . . . am rarely happier than when spending an entire day pro-
gramming my computer to perform automatically a task that
would otherwise take me a good ten seconds to do by hand.

Douglas Adams, Last chance to see (1989)

“We should forget about small efficiencies, say about 97% of
the time: premature optimization is the root of all evil”

Donald Knuth, Structured Programming with go to Statements (1974)

“What I mean is that if you really want to understand something,

the best way is to try and explain it to someone else. That forces

you to sort it out in your own mind. And the more slow and

dim-witted your pupil, the more you have to break things down

into more and more simple ideas. And that’s really the essence

of programming. By the time you’ve sorted out a complicated

idea into little steps that even a stupid machine can deal with,

you’ve certainly learned something about it yourself.”

Douglas Adams, Dirk Gently’s Holistic Detective Agency (1987)

I . . . am rarely happier than when spending an entire day pro-
gramming my computer to perform automatically a task that
would otherwise take me a good ten seconds to do by hand.

Douglas Adams, Last chance to see (1989)

“We should forget about small efficiencies, say about 97% of
the time: premature optimization is the root of all evil”

Donald Knuth, Structured Programming with go to Statements (1974)

“What I mean is that if you really want to understand something,

the best way is to try and explain it to someone else. That forces

you to sort it out in your own mind. And the more slow and

dim-witted your pupil, the more you have to break things down

into more and more simple ideas. And that’s really the essence

of programming. By the time you’ve sorted out a complicated

idea into little steps that even a stupid machine can deal with,

you’ve certainly learned something about it yourself.”

Douglas Adams, Dirk Gently’s Holistic Detective Agency (1987)

I . . . am rarely happier than when spending an entire day pro-
gramming my computer to perform automatically a task that
would otherwise take me a good ten seconds to do by hand.

Douglas Adams, Last chance to see (1989)

“We should forget about small efficiencies, say about 97% of
the time: premature optimization is the root of all evil”

Donald Knuth, Structured Programming with go to Statements (1974)

Some programming paradigms

I Imperative (for example, C)

int f(int n) {

int a = 0; int b = 1; int c;

int i; for (i = 0; i < n; i++) {

c = a + b; a = b; b = c;

}

return a;

}

I Functional (for example, Haskell)

f 0 = 0; f 1 = 1; f n = f (n-1) + f (n-2);

I Rule-based (for example, Inform 7)
The description of the notepad is “A normal notepad. On it you
see written [15 th Fibonacci number].”

Definition: a number is small if it is less than 2.

To decide which number is the (n - a number) th Fibonacci number:
if n is small, decide on n; otherwise decide on the (n - 1) th
Fibonacci number plus the (n - 2) th Fibonacci number.

Mathematica supports all three paradigms
I It is fastest and most elegant when used as a functional

programming language.

I Pattern matching can be very powerful.

Promise: you will be able to solve all problems today using only
Mathematica functions introduced in this talk.

I Functions: square brackets. For instance
fib[0] := 0

fib[1] := 1

fib[n_] := fib[n-1] + fib[n-2]
I := is syntactic sugar for SetDelayed. The right-hand side is

stored in Mathematica’s internal memory, and evaluated
when necessary.

I n_ is a pattern, matching anything. Whatever it matches, will
be used in place of ‘n’ on the right-hand side. Most specific
pattern wins: so first line is used for fib[0]. Ties are broken
by the order of input: sometimes it is essential to get this right
(see PowerMod example below).

I Slow? See final slide on memoization.

Patterns

I To find out what is stored under a symbol, for instance fib,
use Information[fib]. Clear using ClearAll[fib].

If you only want a pattern to match if an extra condition holds, use
a pattern guard. For example

Collatz[x_] /; EvenQ[x] := x/2

Collatz[x_] /; OddQ[x] := 3x+1

defines the Collatz function.

Quiz: with these definitions,
g[1] := 1

g[x] := x+1

g[y_] := y/2

g[{x_,y_}] /; EvenQ[y] := y/2

how will g[1], g[x+1], g[x], g[y], g[z], g[{1,2}] evaluate?

Remember: the most specific pattern wins.

Patterns

I To find out what is stored under a symbol, for instance fib,
use Information[fib]. Clear using ClearAll[fib].

If you only want a pattern to match if an extra condition holds, use
a pattern guard. For example

Collatz[x_] /; EvenQ[x] := x/2

Collatz[x_] /; OddQ[x] := 3x+1

defines the Collatz function.

Quiz: with these definitions,
g[1] := 1

g[x] := x+1

g[y_] := y/2

g[{x_,y_}] /; EvenQ[y] := y/2

how will g[1], g[x+1], g[x], g[y], g[z], g[{1,2}] evaluate?

Remember: the most specific pattern wins.

Examples from teaching

I This term I’ve lectured MT362 Cipher Systems.
Mathematica was useful for implementing the old-school
attacks on alphabetical ciphers. Using Haskell I implemented
differential and linear cryptanalysis attacks on block ciphers.

Examples from teaching
I For a project student classifying all groups with exactly 4

conjugacy classes, we needed the solutions to

1

n1
+

1

n2
+

1

n3
+

1

n4
= 1

with n1 ≥ n2 ≥ n3 ≥ n4. By elementary inequalitites, either
n1 = n2 = n3 = n4 = 4 or n4 ≤ 3, n3 ≤ 6 and n2 ≤ 12, giving
only finitely many solutions to search for.

GoodTriple[{y2_, y3_, y4_}] :=

And[y2 + y3 + y4 < 1, y2 <= y3, y3 <= y4,

1 - y2 - y3 - y4 <= y2,

IntegerQ[1/(1 - y2 - y3 - y4)]]

Select[Join @@ Join @@ Table[{1/n2, 1/n3, 1/n4},

{n4, {2, 3}}, {n3, {2, 3, 4, 5, 6}},

{n2, Range[2, 12]}], GoodTriple]

In the functional style we define GoodTriple to recognise
solutions and use Select to apply it to all the candidates,
built using Table.

A toy RSA-Cryptosystem
Dr Z, a somewhat näıve pure mathematician, has chosen as his
RSA modulus

NextPrime[2^32+2^31]*NextPrime[2^32+2^16]

and decides on e = 2 as his encryption exponent.

I Write Mathematica functions ToyEncrypt and
ToyDecrypt to encrypt and decrypt arbitrary numbers in this
scheme. (Expect to find a problem with ToyDecrypt.)
I Useful functions: Mod[x,p] returns x mod m,

PowerMod[x,-1,m] returns x−1 mod m.
I Mathematica has all the usual calculator functions, +, −,
×, exponentiation . . .

I If[cond,x,y] is x if cond is true, y if cond is false.

Discussion: give some of the ways in which Dr Z’s cryptosystem
might be improved.

I Write an efficient function using only Mod, If (or pattern
guards) and recursion that computes xe mod n for any
x , e, n ∈ N.

A toy RSA-Cryptosystem
Dr Z, a somewhat näıve pure mathematician, has chosen as his
RSA modulus

NextPrime[2^32+2^31]*NextPrime[2^32+2^16]

and decides on e = 2 as his encryption exponent.

I Write Mathematica functions ToyEncrypt and
ToyDecrypt to encrypt and decrypt arbitrary numbers in this
scheme. (Expect to find a problem with ToyDecrypt.)
I Useful functions: Mod[x,p] returns x mod m,

PowerMod[x,-1,m] returns x−1 mod m.
I Mathematica has all the usual calculator functions, +, −,
×, exponentiation . . .

I If[cond,x,y] is x if cond is true, y if cond is false.

Discussion: give some of the ways in which Dr Z’s cryptosystem
might be improved.

I Write an efficient function using only Mod, If (or pattern
guards) and recursion that computes xe mod n for any
x , e, n ∈ N.

PowerMod Example

A solution using pattern guards is

PM[x_, 0, n_] := 1

PM[x_, e_, n_] /; EvenQ[e] := PM[Mod[x^2, n], e/2, n]

PM[x_, e_, n_] /; OddQ[e] :=

Mod[x*PM[Mod[x, n], e-1, n], n]

Because of the pattern guards in the second and third cases,
Mathematica not consider the first rule as the most specific. So
it is essential to enter it first to give the recursion a base case.

A solution using If is

PMIf[x_,0,n_] := 1

PMIf[x_, e_, n_] :=

If[EvenQ[e], PM[z, e/2, n],

Mod[x*PMIf[z, e-1, n], n]]]

Lists and map/reduce

I Map[f, xs] evaluates f on each member of the list xs. For
example, Map[fib, {1,2,3}] {f[1],f[2],f[3]}
{1,1,2}. The symbol # is an anonymous argument: for
example Map[#*2 &,xs] doubles every element of xs.

I Select[xs, pred] selects those elements of the list xs
satisfying the predicate pred. For example,

Select[{1,2,3},OddQ] {1,3}.

I The ‘FullForm’ representation of {1,2,3} is List[1,2,3].
Apply replaces the head ‘List’ with another function of your
choice. For example Apply[Plus,{1,2,3}] 6.

Some other useful functions.

I x==y True if x and y are the same, False otherwise.

I Range[1,4] {1,2,3,4}.

I Join[{1,2,3},{1,2},{},{1}] {1,2,3,1,2,1}.

I Table[f[x],{x,ys}] Map[f,ys]

Map exercise

Dr Z decides it would be nice to be able to send English messages
rather than just numbers.

Quiz: Given that
ToCharacterCode["H"] 72

ToCharacterCode["E"] 69

ToCharacterCode["L"] 76

what is
Map[ToCharacterCode, {"H","E","L","L","O"}] ?

Write functions ToyEncryptWord and ToyDecryptWord. Hint:
glue together simpler functions. So ToyEncryptWord could be the
composition of WordToNumbers and ToyEncryptNumbers.

I Write a function that computes the sum s(n) of the (base 10)
digits of a number n. Useful functions:
I Mod[x,10], Quotient[x,10]

I Define S : N→ N by

S(n) =

{
n if n < 10

S(s(n)) if n ≥ 10.

Why is S well-defined? Implement S in Mathematica.
I There are solutions using If or pattern guards.
I A very elegant solution uses //. (apply rule repeatedly until

there is no change).

I Investigate S(n2) for n ∈ N: Table[S[x^2],{x,1,10}]

I Multiple iterators give nested lists. This is not always what
one wants. For example Table[i+j,{i,1,2},{j,1,2}]
{{2, 3}, {3, 4}}. Instead use

Join@@Table[i+j,{i,1,2},{j,1,2}] {2,3,3,4}.

I Challenge: make all lists of a given length from a given list:
Ls[{1,2},2] {{1, 1}, {1, 2}, {2, 1}, {2, 2}}.

Further map/reduce problems
I Write a function that returns True if and only if its input is a

list of odd numbers using And. For example
And[True,False,True] False.

I Write a function CountList that given a list of numbers,
returns a list of pairs counting the number of appearances of
each number. For example

CountList[{1,5,2,1,2,1}]

should evaluate to
{{1,3},{5,1},{2,2}}

Useful functions: First[xs] returns the first element of the
non-empty list xs, Drop[xs,1] removes the first element,
Length[xs] evaluates to the length of xs.

I Investigate asymptotics of
∑n

k=1 φ(k)/k . Useful functions:
EulerPhi, N (numerical eval.), TableForm (format table).

I To mergesort a list, split it into two halves, mergesort each
half, and then merge the lists back together. For example, the
sorted lists {4,4,6} and {1,4,5} merge to {1,4,4,4,5,6}.
Write a Mergesort function. Useful function: Take.

Pattern Exercises

I Write a function to compare two lists under the lexicographic
order.

Cases, ReplaceAll (or /.) and Condition (or /;).

I Cases[{{1, 2}, 2, 3, {3},{4,{5,6}}}, {_, _}]
{{1,2},{4,{5,6}}}

I {1,2,3,{4,5}} /. {x_ :> x+1} {2,3,4,{5,6}}

I {1,2,3,{4,5}} /. {x_ /; (x < 3) :> x+1}
{2,3,3,{4,5}}

The next exercise is hard for annoying reasons.

I Write a function PlotDerivative to plot the derivative of a
given function g of one variable.

Derangements

A derangement of the set {1, 2, . . . , n} is a permutation
f : {1, 2, . . . , n} → {1, 2, . . . , n} such that f (k) 6= k for any k. In
Mathematica, we will represent f by the list with elements
f (1), f (2), . . . , f (n).

I Write a function IsDerangement to decide if a permutation
of {1, 2, . . . , n}, represented by a Mathematica list, is a
derangement.

I Write a function NumberOfDerangements giving the number
dn of derangements of {1, 2, . . . , n}. [Hint: use
Permutations to get all permutations.]

I Investigate the asymptotics of dn.

I Write a function to compose two permutations.

I Investigate the asymptotic probability that the composition of
two derangements is a derangement.

Set and memoization
So far we have always used :=, or in ‘FullForm’, SetDelayed, for
assignment. Sometimes it is useful to evaluate the right-hand
immediately.

This is done used =, or in ‘FullForm’, Set.

When x = y is evaluated, y is evaluated, and the result assigned
to x; the return value is the evaluation of y.
I Memoization: the Fibonacci function defined earlier uses

exponentially many evaluations. For instance Fib[5]
Fib[4] + Fib[3], and then Fib[4] Fib[3] + Fib[2]

and Fib[3] Fib[2] + Fib[1], so already we see Fib[2]

will be evaluated twice.
I What we need is to force the evaluation of Fib[4] and

Fib[3] and then store the result once and for all in Fib[5].
Set is ideal for this.

I fib[0] := 0

fib[1] := 1

fib[n_] := fib[n] = fib[n-1] + fib[n-2]

Examples from research
I Foulkes’ Conjecture: Haskell implementation of new

recurrence. Visualizing data: Haskell program plotter.hs

produces Metafont files, which are turned into postscript files
by Metafont, and finally printed or viewed as pdf.

I Derangements: new numerical results obtained using MAGMA
and Haskell.

