Modular plethysms for $SL_2(F)$

Mark Wildon

MFO Miniworkshop 2020

Organizers: Christine Bessenrodt, Chris Bowman, Eugenio Giannelli

Outline

- $\S 1$ Plethysms for $\mathrm{SL}_2(\mathbb{C})$
- §2 A modular Wronskian isomorphism
- §3 Modular plethystic isomorphisms for complements
- §4 Obstructions to modular plethysms

Section 1 is with Rowena Paget, based on

Plethysms of symmetric functions and representations of $\mathrm{SL}_2(\mathbb{C})$, arXiv:1907.07616, July 2019

To appear in Journal of Algebraic Combinatorics.

Sections 2, 3 and 4 are with my Ph.D student Eoghan McDowell.

$\S 1$ Plethysms for $\mathrm{SL}_2(\mathbb{C})$

Are there nice isomorphisms $S^2(k^n) \cong \Lambda^2(k^{n+1})$?

Asked 1 year, 1 month ago Active 1 year, 1 month ago Viewed 349 times

This might be forced to migrate to math.SE but let me still risk it.

12 The spaces $S^2(k^n)$ and $\Lambda^2(k^{n+1})$ from the title have equal dimensions. Is there a *natural* isomorphism between them?

:

share cite edit close flag

edited Jan 15 '19 at 10:52

Let E be a 2-dimensional k-vector space. The Wronksian isomorphism is an isomorphism of SL(E)-modules $\int^m S^{m+r-1}(E) \cong S^m S^r(E)$. It is easiest to deduce it from the corresponding identity in symmetric functions (specialized to 1 and q), but it can also be defined explicitly: see for example Section 2.5 of this paper of Abdesselam and Chipalkatti.

In particular, identifying $S^n(E)$ with the homogeneous polynomial functions on E of degree n, their definition becomes the map $\wedge^2 S^n(E) \to S^2 S^{n-1}(E)$ defined by

$$f \wedge g \mapsto \frac{\partial f}{\partial X} \frac{\partial g}{\partial Y} - \frac{\partial f}{\partial Y} \frac{\partial g}{\partial X}.$$

Now $S^n(E) \cong k^{n+1}$ and $S^{n-1}(E) \cong k^n$, so we have the required isomorphism $S^2 k^n \cong \wedge^2 k^{n+1}$.

share cite edit delete flag

edited Jan 15 '19 at 11:49

Equivalent conditions for $\mathrm{SL}_2(\mathbb{C})$ plethystic isomorphisms

Recall that E is the natural 2-dimensional representation of $\mathrm{SL}_2(\mathbb{C})$.

Theorem

Let λ and μ be partitions and let ℓ , $m \in \mathbb{N}$. The following are eqv:

- (i) $\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}(E)} \nabla^{\mu} \operatorname{Sym}^{m} E$;
- (ii) $(s_{\lambda} \circ s_{(\ell)})(x^{-1}, x) = (s_{\mu} \circ s_{(m)})(x^{-1}, x);$
- (iii) $s_{\lambda}(1,q,\ldots,q^{\ell})=s_{\mu}(1,q,\ldots,q^{m})$ up to a (fixed) power of q;

Equivalent conditions for $\mathrm{SL}_2(\mathbb{C})$ plethystic isomorphisms

Recall that E is the natural 2-dimensional representation of $\mathrm{SL}_2(\mathbb{C})$.

Theorem

Let λ and μ be partitions and let ℓ , $m \in \mathbb{N}$. The following are eqv:

- (i) $\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}(E)} \nabla^{\mu} \operatorname{Sym}^{m} E$;
- (ii) $(s_{\lambda} \circ s_{(\ell)})(x^{-1}, x) = (s_{\mu} \circ s_{(m)})(x^{-1}, x);$
- (iii) $s_{\lambda}(1,q,\ldots,q^{\ell})=s_{\mu}(1,q,\ldots,q^{m})$ up to a (fixed) power of q;
- (iv) $C(\lambda) + \ell + 1/H(\lambda) = C(\mu) + m + 1/H(\mu)$

where $\ /\$ is difference of multisets (negative multiplicities okay) and

- ▶ $C(\lambda) = \{j i : (i, j) \in [\lambda]\}$ is the multiset of contents of λ ;
- ▶ $H(\lambda) = \{h_{(i,j)} : (i,j) \in [\lambda]\}$ is the multiset of hook lengths of λ .

Equivalent conditions for $\mathrm{SL}_2(\mathbb{C})$ plethystic isomorphisms

Recall that E is the natural 2-dimensional representation of $\mathrm{SL}_2(\mathbb{C})$.

Theorem

Let λ and μ be partitions and let ℓ , $m \in \mathbb{N}$. The following are eqv:

(i)
$$\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}(E)} \nabla^{\mu} \operatorname{Sym}^{m} E$$
;

(ii)
$$(s_{\lambda} \circ s_{(\ell)})(x^{-1}, x) = (s_{\mu} \circ s_{(m)})(x^{-1}, x);$$

(iii)
$$s_{\lambda}(1,q,\ldots,q^{\ell})=s_{\mu}(1,q,\ldots,q^{m})$$
 up to a (fixed) power of q ;

(iv)
$$C(\lambda) + \ell + 1/H(\lambda) = C(\mu) + m + 1/H(\mu)$$

where $\ /\$ is difference of multisets (negative multiplicities okay) and

▶
$$C(\lambda) = \{j - i : (i, j) \in [\lambda]\}$$
 is the multiset of contents of λ ;

▶
$$H(\lambda) = \{h_{(i,j)} : (i,j) \in [\lambda]\}$$
 is the multiset of hook lengths of λ .

Theorem (Stanley's Hook Content Formula, 1971)

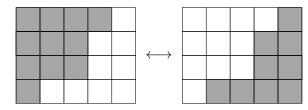
Let $[m]_q = 1 + q + \cdots + q^{m-1}$. For a suitable $B \in \mathbb{N}_0$,

$$s_{\lambda}(1,q,\ldots,q^{\ell}) = q^B rac{\prod_{(i,j) \in [\lambda]} [j-i+\ell+1]_q}{\prod_{(i,j) \in [\lambda]} [h_{(i,j)}]_q}$$

Plethystic complement isomorphism for $SL_2(\mathbb{C})$

Let λ be a partition contained in a box with d rows and a columns. Let λ^{\bullet} be its complement. For example if a=5, d=4 then

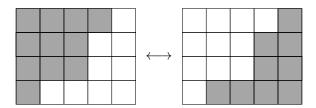
$$(4,3,3,1)^{\bullet} = (4,2,2,1).$$



Plethystic complement isomorphism for $SL_2(\mathbb{C})$

Let λ be a partition contained in a box with d rows and a columns. Let λ^{\bullet} be its complement. For example if a=5, d=4 then

$$(4,3,3,1)^{\bullet} = (4,2,2,1).$$



Theorem (King 1985)

Let λ have at most $\ell+1$ parts. Let λ^{\bullet} be the complement of λ in a box with $\ell+1$ rows. Then $\nabla^{\lambda}\mathrm{Sym}^{\ell}E\cong\nabla^{\lambda\bullet}\mathrm{Sym}^{\ell}E$.

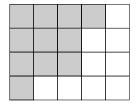
In Paget–W 2019 we showed that King's Theorem gives all plethystic isomorphisms relating $\nabla^{\lambda}\mathrm{Sym}^{\ell}E$ and $\nabla^{\mu}\mathrm{Sym}^{m}E$, when λ and μ are complements in *any* box.

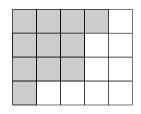
For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)}\mathrm{Sym}^3 E\cong \nabla^{(4,2,2,1)}\mathrm{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet} = (4, 2, 2, 1)$

$$C(\lambda) + 4/H(\lambda) = C(\lambda^{\bullet}) + 4/H(\lambda^{\bullet}).$$

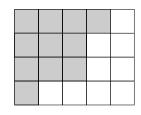




For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$

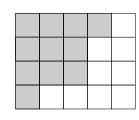


For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$

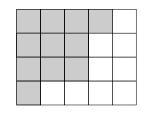
2		
1		



For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$



For example, using a rectangle with 4 rows and 5 columns,

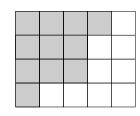
$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4,3,3,1)$, $\lambda^{\bullet} = (4,2,2,1)$

$$C(\lambda) + 4/H(\lambda) = C(\lambda^{\bullet}) + 4/H(\lambda^{\bullet}).$$

$$C(\lambda) + 4$$

4			
3	4		
2	3	4	
1			



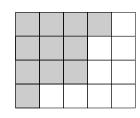
For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4/H(\lambda) = C(\lambda^{*}) + 4/H(\lambda^{*}).$$

$$C(\lambda) + 4$$

4	5		
3	4	5	
2	3	4	
1			

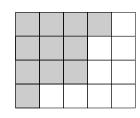


For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$

4	5	6	
3	4	5	
2	3	4	
1			

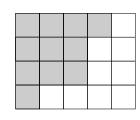


For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$

4	5	6	7	
3	4	5		
2	3	4		
1				



For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet} = (4, 2, 2, 1)$ $C(\lambda) + 4/H(\lambda) = C(\lambda^{\bullet}) + 4/H(\lambda^{\bullet})$.

$$C(\lambda) + 4$$

4 5 6 7

3 4 5

2 3 4

()						

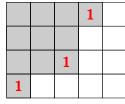
 $H(\lambda)$

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$
4 5 6 7
3 4 5
2 3 4

	/ \ \	
н	(λ)	١
	(, ,)	



For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet} = (4, 2, 2, 1)$ $C(\lambda) + 4/H(\lambda) = C(\lambda^{\bullet}) + 4/H(\lambda^{\bullet})$.

$$C(\lambda) + 4$$

4 5 6 7

3 4 5

2 3 4

1

			1	
		2		
	2	1		
1				

 $H(\lambda)$

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet} = (4, 2, 2, 1)$ $C(\lambda) + 4/H(\lambda) = C(\lambda^{\bullet}) + 4/H(\lambda^{\bullet})$.

$$C(\lambda) + 4$$

4 5 6 7

3 4 5

2 3 4

1

				1	
		3	2		
		2	1		
ĺ	1				

 $H(\lambda)$

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$

4 5 6 7

3 4 5

2 3 4

	/ \ `	١.
н	ıλ	١
,,	(^\	,

		4	1	
	3	2		
4	2	1		
1				

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$
4 5 6 7
3 4 5
2 3 4

	•	1	١,	
ŀ	-		λl	
•	•	1/	へょ	
		`	•	

5	4	1	
3	2		
2	1		
	3	3 2	3 2

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$
4 5 6 7
3 4 5
2 3 4

		1 .	١,
ŀ	-	1	۱ k
•	•	١,	$^{\prime}$
		`	•

7	5	4	1	
5	3	2		
4	2	1		
1				

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \mathrm{Sym}^3 E \cong \nabla^{(4,2,2,1)} \mathrm{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet} = (4, 2, 2, 1)$ $C(\lambda) + 4/H(\lambda) = C(\lambda^{\bullet}) + 4/H(\lambda^{\bullet})$.

$$C(\lambda) + 4$$

4 5 6 7 1

3 4 5 1 3

2 3 4 2 4

1 1 2 5 7

 $H(\lambda^{\bullet})$

7	5	4	1	
5	3	2		
4	2	1		
1				

 $H(\lambda)$

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \mathrm{Sym}^3 E \cong \nabla^{(4,2,2,1)} \mathrm{Sym}^3 E.$$

$$C(\lambda) + 4$$

4 5 6 7 1

3 4 5 1 3

2 3 4 2 4

1 1 2 5 7

 $H(\lambda^{\bullet})$

$$H(\lambda)$$

7	5	4	1	1
5	3	2	3	2
4	2	1	4	3
1	7	6	5	4
$C(\lambda^{\bullet}) + 4$				

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet} = (4, 2, 2, 1)$ $C(\lambda) + 4/H(\lambda) = C(\lambda^{\bullet}) + 4/H(\lambda^{\bullet})$.

$$C(\lambda) + 4$$

4 5 6 7 1

3 4 5 1 3

2 3 4 2 4

1 1 2 5 7

$$H(\lambda)$$

7	5	4	1	1
5	3	2	3	2
4	2	1	4	3
1	7	6	5	4
C()•) + 4				

 $C(\lambda^{\bullet}) + 4$

Either way: $\{1^4, 2^3, 3^3, 4^4, 5^3, 6, 7^2\}$

 $H(\lambda^{\bullet})$

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet} = (4, 2, 2, 1)$ $C(\lambda) + 4/H(\lambda) = C(\lambda^{\bullet}) + 4/H(\lambda^{\bullet})$.

$$C(\lambda) + 4$$

$$\begin{vmatrix} 4_0 & 5_1 & 6_2 & 7_3 & 1_0 \\ 3_0 & 4_1 & 5_2 & 1_0 & 3_1 \\ 2_0 & 3_1 & 4_2 & 2_0 & 4_1 \\ 1_0 & 1_0 & 2_1 & 5_2 & 7_3 \end{vmatrix}$$

 $H(\lambda)$

()					
73	52	41	10	10	
5 ₂	3 ₁	20	31	20	
42	21	10	41	30	
10	73	62	51	40	
$C(1 \bullet) + A$					

 $H(\lambda^{\bullet})$

Either way: $\{1^4, 2^3, 3^3, 4^4, 5^3, 6, 7^2\}$

Using a theorem of Bessenrodt: stronger version with arm lengths

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet} = (4, 2, 2, 1)$ $C(\lambda) + 4/H(\lambda) = C(\lambda^{\bullet}) + 4/H(\lambda^{\bullet})$.

$$C(\lambda) + 4$$

$$\begin{vmatrix} 4_0 & 5_1 & 6_2 & 7_3 & 1_0 \\ 3_0 & 4_1 & 5_2 & 1_0 & 3_1 \\ 2_0 & 3_1 & 4_2 & 2_0 & 4_1 \\ 1_0 & 1_0 & 2_1 & 5_2 & 7_3 \end{vmatrix}$$
 $H(\lambda^{\bullet})$

$$H(\lambda)$$

73	52	41	10	10
52	31	20	31	20
42	21	10	41	30
10	73	62	51	40
$C(\lambda^{\bullet}) + 4$				

 $\lambda^ullet)$

Either way: $\{1^4, 2^3, 3^3, 4^4, 5^3, 6, 7^2\}$

Using a theorem of Bessenrodt: stronger version with arm lengths

Problem

Interpret this using Jack symmetric functions and prove a stronger symmetric functions identity

Plane partitions

For example

is a plane partition of 22 with 4 columns, 3 rows, and entries \leq 5.

Plane partitions

For example

is a plane partition of 22 with 4 columns, 3 rows, and entries ≤ 5 . By rotating a half-turn and adding i-1 to all entries in row i get a bijection between $\mathcal{PP}(a,b,c)$ and $\mathrm{SSYT}_{\{0,1,\dots,b+c-1\}}(a^b)$. Hence

$$q^{-a{b \choose 2}} s_{(a^b)}(1,q,\ldots,q^{b+c-1}) = \sum_{\pi \in \mathcal{PP}(a,b,c)} q^{|\pi|}.$$

Plane partitions

For example

is a plane partition of 22 with 4 columns, 3 rows, and entries \leq 5. By rotating a half-turn and adding i-1 to all entries in row i get a bijection between $\mathcal{PP}(a,b,c)$ and $\mathrm{SSYT}_{\{0,1,\ldots,b+c-1\}}(a^b)$. Hence

$$q^{-ainom{b}{2}} s_{(a^b)} (1,q,\ldots,q^{b+c-1}) = \sum_{\pi \in \mathcal{PP}(a,b,c)} q^{|\pi|}.$$

Theorem (MacMahon 1896)

$$\sum_{\pi \in \mathcal{PP}(a,b,c)} q^{|\pi|} = \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{q^{i+j+k-1}-1}{q^{i+j+k-2}-1}.$$

Since right-hand side is invariant under permuting a, b, c get

$$\nabla^{(a^b)}\mathrm{Sym}^{b+c-1}E\cong_{\mathrm{SL}(E)}\nabla^{(b^a)}\mathrm{Sym}^{a+c-1}E\cong_{\mathrm{SL}(E)}\nabla^{(b^c)}\mathrm{Sym}^{c+a-1}E\cong_{\mathrm{SL}(E)}\ldots$$

Let F be an infinite field and let V be a polynomial representation of $\mathrm{SL}_2(F)$. Recall from Schur–Weyl duality that S_r acts on $V^{\otimes r}$ by permuting tensor factors.

- \triangleright Sym_r $V = (V^{\otimes r})^{S_r}$
- $\blacktriangleright \ \mathrm{Sym}^r V = V^{\otimes r} \big/ \langle (v^{(1)} \otimes \cdots \otimes v^{(r)}) \cdot \sigma v^{(1)} \otimes \cdots \otimes v^{(r)} : v^{(i)} \in V, \sigma \in S_r \rangle$

Let F be an infinite field and let V be a polynomial representation of $SL_2(F)$. Recall from Schur–Weyl duality that S_r acts on $V^{\otimes r}$ by permuting tensor factors.

$$ightharpoonup \operatorname{Sym}_r V = (V^{\otimes r})^{S_r}$$

For example, if E is the natural representation of $\mathrm{SL}_2(F)$ then $\mathrm{Sym}^2 E = \langle e_1^2, e_2^2, e_1 e_2 \rangle$ and

$$\begin{pmatrix} e_1 & e_2 \\ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \longmapsto \begin{pmatrix} e_1^2 & e_2^2 & e_1e_2 \\ \alpha^2 & \beta^2 & \alpha\beta \\ \gamma^2 & \delta^2 & \gamma\delta \\ 2\alpha\gamma & 2\beta\delta & \alpha\delta + \beta\gamma \end{pmatrix}$$

Let F be an infinite field and let V be a polynomial representation of $SL_2(F)$. Recall from Schur–Weyl duality that S_r acts on $V^{\otimes r}$ by permuting tensor factors.

$$\operatorname{Sym}^r V = V^{\otimes r} / \langle (v^{(1)} \otimes \cdots \otimes v^{(r)}) \cdot \sigma - v^{(1)} \otimes \cdots \otimes v^{(r)} : v^{(i)} \in V, \sigma \in S_r \rangle$$

For example, if E is the natural representation of $SL_2(F)$ then $Sym^2E = \langle e_1^2, e_2^2, e_1e_2 \rangle$ and

$$\begin{pmatrix} e_1 & e_2 & e_1^2 & e_2^2 & e_1 e_2 \\ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \longmapsto \begin{pmatrix} \alpha^2 & \beta^2 & \alpha\beta \\ \gamma^2 & \delta^2 & \gamma\delta \\ 2\alpha\gamma & 2\beta\delta & \alpha\delta + \beta\gamma \end{pmatrix}$$

Hence for $\Lambda^2 \operatorname{Sym}^2 E$,

$$\begin{pmatrix} e_1 & e_2 & e_1^2 \wedge e_1 e_2 & e_2^2 \wedge e_1 e_2 & e_1^2 \wedge e_2^2 \\ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \longmapsto \begin{pmatrix} \alpha^3 \delta - \alpha^2 \beta \gamma & \alpha \beta^2 \delta - \alpha \beta^2 \gamma & 2 \alpha^2 \beta \delta - 2 \alpha \gamma \beta^2 \\ \alpha \gamma^2 \delta - \alpha \gamma^2 \delta & \alpha \delta^3 - \beta \gamma \delta^2 & 2 \beta \gamma^2 \delta - 2 \alpha \gamma \delta^2 \\ \alpha^2 \gamma \delta - \gamma^2 \alpha \beta & \beta^2 \gamma \delta - \alpha \beta \delta^2 & \alpha^2 \delta^2 - \beta^2 \gamma^2 \end{pmatrix}$$

Let F be an infinite field and let V be a polynomial representation of $\mathrm{SL}_2(F)$. Recall from Schur–Weyl duality that S_r acts on $V^{\otimes r}$ by permuting tensor factors.

$$ightharpoonup \operatorname{Sym}_r V = (V^{\otimes r})^{S_r}$$

For example, if E is the natural representation of $\mathrm{SL}_2(F)$ then $\mathrm{Sym}^2 E = \langle e_1^2, e_2^2, e_1 e_2 \rangle$ and

$$\begin{pmatrix} e_1 & e_2 & e_1^2 & e_2^2 & e_1 e_2 \\ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \longmapsto \begin{pmatrix} \alpha^2 & \beta^2 & \alpha\beta \\ \gamma^2 & \delta^2 & \gamma\delta \\ 2\alpha\gamma & 2\beta\delta & \alpha\delta + \beta\gamma \end{pmatrix}$$

Hence for $\bigwedge^2 \operatorname{Sym}^2 E$, writing $\Delta = \alpha \delta - \beta \gamma$,

$$\begin{pmatrix} e_1 & e_2 & e_1^2 \wedge e_1 e_2 & e_2^2 \wedge e_1 e_2 & e_1^2 \wedge e_2^2 \\ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \longmapsto \begin{pmatrix} \alpha^2 \Delta & -\beta^2 \Delta & 2\alpha\beta\Delta \\ -\gamma^2 \Delta & \delta^2 \Delta & -2\gamma\delta\Delta \\ \alpha\gamma\Delta & -\beta\delta\Delta & (\alpha\delta + \beta\gamma)\Delta \end{pmatrix}$$

Duality and the modular Wronskian isomorphism

- $\nabla^{(r)}E = \operatorname{Sym}^r E$: costandard module
- $ightharpoonup \Delta^{(r)}E = \operatorname{Sym}_r E$: standard module, Weyl module, Carter–Lusztig module.
- ▶ $(\operatorname{Sym}^r E)^\circ \cong \operatorname{Sym}_r E$ where \circ denotes contravariant duality defined for a representation ρ by $g \mapsto \rho(g^{\operatorname{tr}})^{\operatorname{tr}}$;
- lacktriangle More generally, $(\nabla^{\lambda}V)^{\circ}\cong\Delta^{\lambda}(V^{\circ})$
- ▶ For $SL_2(F)$ -representations, contravariant duality agrees with normal duality: $E \cong E^*$ and $(\operatorname{Sym}^r E)^* \cong \operatorname{Sym}_r E$.

Theorem (McDowell-W 2020)

Let F be an infinite field. There is an isomorphism

$$\operatorname{Sym}_r \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}_2(F)} \bigwedge^r \operatorname{Sym}^{r+\ell-1} E.$$

Duality and the modular Wronskian isomorphism

- $\nabla^{(r)}E = \operatorname{Sym}^r E$: costandard module
- $\Delta^{(r)}E = \operatorname{Sym}_r E$: standard module, Weyl module, Carter–Lusztig module.
- ▶ $(\operatorname{Sym}^r E)^\circ \cong \operatorname{Sym}_r E$ where \circ denotes contravariant duality defined for a representation ρ by $g \mapsto \rho(g^{\operatorname{tr}})^{\operatorname{tr}}$;
- More generally, $(\nabla^{\lambda} V)^{\circ} \cong \Delta^{\lambda}(V^{\circ})$
- ▶ For $SL_2(F)$ -representations, contravariant duality agrees with normal duality: $E \cong E^*$ and $(\operatorname{Sym}^r E)^* \cong \operatorname{Sym}_r E$.

Theorem (McDowell-W 2020)

Let F be an infinite field. There is an isomorphism

$$\operatorname{Sym}_r \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}_2(F)} \bigwedge^r \operatorname{Sym}^{r+\ell-1} E.$$

Outline of proof: guess the right map. It is highly non-obvious that it is $SL_2(F)$ -equivariant.

When is there a subring of the complex numbers surjecting onto a given field of prime characteristic?

Asked vesterday Active vesterday Viewed 147 times To make use of the Lie algebra action of $gl_2(\mathbb{C})$ to establish a isomorphism in modular Blog representation theory. I would like an answer to this question: +4 Sharing our first gua Let K be a field of prime characteristic. When is there a subring R of the complex numbers roadmap -2 and a maximal ideal M of R such that $R/M \cong K$? Featured on Meta Clearly no such ring R exists if K has strictly more than $|\mathbb{C}|$ independent transcendental elements. Is this the only obstruction? Is there a reasonably explicit way to construct a suitable ☐ The company's com R when K is the algebraic closure of \mathbb{F}_n ? the relationship with As a follow-up (which at first I thought I needed, but I now see I can get around by working with The Q1 2020 Comm $GL_2(\mathbb{C})$ rather than $SL_2(\mathbb{C})$), note that if $R/M \cong K$ then the induced map the Blog $GL_d(R) \to GL_d(K)$, defined on a $d \times d$ matrix with entries in R by applying $R \rightarrow R/M \cong K$ to each entry, is a surjective group homomorphism. Planned maintenance Saturday, March 7, 2 Is is true in general that the restriction of the group homomorphism $GL_d(R) \to GL_d(K)$ to (9AM... $SL_d(R)$ is surjective onto $SL_d(K)$, or are there further obstructions? Hot Meta Posts rt.representation-theory algebraic-number-theory modular-representation-theory gr.group-theory Should I give a new old one? share cite edit close (1) delete flag asked yesterday Mark Wildon 8.018 • 1 • 32 • 51 7 Is this a site content

Using $\mathrm{SL}_2(R) \twoheadrightarrow \mathrm{SL}_2(F)$ and $\mathrm{SL}_2(R) \subseteq \mathrm{SL}_2(\mathbb{C})$, this technical trick lets us prove the isomorphism using the Lie algebra $\mathrm{sl}_2(\mathbb{C})$.

$\S 3$: Modular plethystic isomorphism for complements

Theorem (McDowell-W 2020)

Let F be an infinite field and let λ be a partition with at most $\ell+1$ parts. Let λ^{\bullet} be the complement of λ in a box with $\ell+1$ rows. Then

$$\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong \nabla^{\lambda^{\bullet}} \operatorname{Sym}_{\ell} E.$$

§3: Modular plethystic isomorphism for complements

Theorem (McDowell-W 2020)

Let F be an infinite field and let λ be a partition with at most $\ell+1$ parts. Let λ^{\bullet} be the complement of λ in a box with $\ell+1$ rows. Then

$$\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong \nabla^{\lambda^{\bullet}} \operatorname{Sym}_{\ell} E.$$

Some ideas in the proof

- ▶ If V is a polynomial representation of $\mathrm{SL}_2(F)$ of dimension d then $\bigwedge^r V \cong \bigwedge^{d-r} V^*$
 - This is almost general nonsense:

$$\bigwedge^r V \times \bigwedge^{d-r} V \longrightarrow \bigwedge^d V = \det = F;$$

- ▶ Hence $\bigwedge^r V \otimes \bigwedge^{d-r} V$ has a trivial top composition factor;
- ▶ Use $U^* \otimes W \cong \operatorname{Hom}_{\mathcal{F}}(U, W)$ to get a candidate homomorphism;
- ▶ Some more work is needed to see it's an isomorphism.
- Use the explicit construction of $\nabla^{\lambda}V$ in deBoeck–Paget–W Plethysms of symmetric functions and highest weight representations, arXiv:1810.03448, Oct 2018 and generalized Garnir relations.

§4: Obstruction to modular plethysms

Theorem (King 1985)

Let E be the natural representation of $\mathrm{SL}_2(\mathbb{C})$. For a large class of partitions λ , there is an isomorphism

$$\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}(E)} \nabla^{\lambda'} \operatorname{Sym}^{\ell + \ell(\lambda') - \ell(\lambda)} E.$$

- In particular, King's result holds when λ is a hook; that is $\lambda = (a+1,1^b)$ for some $a,b \in \mathbb{N}_0$.
- ▶ In Paget–W 2019 we showed that King's Theorem gives all plethystic isomorphisms relating $\nabla^{\lambda} \operatorname{Sym}^{\ell} E$ and $\nabla^{\lambda'} \operatorname{Sym}^{m} E$.
- King's result was (independently) reproved by Cagliero and Penazzi 2016.
- The special case of King's Theorem when λ is a rectangle is an instance of a theorem of Manivel 2007.

Obstruction to a modular generalization

Let F be an infinite field of prime characteristic p and let E be the natural representation of $SL_2(F)$.

Theorem (McDowell-W 2020)

There exist infinitely many pairs (a,b) such that, provided e is sufficiently large, the eight representations of $\mathrm{SL}_2(F)$ obtained from $\nabla^{(a+1,1^b)}\mathrm{Sym}^{p^e+b}E$ by

- Replacing ∇ with Δ (duality)
- ▶ Replacing $(a + 1, 1^b)$ with $(b + 1, 1^a)$ and $p^e + b$ with $p^e + a$ (King conjugation);
- ▶ Replacing $\operatorname{Sym}^{\ell} E$ with $\operatorname{Sym}_{\ell} E$ (another duality); are all non-isomorphic.

Obstruction to a modular generalization

Let F be an infinite field of prime characteristic p and let E be the natural representation of $SL_2(F)$.

Theorem (McDowell-W 2020)

There exist infinitely many pairs (a,b) such that, provided e is sufficiently large, the eight representations of $\mathrm{SL}_2(F)$ obtained from $\nabla^{(a+1,1^b)}\mathrm{Sym}^{p^e+b}E$ by

- ▶ Replacing ∇ with Δ (duality)
- ▶ Replacing $(a + 1, 1^b)$ with $(b + 1, 1^a)$ and $p^e + b$ with $p^e + a$ (King conjugation);
- ▶ Replacing $\operatorname{Sym}^{\ell} E$ with $\operatorname{Sym}_{\ell} E$ (another duality); are all non-isomorphic.

Problem

What plethystic isomorphisms of representations of $\mathrm{SL}_2(\mathbb{C})$ have modular analogues?