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Sections 2, 3 and 4 are with my Ph.D student Eoghan McDowell.



§1 Plethysms for SL,(C)

Are there nice isomorphisms S2(k") = A2(k"*1)?

Asked 1 year, 1 monthago Active 1year, 1 monthago Viewed 349 times

A This might be forced to migrate to math.SE but let me still risk it.
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19

The spaces S?(k") and A2(k"*!) from the title have equal dimensions. Is there a natural
isomorphism between them?

share cite edit close flag edited Jan 15 '19 at 10:52 asked Jan 15 '19 at 9:45
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Let E be a 2-dimensional k-vector space. The Wronksian isomorphism is an isomorphism of SL(E)-
modules /" S™=1(E) =~ S™S"(E). Itis easiest to deduce it from the corresponding identity in
symmetric functions (specialized to 1 and g), but it can also be defined explicitly: see for example
Section 2.5 of this paper of Abdesselam and Chipalkatti.

In particular, identifying S" (E) with the homogeneous polynomial functions on E of degree n, their
definition becomes the map A>S"(E) — S2S"~!(E) defined by

of dg  of og
SNE= 5x oy ~arax

Now S"(E) 2 k™! and S""!(E) = k", so we have the required isomorphism S?k” = AZk™*!.

share cite edit delete flag edited Jan 15 '19 at 11:49 answered Jan 15 '19 at 11:09
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Equivalent conditions for SL,(C) plethystic isomorphisms
Recall that E is the natural 2-dimensional representation of SLy(C).

Theorem
Let A and p be partitions and let £, m € N. The following are eqv:

(i) VASym‘E 2y g) V/Sym™E;
(i) (sx 0 sp0))(x 7, %) = (S0 5(m)) (x 1, X);
(i) sx(1,q,...,9%) = su(1,q,...,9™) up to a (fixed) power of q;
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> C(A)={j—1i:(i,j) € [\]} is the multiset of contents of \;
> H(X) = {hgj): (i,J) € [N} is the multiset of hook lengths of \.
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Theorem (Stanley’'s Hook Content Formula, 1971)

Let [mly =1+ q+---+qm™ . For a suitable B € Ny,

BH(i,j)e[/\]U —i+L+1]q
[ jyepglhinla

ss(1,9,...,9) =q



Plethystic complement isomorphism for SL,(C)

Let A\ be a partition contained in a box with d rows and a columns.
Let A® be its complement. For example if a =5, d = 4 then

(4,3,3,1)* = (4,2,2,1).




Plethystic complement isomorphism for SL,(C)

Let A\ be a partition contained in a box with d rows and a columns.
Let A® be its complement. For example if a =5, d = 4 then

(4,3,3,1)* = (4,2,2,1).

PN

Theorem (King 1985)

Let A have at most £ 4+ 1 parts. Let A* be the complement of \ in
a box with { 4+ 1 rows. Then V*Sym‘E = V**Sym‘E.

In Paget—-W 2019 we showed that King's Theorem gives all
plethystic isomorphisms relating VASym‘E and V#Sym™E, when
A and p are complements in any box.



Stanley’'s HCF for the complement isomorphism
For example, using a rectangle with 4 rows and 5 columns,
Y3305y m3E > v(4221)gym3E.
By Stanley's Hook Content Formula with A=(4,3,3,1), A*=(4,2,2,1)
C(A) + 4/H()\) =C(\*) + 4/H()\').
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Stanley’'s HCF for the complement isomorphism
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Stanley’'s HCF for the complement isomorphism
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Stanley’'s HCF for the complement isomorphism
For example, using a rectangle with 4 rows and 5 columns,
Y3305y m3E > v(4221)gym3E.
By Stanley's Hook Content Formula with A=(4,3,3,1), A*=(4,2,2,1)
C(A) + 4/H()\) =C(\*) + 4/H()\').

C(\)+4 H(\)
40 |51 (62|73 |10 7352|4110 | 1o
3041521031 5231203120
20|31 42|20 |4 45121 | 10|41 |30
1o| 10|21 (52|73 19| 7362|5140
H(\®) C(\*)+4

Either way: {1# 23 33 4% 53 6,72}
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Stanley’'s HCF for the complement isomorphism
For example, using a rectangle with 4 rows and 5 columns,
Y3305y m3E > v(4221)gym3E.
By Stanley's Hook Content Formula with A=(4,3,3,1), A*=(4,2,2,1)
C(A) + 4/H()\) =C(\*) + 4/H()\').

C(\)+4 H(\)
40 |51 (62|73 |10 7352|4110 | 1o
3041521031 5231203120
20|31 42|20 |4 45121 | 10|41 |30
1o| 10|21 (52|73 1o| 73|62 51|40
H(\®) C(\*)+4

Either way: {1# 23 33 4% 53 6,72}
Using a theorem of Bessenrodt: stronger version with arm lengths
Problem

Interpret this using Jack symmetric functions and prove a stronger
symmetric functions identity



Plane partitions

For example
5 31
5 1 € PP(4,3,5)
1

=N W

is a plane partition of 22 with 4 columns, 3 rows, and entries < 5.



Plane partitions
For example

5 31
5 1

1
is a plane partition of 22 with 4 columns, 3 rows, and entries < 5.
By rotating a half-turn and adding i — 1 to all entries in row i get a
bijection between PP(a, b, c) and SSYT{Ql,.“,bH,l}(ab). Hence

qfa(g)s(ab)(L G,...,qbe 1) = Z g
7r€7379(37buc)

€ PP(4,3,5)
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Plane partitions
For example

5 31
5 1

1
is a plane partition of 22 with 4 columns, 3 rows, and entries < 5.
By rotating a half-turn and adding i — 1 to all entries in row i get a
bijection between PP(a, b, c) and SSYT{Ql,.“,bH,l}(ab). Hence

b
q*a(2)5(ab)(1v .o, gty = Z g

€ PP(4,3,5)

=N W

w€PP(a,b,c)
Theorem (MacMahon 1896)
|7r\ < ql+_]+k 1 _
Z = HH H g2 _1

w€PP(a,b,c) i=1j=1k= 1

Since right-hand side is invariant under permuting a, b, c get

V(ab)symb+c g NSL(E) V(ba)syma—i-c—lE gSL(E) v(bC)Symc-‘ra—lE gSL(E) o



§2: A modular Wronskian isomorphism
Let F be an infinite field and let V' be a polynomial representation
of SLy(F). Recall from Schur-Weyl duality that S, acts on V& by
permuting tensor factors.
» Sym,V = (V&)
> Sym'V = V®r/<(v(1)®---®v(’))~a—v(l)®-~~®v(’) vl eV.oes,)
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Let F be an infinite field and let V' be a polynomial representation
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permuting tensor factors.
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e e €16
e & 1 2

a? B2 af
<: f) — [ 2 &
2y 2P0 «ad + By
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§2: A modular Wronskian isomorphism

Let F be an infinite field and let V' be a polynomial representation
of SLy(F). Recall from Schur-Weyl duality that S, acts on V& by
permuting tensor factors.

» Sym,V = (V&)

> Sym'V = V®r/<(v(1)®---®v(’))~a—v(1)®-~~®v(’) vl eV.oes,)
For example, if E is the natural representation of SLy(F) then
Sym?E = <el,e2, e1ep) and

2 2

e e €16
e & 1 2

a? 2 af
<0‘ f) I I A
" 2y 2P0 «ad + By
Hence for /\2 Sym?E, writing A = ad — (7,

2 2 2 A a2
e & efNeier e Nee et N\ és

a 8 a’A —B2A 2a6A
( 5 > — —72A A —27v0A
v ayA —B6A  (ab + BYy)A



Duality and the modular Wronskian isomorphism

>
>

>

>
| 4

V(NE = Sym"E: costandard module

ANE = Sym, E: standard module, Weyl module,
Carter—Lusztig module.

(Sym"E)°® = Sym,E where o denotes contravariant duality
defined for a representation p by g — p(g'")";

More generally, (VAV)° 2 AMNV°)

For SLo(F)-representations, contravariant duality agrees with
normal duality: £ = E* and (Sym"E)* = Sym, E.

Theorem (McDowell-W 2020)

Let F be an infinite field. There is an isomorphism

r
Sym,Sym‘E =SL,(F) /\SymrM_lE.



Duality and the modular Wronskian isomorphism

» V(NE = Sym"E: costandard module

> AE = Sym, E: standard module, Weyl module,
Carter—Lusztig module.

» (Sym"E)° = Sym,E where o denotes contravariant duality
defined for a representation p by g — p(g'")";

> More generally, (VAV)° =2 AN V°)
» For SLy(F)-representations, contravariant duality agrees with
normal duality: £ = E* and (Sym"E)* = Sym, E.

Theorem (McDowell-W 2020)

Let F be an infinite field. There is an isomorphism
r
Sym,Sym‘E =SL,(F) /\SymrM_lE.

Outline of proof: guess the right map. It is highly non-obvious that
it is SLy(F)-equivariant.



When is there a subring of the complex numbers surjecting onto a given
field of prime characteristic?

Asked yesterday Active yesterday Viewed 147 times

+4

To make use of the Lie algebra action of gl,(C) to establish a isomorphism in modular
representation theory, | would like an answer to this question:

Let K be a field of prime characteristic. When is there a subring R of the complex numbers
and a maximal ideal M of R such that R/M =~ K?

Clearly no such ring R exists if K has strictly more than |C| independent transcendental
elements. Is this the only obstruction? Is there a reasonably explicit way to construct a suitable
R when K is the algebraic closure of [, ?

As a follow-up (which at first | thought | needed, but | now see | can get around by working with
GL,(C) rather than SL,(C)), note that if R/M = K then the induced map

GL4(R) - GL4(K), defined on a d X d matrix with entries in R by applying

R » R/M = K to each entry, is a surjective group homomorphism.

Is is true in general that the restriction of the group homomorphism GL;(R) — GL;(K) to
SL,(R) is surjective onto SL;(K), or are there further obstructions?

gr.group-theory | | rt.representation-theory i ber-theory dul P ion-theory
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Using SLa(R) — SLa(F) and SLa(R) C SLy(C), this technical
trick lets us prove the isomorphism using the Lie algebra slo(C).



§3: Modular plethystic isomorphism for complements

Theorem (McDowell-W 2020)

Let F be an infinite field and let A be a partition with at most
£+ 1 parts. Let \* be the complement of \ in a box with £ + 1
rows. Then

VASym‘E = V' Sym, E.



§3: Modular plethystic isomorphism for complements

Theorem (McDowell-W 2020)

Let F be an infinite field and let A be a partition with at most
£+ 1 parts. Let \* be the complement of \ in a box with £ + 1
rows. Then
VASym‘E = VA'Sym,E.
Some ideas in the proof
» If V is a polynomial representation of SLy(F) of dimension d
then \"V = A\97" v*

» This is almost general nonsense:

r d—r d
/\V>< /\V—>/\V:det:F;

> Hence A"V ® A%V has a trivial top composition factor;
> Use U* ® W = Homg(U, W) to get a candidate homomorphism;
» Some more work is needed to see it's an isomorphism.
» Use the explicit construction of V*V in deBoeck—Paget-W
Plethysms of symmetric functions and highest weight representations,
arXiv:1810.03448, Oct 2018 and generalized Garnir relations.



§4: Obstruction to modular plethysms

Theorem (King 1985)

Let E be the natural representation of SLy(C). For a large class of
partitions X\, there is an isomorphism

VASym‘E =31(E) vV Symz"'é()‘/)_f()‘) E.

» In particular, King's result holds when A is a hook; that is
A= (a+1,1P) for some a, b € Np.

» In Paget—W 2019 we showed that King's Theorem gives all
plethystic isomorphisms relating VASym‘E and V¥ Sym™E.

» King's result was (independently) reproved by Cagliero and
Penazzi 2016.

» The special case of King's Theorem when ) is a rectangle is
an instance of a theorem of Manivel 2007.



Obstruction to a modular generalization

Let F be an infinite field of prime characteristic p and let E be the
natural representation of SLy(F).

Theorem (McDowell-W 2020)
There exist infinitely many pairs (a, b) such that, provided e is
sufficiently large, the eight representations of SLy(F) obtained
from V(a+11°)GymP b E by

» Replacing V with A (duality)

» Replacing (a+ 1,1P) with (b + 1,12) and p® + b with p¢ + a

(King conjugation);
» Replacing Sym*E with Sym,E (another duality);

are all non-isomorphic.



Obstruction to a modular generalization

Let F be an infinite field of prime characteristic p and let E be the
natural representation of SLy(F).
Theorem (McDowell-W 2020)

There exist infinitely many pairs (a, b) such that, provided e is
sufficiently large, the eight representations of SLy(F) obtained
from V(a+11°)GymP b E by

» Replacing V with A (duality)

» Replacing (a+ 1,1P) with (b + 1,12) and p® + b with p¢ + a

(King conjugation);

» Replacing Sym*E with Sym,E (another duality);
are all non-isomorphic.
Problem

What plethystic isomorphisms of representations of SL,(C) have
modular analogues?



