Plethysms, polynomial representations of linear groups and Hermite reciprocity over an arbitrary field

Mark Wildon

OIST April 2021

Outline

- §1 Motivation: the Wronskian isomorphism
- §2 Plethysm and polynomial representations of $\mathrm{GL}_d(\mathbb{C})$
- §3 Plethysms for $\mathrm{SL}_2(\mathbb{C})$ and Stanley's Hook Content Formula
- §4 Modular plethystic isomorphisms

Sections 2 and 3 are with Rowena Paget, based on

Plethysms of symmetric functions and representations of $\mathrm{SL}_2(\mathbb{C})$, arXiv:1907.07616, July 2019

To appear in Journal of Algebraic Combinatorics.

Sections 1 and 4 are with my Ph.D student **Eoghan McDowell**, based on

 Modular plethystic isomorphisms for two-dimensional linear groups arXiv: by this Friday

§1 Motivation: A modular Wronskian isomorphism

Let V be a vector space.

Sym²
$$V = V^{\otimes 2}/\langle v \otimes w - w \otimes v : v, w \in V \rangle$$

$$= \langle vw : v \in V, w \in V \rangle$$

$$\bigwedge^{2} V = V^{\otimes 2}/\langle v \otimes v : v \in V \rangle$$

$$= \langle v \wedge w : v \in V, w \in V \rangle$$

§1 Motivation: A modular Wronskian isomorphism

Let V be a vector space.

$$\operatorname{Sym}^{2}V = V^{\otimes 2}/\langle v \otimes w - w \otimes v : v, w \in V \rangle$$

$$= \langle vw : v \in V, w \in V \rangle$$

$$\bigwedge^{2}V = V^{\otimes 2}/\langle v \otimes v : v \in V \rangle$$

$$= \langle v \wedge w : v \in V, w \in V \rangle$$

Observation. Sym² \mathbb{C}^n and $\bigwedge^2 \mathbb{C}^{n+1}$ both have dimension $\binom{n+1}{2}$.

▶ For instance, if v_1, \ldots, v_n is a basis for \mathbb{C}^n then $\operatorname{Sym}^2\mathbb{C}^n$ has basis $v_1^2, \ldots, v_n^2, v_1 v_2, \ldots, v_{n-1} v_n$ of size $n + \binom{n}{2}$.

Question. Asked by **đამუკა ჯიბლაძე** on MathOverflow: Is there a natural isomorphism between these vector spaces?

§1 Motivation: the Wronskian isomorphism

Are there nice isomorphisms $S^2(k^n) \cong \Lambda^2(k^{n+1})$?

Asked 1 year, 1 month ago Active 1 year, 1 month ago Viewed 349 times

This might be forced to migrate to math.SE but let me still risk it.

12 The spaces $S^2(k^n)$ and $\Lambda^2(k^{n+1})$ from the title have equal dimensions. Is there a *natural* isomorphism between them?

:

share cite edit close flag

edited Jan 15 '19 at 10:52

Let E be a 2-dimensional k-vector space. The Wronksian isomorphism is an isomorphism of SL(E)-modules $\int^m S^{m+r-1}(E) \cong S^m S^r(E)$. It is easiest to deduce it from the corresponding identity in symmetric functions (specialized to 1 and q), but it can also be defined explicitly: see for example Section 2.5 of this paper of Abdesselam and Chipalkatti.

In particular, identifying $S^n(E)$ with the homogeneous polynomial functions on E of degree n, their definition becomes the map $\wedge^2 S^n(E) \to S^2 S^{n-1}(E)$ defined by

$$f \wedge g \mapsto \frac{\partial f}{\partial X} \frac{\partial g}{\partial Y} - \frac{\partial f}{\partial Y} \frac{\partial g}{\partial X}.$$

Now $S^n(E) \cong k^{n+1}$ and $S^{n-1}(E) \cong k^n$, so we have the required isomorphism $S^2 k^n \cong \wedge^2 k^{n+1}$.

share cite edit delete flag

edited Jan 15 '19 at 11:49

Action of $\operatorname{GL}_2(\mathbb{C})$ on $\langle X,Y \rangle$ $X Y X^2 \wedge XY Y^2 \wedge XY X^2 \wedge Y^2$

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \longmapsto \begin{pmatrix} \chi^2 \wedge \chi \gamma & \chi^2 \wedge \chi \gamma & \chi^2 \wedge \gamma^2 \\ \begin{pmatrix} \alpha^3 \delta - \alpha^2 \beta \gamma & \alpha \beta^2 \delta - \alpha \beta^2 \gamma & 2\alpha^2 \beta \delta - 2\alpha \gamma \beta^2 \\ \alpha \gamma^2 \delta - \alpha \gamma^2 \delta & \alpha \delta^3 - \beta \gamma \delta^2 & 2\beta \gamma^2 \delta - 2\alpha \gamma \delta^2 \\ \alpha^2 \gamma \delta - \gamma^2 \alpha \beta & \beta^2 \gamma \delta - \alpha \beta \delta^2 & \alpha^2 \delta^2 - \beta^2 \gamma^2 \end{pmatrix}$$

$$\begin{pmatrix} \alpha^{2}\gamma\delta - \gamma^{2}\alpha\beta & \beta^{2}\gamma\delta - \alpha\beta\delta^{2} & \alpha \\ X^{2} \wedge XY & Y^{2} \wedge XY & X^{2} \wedge Y^{2} \end{pmatrix}$$

$$\begin{array}{cccc}
X^2 \wedge XY & Y^2 \wedge X \\
\begin{pmatrix}
\alpha^2 \Delta & -\beta^2 A \\
-\alpha^2 \Delta & \delta^2 \Delta
\end{pmatrix}$$

$$= \begin{pmatrix} \alpha^2 \Delta & -\beta^2 \Delta & 2\alpha\beta\Delta \\ -\gamma^2 \Delta & \delta^2 \Delta & -2\gamma\delta\Delta \\ \alpha\gamma\Delta & -\beta\delta\Delta & (\alpha\delta + \beta\gamma)\Delta \end{pmatrix}$$

$$\begin{pmatrix} \alpha^2 \Delta & -\beta^2 A \\ -\gamma^2 \Delta & \delta^2 \Delta \\ \alpha \gamma \Delta & -\beta \delta A \end{pmatrix}$$

 $= \begin{pmatrix} \alpha^2 & -\beta^2 & 2\alpha\beta \\ -\gamma^2 & \delta^2 & -2\gamma\delta \\ \alpha\gamma & -\beta\delta & (\alpha\delta + \beta\gamma) \end{pmatrix}$

$$egin{array}{lll} eta & 2lphaeta \ 2^2\Delta & -2\gamma\delta\Delta \ eta\delta\Delta & (lpha\delta+eta\gamma) \end{array}$$

$$\begin{array}{cccc}
-\gamma^2 \Delta & \delta^2 \Delta & -2\gamma \delta \Delta \\
\alpha \gamma \Delta & -\beta \delta \Delta & (\alpha \delta + \beta \gamma) \\
X^2 \wedge XY & XY \wedge Y^2 & X^2 \wedge Y^2
\end{array}$$

Action of
$$\operatorname{GL}_2(\mathbb{C})$$
 on $\langle X, Y \rangle$

$$\begin{array}{ccccc}
X & Y & X^2 \wedge XY & Y^2 \wedge XY & X^2 \wedge Y^2 \\
\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} & \longmapsto \begin{pmatrix} \alpha^3 \delta - \alpha^2 \beta \gamma & \alpha \beta^2 \delta - \alpha \beta^2 \gamma & 2\alpha^2 \beta \delta - 2\alpha \gamma \beta^2 \\ \alpha \gamma^2 \delta - \alpha \gamma^2 \delta & \alpha \delta^3 - \beta \gamma \delta^2 & 2\beta \gamma^2 \delta - 2\alpha \gamma \delta^2 \\ \alpha^2 \gamma \delta - \gamma^2 \alpha \beta & \beta^2 \gamma \delta - \alpha \beta \delta^2 & \alpha^2 \delta^2 - \beta^2 \gamma^2 \end{pmatrix} \\
X^2 \wedge XY & Y^2 \wedge XY & X^2 \wedge Y^2 \\
&= \begin{pmatrix} \alpha^2 \Delta & -\beta^2 \Delta & 2\alpha \beta \Delta \\ -\gamma^2 \Delta & \delta^2 \Delta & -2\gamma \delta \Delta \\ \alpha \gamma \Delta & -\beta \delta \Delta & (\alpha \delta + \beta \gamma) \Delta \end{pmatrix}$$

 $X^2 \wedge XY \quad XY \wedge Y^2 \quad X^2 \wedge Y^2$

$$= \begin{pmatrix} \alpha^2 & -\beta^2 & 2\alpha\beta \\ -\gamma^2 & \delta^2 & -2\gamma\delta \\ \alpha\gamma & -\beta\delta & (\alpha\delta + \beta\gamma) \end{pmatrix}$$
This is not the matrix for $\operatorname{Sym}^2\mathbb{C}^2$.

Instead it is (after a sign flip), the matrix for the dual $\operatorname{Sym}_2 E = \langle X \otimes X, Y \otimes Y, X \otimes Y + Y \otimes X \rangle.$

So what we've shown is that
$$\Lambda^2 \operatorname{Sym}^2 \mathbb{C}^2 \cong \operatorname{Sym}_2 \mathbb{C}^2$$
.

Theorem (McDowell-W 2020)

Let F be any field. Let $E \cong F^2$ be the natural representation of $\mathrm{SL}_2(F)$. There is an isomorphism

$$\mathrm{Sym}_r\mathrm{Sym}^\ell E\cong_{\mathrm{SL}_2(F)}\bigwedge^r\mathrm{Sym}^{r+\ell-1}E.$$

Theorem (McDowell-W 2020)

Let F be any field. Let $E \cong F^2$ be the natural representation of $\mathrm{SL}_2(F)$. There is an isomorphism

$$\operatorname{Sym}_r \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}_2(F)} \bigwedge^r \operatorname{Sym}^{r+\ell-1} E.$$

Outline of proof.

- ▶ Guess the right map. For instance, for r = 2 and $\ell = 3$, two cases are

 - $\blacktriangleright \ X^2Y \otimes X^2Y \mapsto X^3Y \wedge X^2Y^2.$

Theorem (McDowell-W 2020)

Let F be any field. Let $E \cong F^2$ be the natural representation of $\mathrm{SL}_2(F)$. There is an isomorphism

$$\operatorname{Sym}_r \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}_2(F)} \bigwedge^r \operatorname{Sym}^{r+\ell-1} E.$$

Outline of proof.

- ▶ Guess the right map. For instance, for r = 2 and $\ell = 3$, two cases are

 - $X^2Y \otimes X^2Y \mapsto X^3Y \wedge X^2Y^2.$
- Prove it is injective. (Not obvious.)

Theorem (McDowell-W 2020)

Let F be any field. Let $E \cong F^2$ be the natural representation of $\mathrm{SL}_2(F)$. There is an isomorphism

$$\operatorname{Sym}_r \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}_2(F)} \bigwedge^r \operatorname{Sym}^{r+\ell-1} E.$$

Outline of proof.

- ▶ Guess the right map. For instance, for r = 2 and $\ell = 3$, two cases are

 - $X^2Y \otimes X^2Y \mapsto X^3Y \wedge X^2Y^2.$
- Prove it is injective. (Not obvious.)
- ▶ Prove is is $SL_2(F)$ -equivariant. (Highly not obvious.)

▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$

- ▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$
 - $\blacktriangleright E \otimes E \cong \operatorname{Sym}^2 E \oplus \bigwedge^2 E$

- ▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$
 - \triangleright $E \otimes E \cong \operatorname{Sym}^2 E \oplus \bigwedge^2 E$
 - $\blacktriangleright \ E \otimes E \otimes E \cong \operatorname{Sym}^3 E \oplus \bigwedge^3 E \oplus ?$

- ▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$
 - \triangleright $E \otimes E \cong \operatorname{Sym}^2 E \oplus \bigwedge^2 E$
 - $\blacktriangleright \ E \otimes E \otimes E \cong \operatorname{Sym}^3 E \oplus \bigwedge^3 E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
 - ► Tensor product: $Sym^2 E \otimes Sym^2 E$

- ▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$
 - \triangleright $E \otimes E \cong \operatorname{Sym}^2 E \oplus \bigwedge^2 E$
 - $\blacktriangleright \ E \otimes E \otimes E \cong \operatorname{Sym}^3 E \oplus \bigwedge^3 E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
 - ► Tensor product: $Sym^2 E \otimes Sym^2 E$
 - Symmetric power of symmetric power: $Sym^2(Sym^2E)$

- ▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$
 - \triangleright $E \otimes E \cong \operatorname{Sym}^2 E \oplus \bigwedge^2 E$
 - $\blacktriangleright \ E \otimes E \otimes E \cong \operatorname{Sym}^3 E \oplus \bigwedge^3 E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
 - ► Tensor product: $Sym^2 E \otimes Sym^2 E$
 - Symmetric power of symmetric power: $Sym^2(Sym^2E)$
 - ► Composition of Schur functors: $\nabla^{\nu}(\nabla^{\mu}(E))$

- ▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$
 - $\blacktriangleright E \otimes E \cong \operatorname{Sym}^2 E \oplus \bigwedge^2 E$
 - $\blacktriangleright \ E \otimes E \otimes E \cong \operatorname{Sym}^3 E \oplus \bigwedge^3 E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
 - ► Tensor product: $Sym^2 E \otimes Sym^2 E$
 - Symmetric power of symmetric power: $Sym^2(Sym^2E)$
 - ▶ Composition of Schur functors: $\nabla^{\nu}(\nabla^{\mu}(E))$
- Symmetric functions

- ▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$
 - \triangleright $E \otimes E \cong \operatorname{Sym}^2 E \oplus \bigwedge^2 E$
 - $\blacktriangleright \ E \otimes E \otimes E \cong \operatorname{Sym}^3 E \oplus \bigwedge^3 E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
 - ► Tensor product: $Sym^2 E \otimes Sym^2 E$
 - Symmetric power of symmetric power: $Sym^2(Sym^2E)$
 - Composition of Schur functors: $\nabla^{\nu}(\nabla^{\mu}(E))$
- Symmetric functions

- ▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$
 - \triangleright $E \otimes E \cong \operatorname{Sym}^2 E \oplus \bigwedge^2 E$
 - $\blacktriangleright \ E \otimes E \otimes E \cong \operatorname{Sym}^3 E \oplus \bigwedge^3 E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
 - ► Tensor product: $Sym^2 E \otimes Sym^2 E$
 - Symmetric power of symmetric power: $Sym^2(Sym^2E)$
 - Composition of Schur functors: $\nabla^{\nu}(\nabla^{\mu}(E))$
- Symmetric functions

$$s_{(2,1)}(x_1,x_2,x_3) = x^{\frac{1}{2}} + x^{\frac{1}{3}} + x^{\frac{1}{2}} + x^{\frac{1}{3}} + x^{\frac{1}{2}} + x^{\frac{1}{3}} + x^{\frac{1}{3}} + x^{\frac{2}{3}} + x^{\frac{2}{3}}$$

- ▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$
 - \triangleright $E \otimes E \cong \operatorname{Sym}^2 E \oplus \bigwedge^2 E$
 - $\blacktriangleright \ E \otimes E \otimes E \cong \operatorname{Sym}^3 E \oplus \bigwedge^3 E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
 - ► Tensor product: $Sym^2 E \otimes Sym^2 E$
 - ► Symmetric power of symmetric power: Sym²(Sym²E)
 - Composition of Schur functors: $\nabla^{\nu}(\nabla^{\mu}(E))$
- Symmetric functions
 - $s_{(2)}(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^3 + x_1x_2 + x_1x_3 + x_2x_3$ $s_{(2,1)}(x_1, x_2, x_3) = x_1^{11} + x_2^{11} + x_3^{12} + x_3^{12} + x_3^{13} + x_2^{12} + x_3^{13} + x_$
 - Multiplication: $s_{(2)}(x_1, x_2, x_3)^2$

- ▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$
 - \triangleright $E \otimes E \cong \operatorname{Sym}^2 E \oplus \bigwedge^2 E$
 - $\blacktriangleright \ E \otimes E \otimes E \cong \operatorname{Sym}^3 E \oplus \bigwedge^3 E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
 - ► Tensor product: $Sym^2 E \otimes Sym^2 E$
 - Symmetric power of symmetric power: $Sym^2(Sym^2E)$
 - Composition of Schur functors: $\nabla^{\nu}(\nabla^{\mu}(E))$
- Symmetric functions

$$s_{(2)}(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^3 + x_1x_2 + x_1x_3 + x_2x_3$$

$$s_{(2,1)}(x_1, x_2, x_3) = x_2^{11} + x_3^{11} + x_2^{12} + x_3^{11} + x_2^{12} + x_3^{11} + x_$$

- Multiplication: $s_{(2)}(x_1, x_2, x_3)^2$
- Evaluate at monomials: $s_{(2)}(x_1^2, x_2^2, x_3^2, x_1x_2, x_1x_3, x_2x_3)$

- ▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$
 - $\blacktriangleright E \otimes E \cong \operatorname{Sym}^2 E \oplus \bigwedge^2 E$
 - $\blacktriangleright \ E \otimes E \otimes E \cong \operatorname{Sym}^3 E \oplus \bigwedge^3 E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
 - ► Tensor product: $Sym^2 E \otimes Sym^2 E$
 - Symmetric power of symmetric power: $Sym^2(Sym^2E)$
 - Composition of Schur functors: $\nabla^{\nu}(\nabla^{\mu}(E))$
- Symmetric functions

$$s_{(2)}(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^3 + x_1x_2 + x_1x_3 + x_2x_3$$

$$s_{(2,1)}(x_1, x_2, x_3) = x_2^{11} + x_3^{11} + x_2^{112} + x_3^{112} + x_3^{113} + x_3^{113$$

- Multiplication: $s_{(2)}(x_1, x_2, x_3)^2$
- Evaluate at monomials: $s_{(2)}(x_1^2, x_2^2, x_3^2, x_1x_2, x_1x_3, x_2x_3)$
- ▶ **Plethysm** (from Greek πληθυσμοσ): $(s_ν ∘ s_μ)(x_1, x_2, ...)$

§3 Plethysms for $\mathrm{SL}_2(\mathbb{C})$

Theorem

Let λ and μ be partitions and let ℓ , $m \in \mathbb{N}$. The following are eqv:

- (i) $\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}_2(\mathbb{C})} \nabla^{\mu} \operatorname{Sym}^m E$;
- (ii) $(s_{\lambda} \circ s_{(\ell)})(q,q^{-1}) = (s_{\mu} \circ s_{(m)})(q,q^{-1});$
- (iii) $s_{\lambda}(q^{\ell}, q^{\ell-2}, \dots, q^{-\ell}) = s_{\mu}(q^{m}, q^{m-2}, \dots, q^{-m});$

§3 Plethysms for $SL_2(\mathbb{C})$

Theorem

Let λ and μ be partitions and let ℓ , $m \in \mathbb{N}$. The following are eqv:

(i)
$$\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}_2(\mathbb{C})} \nabla^{\mu} \operatorname{Sym}^m E$$
;

(ii)
$$(s_{\lambda} \circ s_{(\ell)})(q, q^{-1}) = (s_{\mu} \circ s_{(m)})(q, q^{-1});$$

(iii)
$$s_{\lambda}(q^{\ell},q^{\ell-2},\ldots,q^{-\ell})=s_{\mu}(q^m,q^{m-2},\ldots,q^{-m});$$

(iv)
$$C(\lambda) + \ell + 1/H(\lambda) = C(\mu) + m + 1/H(\mu)$$

where $\ /\$ is difference of multisets (negative multiplicities okay) and

▶
$$C(\lambda) = \{j - i : (i, j) \in [\lambda]\}$$
 is the multiset of contents of λ ;

▶
$$H(\lambda) = \{h_{(i,j)} : (i,j) \in [\lambda]\}$$
 is the multiset of hook lengths of λ .

Part (iv) is a corollary of Stanley's Hook Content Formula.

Example. Part (iv) implies the Wronksian isomorphism (over \mathbb{C}).

Plethystic complement isomorphism for $SL_2(\mathbb{C})$

Let λ be a partition contained in a box with d rows and s columns. Let $\lambda^{\bullet d}$ be its complement. For example if s=5, d=4 then

$$(4,3,3,1)^{\bullet 4}=(4,2,2,1).$$

Plethystic complement isomorphism for $SL_2(\mathbb{C})$

Let λ be a partition contained in a box with d rows and s columns. Let $\lambda^{\bullet d}$ be its complement. For example if s=5, d=4 then

$$(4,3,3,1)^{\bullet 4} = (4,2,2,1).$$

Theorem (King 1985 [if], Paget-W 2019 [only if])

Let E be the natural representation of $\mathrm{SL}_2(\mathbb{C})$. Let λ have at most d parts. Then

$$\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong \nabla^{\lambda^{\bullet d}} \operatorname{Sym}^{\ell} E$$

if and only if $\lambda = \lambda^{\bullet d}$ or $\ell = d - 1$.

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4,3,3,1)$, $\lambda^{\bullet 4} = (4,2,2,1)$

$$C(\lambda) + 4/H(\lambda) = C(\lambda^{\bullet 4}) + 4/H(\lambda^{\bullet 4}).$$

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4,3,3,1)$, $\lambda^{\bullet 4} = (4,2,2,1)$ $C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda)$.

 $C(\lambda) + 4$

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$

3			
2	3		
1			

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$

4	5		
3	4	5	
2	3	4	
1			

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$

4	5	6	
3	4	5	
2	3	4	
1			

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

$$C(\lambda) + 4$$

4	5	6	7	
3	4	5		
2	3	4		
1				

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4,3,3,1)$, $\lambda^{\bullet 4} = (4,2,2,1)$ $C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda)$.

$$C(\lambda) + 4$$
4 5 6 7
3 4 5
2 3 4

• /					
			•		

 $H(\lambda)$

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4,3,3,1)$, $\lambda^{\bullet 4} = (4,2,2,1)$ $C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda)$.

$$C(\lambda) + 4$$

4 5 6 7

3 4 5

2 3 4

• /				
			1	
		1		
1				

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet 4} = (4, 2, 2, 1)$ $C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda)$.

$$C(\lambda) + 4$$

4 5 6 7

3 4 5

2 3 4

			1		
		2			
	2	1			
1					

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet 4} = (4, 2, 2, 1)$ $C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda)$.

$$C(\lambda) + 4$$

4 | 5 | 6 | 7 |

3 | 4 | 5 |

2 | 3 | 4 |

1 |

()					
			1		
	3	2			
	2	1			
1					

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet 4} = (4, 2, 2, 1)$ $C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda)$.

$$C(\lambda) + 4$$

4 | 5 | 6 | 7 |

3 | 4 | 5 |

2 | 3 | 4 |

1 |

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet 4} = (4, 2, 2, 1)$ $C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda)$.

$$C(\lambda) + 4$$

4 5 6 7

3 4 5

2 3 4

` '					
	5	4	1		
5	3	2			
4	2	1			
1					

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)}\mathrm{Sym}^3E\cong\nabla^{(4,2,2,1)}\mathrm{Sym}^3E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet 4} = (4, 2, 2, 1)$ $C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda)$.

$$C(\lambda) + 4$$
4 5 6 7
3 4 5
2 3 4

7	5	4	1	
5	3	2		
4	2	1		
1				

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)}\mathrm{Sym}^3 E\cong \nabla^{(4,2,2,1)}\mathrm{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4,3,3,1)$, $\lambda^{\bullet 4} = (4,2,2,1)$ $C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda)$.

$$C(\lambda) + 4$$

4 5 6 7 1

3 4 5 1 3

2 3 4 2 4

1 1 2 5 7

 $H(\lambda^{•4})$

Н	(/	١)	

5	4	1	
3	2		
2	1		
	3	3 2	3 2

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \mathrm{Sym}^3 E \cong \nabla^{(4,2,2,1)} \mathrm{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1)$, $\lambda^{\bullet 4} = (4, 2, 2, 1)$ $C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda)$.

$$C(\lambda) + 4$$

4 5 6 7 1

3 4 5 1 3

2 3 4 2 4

1 1 2 5 7

 $H(\lambda^{•4})$

$$H(\lambda)$$

7 | 5 | 4 | 1 | 1 | 5 | 3 | 2 | 3 | 2 | 2 | 4 | 2 | 1 | 4 | 3 | 1 | 7 | 6 | 5 | 4 | $C(\lambda^{\bullet 4}) + 4$

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4,3,3,1)$, $\lambda^{\bullet 4} = (4,2,2,1)$

$$C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda).$$

$$C(\lambda) + 4 \qquad \qquad H(\lambda)$$

()				
7	5	4	1	1
5	3	2	3	2
4	2	1	4	3
1	7	6	5	4
			1.	

 $C(\lambda^{-4})+4$

Either way all numbers in a rectangle are $\{1^4, 2^3, 3^3, 4^4, 5^3, 6, 7^2\}$

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)} \operatorname{Sym}^3 E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4,3,3,1)$, $\lambda^{\bullet 4} = (4,2,2,1)$

$$C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda).$$

 $C(\lambda) + 4$

$$H(\lambda)$$

73	52	41	10	10
52	31	20	31	20
42	21	10	41	30
1 ₀	73	62	51	40

 $H(\lambda^{\bullet 4})$ $C(\lambda^{\bullet 4}) + 4$

Either way all numbers in a rectangle are $\{1^4, 2^3, 3^3, 4^4, 5^3, 6, 7^2\}$ Using a theorem of Bessenrodt: stronger version with arm lengths

For example, using a rectangle with 4 rows and 5 columns,

$$\nabla^{(4,3,3,1)}\mathrm{Sym}^3 E\cong \nabla^{(4,2,2,1)}\mathrm{Sym}^3 E.$$

By Stanley's Hook Content Formula with $\lambda = (4, 3, 3, 1), \lambda^{-4} = (4, 2, 2, 1)$ $C(\lambda) + 4 \cup H(\lambda^{\bullet 4}) = C(\lambda^{\bullet 4}) \cup H(\lambda).$

$$C(\lambda) + 4$$

$$\begin{vmatrix} 4_0 & 5_1 & 6_2 & 7_3 & 1_0 \\ 3_0 & 4_1 & 5_2 & 1_0 & 3_1 \\ 2_0 & 3_1 & 4_2 & 2_0 & 4_1 \\ 1_0 & 1_0 & 2_1 & 5_2 & 7_3 \end{vmatrix}$$

	11	(1)
J	_	

LI())

73	52	41	10	10
52	31	20	31	20
42	21	10	41	30
10	73	62	51	40
		() 0/	15 .	

$$H(\lambda^{\bullet 4})$$

$$C(\lambda^{\bullet 4}) + 4$$

Either way all numbers in a rectangle are $\{1^4, 2^3, 3^3, 4^4, 5^3, 6, 7^2\}$ Using a theorem of Bessenrodt: stronger version with arm lengths

Problem

Interpret this using Jack symmetric functions and prove a stronger symmetric functions identity

§4 Modular plethysms

Theorem (McDowell-W 2020)

- Let G be a group;
- ► Let V be a d-dimensional representation of G over an arbitrary field;
- Let $s \in \mathbb{N}$, and let λ be a partition with $\ell(\lambda) \leq d$ and first part at most s.
- ▶ Recall that $\lambda^{\bullet d}$ denotes the complement of λ in the $d \times s$ rectangle.

There is an isomorphism

$$abla^{\lambda} V \cong
abla^{\lambda^{ullet d}} V^{\star} \otimes (\det V)^{\otimes s}.$$

§4 Modular plethysms

Theorem (McDowell-W 2020)

- Let G be a group;
- ► Let V be a d-dimensional representation of G over an arbitrary field;
- Let $s \in \mathbb{N}$, and let λ be a partition with $\ell(\lambda) \leq d$ and first part at most s.
- ▶ Recall that $\lambda^{\bullet d}$ denotes the complement of λ in the $d \times s$ rectangle.

There is an isomorphism

$$\nabla^{\lambda} V \cong \nabla^{\lambda^{\bullet d}} V^{\star} \otimes (\det V)^{\otimes s}.$$

This generalizes the complementary partition isomorphism from $\mathrm{SL}_2(\mathbb{C})$ to arbitrary fields and groups.

One idea in proof: $\bigwedge^{\lambda'} V \cong \bigwedge^{(\lambda^{\bullet d})'} V$ up to determinants.

We show this isomorphism is compatible with the quotient map $\bigwedge^{\mu'} V \twoheadrightarrow \nabla^{\mu} V$ using generators and relations.

§4 Modular plethysms

Theorem (McDowell-W 2020)

- Let G be a group;
- ► Let V be a d-dimensional representation of G over an arbitrary field;
- Let $s \in \mathbb{N}$, and let λ be a partition with $\ell(\lambda) \leq d$ and first part at most s.
- ▶ Recall that $\lambda^{\bullet d}$ denotes the complement of λ in the $d \times s$ rectangle.

There is an isomorphism

$$\nabla^{\lambda} V \cong \nabla^{\lambda^{\bullet d}} V^{\star} \otimes (\det V)^{\otimes s}.$$

This generalizes the complementary partition isomorphism to arbitrary fields and groups.

Corollary (Hermite 1854 over C, McDowell-W 2020)

Let $m, \ell \in \mathbb{N}$ and let E be the natural 2-dimensional representation of $\mathrm{GL}_2(F)$. Then $\mathrm{Sym}_m\mathrm{Sym}^\ell E \cong \mathrm{Sym}^\ell\mathrm{Sym}_m E$.

Obstructions to modular plethysms

Theorem (King 1985)

Let E be the natural representation of $\mathrm{SL}_2(\mathbb{C})$. For a large class of partitions λ , there is an isomorphism

$$\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}(E)} \nabla^{\lambda'} \operatorname{Sym}^{\ell + \ell(\lambda') - \ell(\lambda)} E.$$

- In particular, King's result holds when λ is a hook; that is $\lambda = (a+1,1^b)$ for some $a,b \in \mathbb{N}_0$.
- ▶ In Paget–W 2019 we showed that King's Theorem gives all plethystic isomorphisms relating $\nabla^{\lambda} \operatorname{Sym}^{\ell} E$ and $\nabla^{\lambda'} \operatorname{Sym}^{m} E$.
- King's result was (independently) reproved by Cagliero and Penazzi 2016.
- The special case of King's Theorem when λ is a rectangle is an instance of a theorem of Manivel 2007.

Obstruction to a modular generalization

Let F be an infinite field of prime characteristic p and let E be the natural representation of $SL_2(F)$.

Theorem (McDowell-W 2020)

There exist infinitely many pairs (a, b) such that, provided e is sufficiently large, the eight representations of $\mathrm{SL}_2(F)$ obtained from $\nabla^{(a+1,1^b)}\mathrm{Sym}^{p^e+b}E$ by

- Replacing ∇ with Δ (duality)
- ▶ Replacing $(a + 1, 1^b)$ with $(b + 1, 1^a)$ and $p^e + b$ with $p^e + a$ (King conjugation);
- ▶ Replacing $\operatorname{Sym}^{\ell} E$ with $\operatorname{Sym}_{\ell} E$ (another duality); are all non-isomorphic.

Obstruction to a modular generalization

Let F be an infinite field of prime characteristic p and let E be the natural representation of $SL_2(F)$.

Theorem (McDowell-W 2020)

There exist infinitely many pairs (a,b) such that, provided e is sufficiently large, the eight representations of $\mathrm{SL}_2(F)$ obtained from $\nabla^{(a+1,1^b)}\mathrm{Sym}^{p^e+b}E$ by

- Replacing ∇ with Δ (duality)
- ▶ Replacing $(a + 1, 1^b)$ with $(b + 1, 1^a)$ and $p^e + b$ with $p^e + a$ (King conjugation);
- ▶ Replacing $\operatorname{Sym}^{\ell} E$ with $\operatorname{Sym}_{\ell} E$ (another duality); are all non-isomorphic.

Problem

What plethystic isomorphisms of representations of $\mathrm{SL}_2(\mathbb{C})$ have modular analogues?

Further work

Problem

What plethystic isomorphisms of representations of $\mathrm{SL}_2(\mathbb{C})$ have modular analogues?

Further work

Problem

What plethystic isomorphisms of representations of $\mathrm{SL}_2(\mathbb{C})$ have modular analogues?

```
 \begin{array}{ll} & Equivalences \ between \ two-row \ non-hook \ partitions: \ a \geq b \geq 2 \\ \text{(c)} & (a,b)_{\,\ell} \sim_{\ell} (a,b) \\ \text{(d)} & (a,a)_{\,c+1} \sim_{a+1} (c,c) \\ \text{(e)} & (a,b)_{\,2} \sim_{2} (a,a-b) \\ \text{(f)} & (2\ell,\ell+2)_{\,\ell} \sim_{\ell+2} (2\ell-2,\ell-2) \\ \end{array} \quad \begin{array}{ll} \text{(rectangular, Theorem 1.6), } c \geq 2 \\ \text{(complement, Theorem 1.5), } a-b \geq 2 \\ \text{(f)} & (2\ell,\ell+2)_{\,\ell} \sim_{\ell+2} (2\ell-2,\ell-2) \\ \end{array}
```

Problem

What other combinatorial identities have modular lifts?

For example, MacMahon's identity enumerating plane partitions in the $a \times b \times c$ box

$$\sum_{\pi \in \mathcal{PP}(a,b,c)} q^{|\pi|} = \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{q^{i+j+k-1}-1}{q^{i+j+k-2}-1}.$$

is equivalent to $\nabla^{(a^b)} \operatorname{Sym}^{b+c-1} E \cong_{\operatorname{SL}_2(\mathbb{C})} \nabla^{(b^a)} \operatorname{Sym}^{a+c-1} E$, and similar isomorphisms with all other permutations of a, b, c.