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§1 Motivation: A modular Wronskian isomorphism

Let V be a vector space.
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§1 Motivation: A modular Wronskian isomorphism

Let V be a vector space.
> Sym?V =V /(voaw-wev:v,we V)
=(w:veV,weV)
> ANV =V®/lvav:veV)
=(vAw:veV,weV)

Observation. Sym?C” and /\2 C"*! both have dimension (";1).

> For instance, if vq,..., v, is a basis for C" then Sym?C" has
basis vZ,...,v2,viva,..., Va1V, Of size n+ (3).

Question. Asked by 8s8m3s xodmmsdg on MathOverflow: Is there a
natural isomorphism between these vector spaces?



§1 Motivation: the Wronskian isomorphism
Are there nice isomorphisms S2(k") = A2(k"*1)?

Asked 1 year, 1 monthago Active 1year, 1 monthago Viewed 349 times

A This might be forced to migrate to math.SE but let me still risk it.
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The spaces S?(k") and A2(k"*!) from the title have equal dimensions. Is there a natural
isomorphism between them?
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Let E be a 2-dimensional k-vector space. The Wronksian isomorphism is an isomorphism of SL(E)-
modules /" S™=1(E) =~ S™S"(E). Itis easiest to deduce it from the corresponding identity in
symmetric functions (specialized to 1 and g), but it can also be defined explicitly: see for example
Section 2.5 of this paper of Abdesselam and Chipalkatti.

In particular, identifying S" (E) with the homogeneous polynomial functions on E of degree n, their
definition becomes the map A>S"(E) — S2S"~!(E) defined by

of dg  of og
SNE= 5x oy ~arax

Now S"(E) 2 k™! and S""!(E) = k", so we have the required isomorphism S?k” = AZk™*!.
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Action of GL,(C) on (X, Y)
X Y X2 A XY Y2 A XY X2 A Y?
( a B ) a0 —a?By  af?s—af?y 20236 — 20732
| a5 —ay?s ad® — By 2P0 — 2ay6°
0278 —2af [2y0 —aBs? 282 — 322
X2AXY Y2AXY  X2AY?

vy 4

a’A —B%°A 2a5A
= A A —2v6A
ayA —B6A  (ad + BH)A
X2AXY XYAY? X2AY?
a? -5 2a3
= 2 52 —2v§

oy —B5  (ad+ By)



Action of GL,(C) on (X, Y)
X Y X2 A XY Y2 A XY X2 A Y?
( a B ) a0 —a?By  af?s—af?y 20236 — 20732
| a5 —ay?s ad® — By 2P0 — 2ay6°
0278 —2af [2y0 —aBs? 282 — 322
X2AXY Y2AXY  X2AY?

vy 4

a’A —B2A 2a5A
= A A —2v6A
ayA —B6A  (ad + BH)A
X2AXY XYAY2Z X2AY2
a? -5 2a3
= A2 52 )
oy -B5  (ad+B7)

» This is not the matrix for Sym?C?2.

» Instead it is (after a sign flip), the matrix for the dual
SyMeE = (XX, YRY, XY +Y®X).

> So what we've shown is that A? Sym?C? = Sym,C2.



Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)

Let F be any field. Let E = F? be the natural representation of
SLo(F). There is an isomorphism

r
Sym,Sym‘E =SL,(F) /\SymrM_lE.
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Outline of proof.
» Guess the right map. For instance, for r =2 and £ = 3, two
cases are
> X2Y @ XY? 4+ XY?2 @ X2Y = X3Y AXY3 + X2Y2 A X2Y?
> X2Y ® X2Y — X3Y A X2Y2,



Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)

Let F be any field. Let E = F? be the natural representation of
SLo(F). There is an isomorphism

r
Sym,Sym‘E =SL,(F) /\SymrM_lE.

Outline of proof.

» Guess the right map. For instance, for r =2 and £ = 3, two
cases are
> X2Y @ XY? 4+ XY?2 @ X2Y = X3Y AXY3 + X2Y2 A X2Y?
> X2Y ® X2Y — X3Y A X2Y2,

» Prove it is injective. (Not obvious.)



Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)

Let F be any field. Let E = F? be the natural representation of
SLo(F). There is an isomorphism

r
Sym,Sym‘E =SL,(F) /\SymrM_lE.

Outline of proof.

» Guess the right map. For instance, for r =2 and £ = 3, two
cases are

> X2Y @ XY2 + XY2®@ X2Y 5 X3Y A XY3 + X2Y2 A X2Y?2
> X2Y @ X2Y = X3Y A X2Y2

» Prove it is injective. (Not obvious.)

» Prove is is SLy(F)-equivariant. (Highly not obvious.)



§2 Plethysm and polynomial representations of GL4(C)

» Polynomial representations of GL(E); take E = C3
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5(271)(X17X27X3):X2+X Fx X X X X X
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§2 Plethysm and polynomial representations of GL4(C)

» Polynomial representations of GL(E); take E = C3
> E®QE~Sym?’E® N\ E
> EQEQE~Sym*Ea N\PE@ VRVE ¢ VRDE
» Tensor product: Sym?E ® Sym?E
> Symmetric power of symmetric power: Sym?(Sym?F)
» Composition of Schur functors: V* (V*(E))
» Symmetric functions
> so)(x1, X0, Xx3) = X2+ X3+ X3 + x1x2 + X1X3 + X2X3
S2,1)(x1, X2, x3) = Xxxxxxxx
» Multiplication: 5(2)(X1,X2,X3)2
> Evaluate at monomials: s2)(x{, X3, X2, X1 X2, X1X3, X2X3)
» Plethysm (from Greek mAnfuopoo): (s, os,)(x1,x2,...)



§3 Plethysms for SL,(C)

Theorem
Let X and p be partitions and let {, m € N. The following are eqv:

(i) VASym‘E =g, (c) V*Sym™E;
(i) (sxos@)(@:a7Y) = (suosam)a.q71)
(i) s\(g,q 2o a7 ) = su(g™ g™ g



§3 Plethysms for SL,(C)

Theorem
Let X and p be partitions and let {, m € N. The following are eqv:

(i) VASym‘E s1,(c) V#Sym™E;

(i) (sxosw)(a. a7 1) = (su05(m)(a. a7 )

(i) sx(q%q" 2, .,a7 ) = (g™ @™ 2, a7 T);

(iv) CA)+ £+ 1/H(\) = C(p) +m+1/H(w)

where / is difference of multisets (negative multiplicities okay) and
» C(A\)={j—1i:(i,j) € [A]} is the multiset of contents of \;
> H(A\) = {hqj): (i,j) € [N} is the multiset of hook lengths of \.

Part (iv) is a corollary of Stanley's Hook Content Formula.

Example. Part (iv) implies the Wronksian isomorphism (over C).



Plethystic complement isomorphism for SL,(C)

Let A\ be a partition contained in a box with d rows and s columns.
Let A*? be its complement. For example if s =5, d = 4 then

(4,3,3,1)* = (4,2,2,1).




Plethystic complement isomorphism for SL,(C)

Let X\ be a partition contained in a box with d rows and s columns.
Let A*? be its complement. For example if s =5, d = 4 then

(4,3,3,1)* = (4,2,2,1).

Theorem (King 1985 [if], Paget-W 2019 [only if])

Let E be the natural representation of SLy(C). Let A have at most
d parts. Then

VASym‘E = VA'Sym‘E
if and only if \=\*9 or 0 =d — 1.



Stanley’'s HCF for the complement isomorphism
For example, using a rectangle with 4 rows and 5 columns,
V433083 E = v(22D)8ym3E.
By Stanley’s Hook Content Formula with A=(4,3,3,1), \**=(4,2,2,1)
C(A) +4/H(\) = C(A**) +4/H(\*).
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Stanley’'s HCF for the complement isomorphism
For example, using a rectangle with 4 rows and 5 columns,
V433083 E = v(22D)8ym3E.
By Stanley’s Hook Content Formula with A=(4,3,3,1), \**=(4,2,2,1)
C(\) +4UH) = C(A*)UH(N).
C(\) +4 H(\)

=IN|W|Hs
[CSEE -S|
(&4}
w
N




Stanley’'s HCF for the complement isomorphism
For example, using a rectangle with 4 rows and 5 columns,
V433083 E = v(22D)8ym3E.
By Stanley’s Hook Content Formula with A=(4,3,3,1), \**=(4,2,2,1)
C(\) +4UH) = C(A*)UH(N).

C(\)+4 H(\)
4|56 |7 41
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Stanley’'s HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,
V433083 E = v(22D)8ym3E.
By Stanley’s Hook Content Formula with A=(4,3,3,1), \**=(4,2,2,1)
C(\) +4UH) = C(A*)UH(N).

C(N) + 4

H()\)

5

4
3|2
2|1

=IN|[W| s
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For example, using a rectangle with 4 rows and 5 columns,
V433083 E = v(22D)8ym3E.
By Stanley’s Hook Content Formula with A=(4,3,3,1), \**=(4,2,2,1)
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For example, using a rectangle with 4 rows and 5 columns,
V433083 E = v(22D)8ym3E.
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Stanley’'s HCF for the complement isomorphism
For example, using a rectangle with 4 rows and 5 columns,
V433083 E = v(22D)8ym3E.
By Stanley’s Hook Content Formula with A=(4,3,3,1), \**=(4,2,2,1)
C(\) +4UH) = C(A*)UH(N).

C(\)+4 H(\)
4051627310 7352(41 (10|10
3041521031 5231203120
20|31 42|20 |4 45|21 | 10|41 |30
lo|1o|21|52|73 lo| 73|62 51|40

H(A\*4) CA*Y)+4

Either way all numbers in a rectangle are {1#,23 33 44 53 6,72}
Using a theorem of Bessenrodt: stronger version with arm lengths



Stanley’'s HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,
v#33Dgym3E = v(+2208ym3E.
By Stanley’s Hook Content Formula with A=(4,3,3,1), A\**=(4

C(N) + 4

C(\) +4UHWM) = CAH)UHO).
H(})

49 | 51

62

73

1o

30|41

57

1o

31

73

5>

44

1o

20 |31

45

20

44

57

31

20

31

1o | 1o

21

5

73

45

2;

1o

44

Problem

H()\.4)

1o

73

62

51

49

C(A*) + 4
Either way all numbers in a rectangle are {1#,23 33 44 53 6,72}
Using a theorem of Bessenrodt: stronger version with arm lengths

2,2,1

9 ) )

Interpret this using Jack symmetric functions and prove a stronger

symmetric functions identity

)



84 Modular plethysms

Theorem (McDowell-W 2020)
> Let G be a group;

> Let V be a d-dimensional representation of G over an
arbitrary field;

> Let s € N, and let \ be a partition with ¢(\) < d and first
part at most s.

> Recall that \*? denotes the complement of \ in the d x s
rectangle.

There is an isomorphism
VMV = VA VF @ (det V)25,



84 Modular plethysms

Theorem (McDowell-W 2020)
> Let G be a group;

> Let V be a d-dimensional representation of G over an
arbitrary field;

> Let s € N, and let \ be a partition with ¢(\) < d and first
part at most s.

> Recall that \*? denotes the complement of \ in the d x s
rectangle.

There is an isomorphism
VMV = VA VF @ (det V)25,

This generalizes the complementary partition isomorphism from
SL2(C) to arbitrary fields and groups.



One idea in proof: /\X V= /\(A.d) V' up to determinants.

We show this isomorphism is compatible with the quotient map
/
NV — VHV using generators and relations.

1(Dj) = t(Dy) = colj(t) N coly(t) col;(t) \ colg(t)

i
t(A\ D.
A\D, (4\D;)
12(A°)

1B\ Dy)

Be
°(B°)




84 Modular plethysms

Theorem (McDowell-W 2020)
> Let G be a group;
> Let V be a d-dimensional representation of G over an
arbitrary field;
> Let s € N, and let \ be a partition with ¢(\) < d and first
part at most s.
> Recall that \*? denotes the complement of \ in the d x s
rectangle.
There is an isomorphism

VMV = VA VF @ (det V)25,

This generalizes the complementary partition isomorphism to
arbitrary fields and groups.
Corollary (Hermite 1854 over C, McDowell-W 2020)

Let m, £ € N and let E be the natural 2-dimensional representation
of GLy(F). Then Sym,,Sym‘E = Sym‘Sym,,E.



Obstructions to modular plethysms

Theorem (King 1985)

Let E be the natural representation of SLy(C). For a large class of
partitions X\, there is an isomorphism

VASym‘E =31(E) vV Symz"'é()‘/)_f()‘) E.

» In particular, King's result holds when A is a hook; that is
A= (a+1,1P) for some a, b € Np.

» In Paget—W 2019 we showed that King's Theorem gives all
plethystic isomorphisms relating VASym‘E and V¥ Sym™E.

» King's result was (independently) reproved by Cagliero and
Penazzi 2016.

» The special case of King's Theorem when ) is a rectangle is
an instance of a theorem of Manivel 2007.



Obstruction to a modular generalization

Let F be an infinite field of prime characteristic p and let E be the
natural representation of SLy(F).

Theorem (McDowell-W 2020)
There exist infinitely many pairs (a, b) such that, provided e is
sufficiently large, the eight representations of SLy(F) obtained
from V(a+11°)GymP b E by

» Replacing V with A (duality)

» Replacing (a+ 1,1P) with (b + 1,12) and p® + b with p¢ + a

(King conjugation);
» Replacing Sym*E with Sym,E (another duality);

are all non-isomorphic.
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natural representation of SLy(F).
Theorem (McDowell-W 2020)

There exist infinitely many pairs (a, b) such that, provided e is
sufficiently large, the eight representations of SLy(F) obtained
from V(a+11°)GymP b E by

» Replacing V with A (duality)

» Replacing (a+ 1,1P) with (b + 1,12) and p® + b with p¢ + a

(King conjugation);

» Replacing Sym*E with Sym,E (another duality);
are all non-isomorphic.
Problem

What plethystic isomorphisms of representations of SL,(C) have
modular analogues?



Further work

Problem

What plethystic isomorphisms of representations of SL,(C) have
modular analogues?

Fquivalences between two-row non-hook partitions: a > b > 2

(C) (av b) L~ (a7 b)

(d)  (a,a) oy1~aq1 (ci0) (rectangular, Theorem 1.6), ¢ > 2

(e) (a,b)y~y (a,a—0) (complement, Theorem 1.5), a —b > 2
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Problem
What other combinatorial identities have modular lifts?

For example, MacMahon's identity enumerating plane partitions in
the a x b x ¢ box
i+j+k=1 _q

> o =TI T

w€PP(a,b,c) i=1j=1k= 1

is equivalent to V(ab)Symb+c 1p ~ =s1,(0) V() Sym?T<—1E, and
similar isomorphisms with all other permutations of a, b, c.



