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> (S8 g S¥ stS where p € Par(m), v € Par(n)
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> Kernel is V@2 E. Why? (vivi)(vava) — (viva)(viva) is
highest weight, of weight (2, 2).
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> Such functions are in kernel of Sym*(Sym2E) — Sym®E, so

Sym*(Sym?E) = VEHE g V2D E ¢ VOIE,



Defining plethysm by plethystic tableaux
We can define s, o s, as the formal character of the composition of
Schur functors V¥ o V#.
» Advantage: implies at once that s, o s, is an integral linear
combination of Schur functions.



Defining plethysm by plethystic tableaux

We can define s, o s, as the formal character of the composition of
Schur functors V¥ o V#.

» Advantage: implies at once that s, o s, is an integral linear
combination of Schur functions.

» Disadvantage(s): not clear at first how to compute, ...



Defining plethysm by plethystic tableaux

We can define s, o s, as the formal character of the composition of
Schur functors V¥ o V#.

» Advantage: implies at once that s, o s, is an integral linear
combination of Schur functions.

» Disadvantage(s): not clear at first how to compute, ...
Motivated by
Sym4E ©® V(z’z)(E) = Symz(Sysz) — 5(2) o 5(2) = 5(4) + 5(272),
we define s, o s, by evaluating s, at the monomials in s,,.

> su(x1,x...) = ZtESSYT(p) xt
> (s, 05,)(x) =s,(x": t € SSYT (1))



Defining plethysm by plethystic tableaux
We can define s, o s, as the formal character of the composition of
Schur functors V¥ o V#.

» Advantage: implies at once that s, o s, is an integral linear
combination of Schur functions.

» Disadvantage(s): not clear at first how to compute, ...
Motivated by
Sym4E ©® V(z’z)(E) = Symz(Sysz) — 5(2) o 5(2) = 5(4) + 5(272),
we define s, o s, by evaluating s, at the monomials in s,,.

> su(x1,x...) = ZtESSYT(p) xt

> (s, 05,)(x) =s,(x": t € SSYT (1))

Define a plethystic semistandard tableau of shape u” to be a
semistandard v-tableau whose entries are themselves pu-tableaux.

Then
(ses)x)= S«

TePSSYT(v,u)



Plethystic tableaux example

Define a plethystic semistandard tableau of shape u” to be a
semistandard v-tableau whose entries are themselves pu-tableaux.

Then
(os)= 3 T
TePSSYT(v,u)

For example, the plethystic semistandard tableaux of shape (2)(3)
and weight (2,2,2) are

(1]1]|[2]2]|[3]3]

(]1]{[2]3]|[2]3]

(1]2]{[1]2]|[3]3]

(1]2]{[1]3]|[2]3]

(2[2]{[1]3]|[1]3]

Y

and so (s(3) © 5(2)) (X1, X2, X3) = -+ + BXPXFX5 + -+ -



Plethysm defined for symmetric functions

The substitution definition tells us that (f + g)oh=foh+goh.
Moreover, f o pp = pyo f if f is a positive integral combination of
monomials.

Definition
The plethystic product o on the ring A of symmetric functions is
the unique product satisfying
> Pr o Pm = Pim
» (f+g)oh=foh+goh
> pro(f+g)=pof+piog
forall f,g,he A

Highly recommended: N. A. Loehr and J. B. Remmel, A
computational and combinatorial exposé of plethystic calculus.
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Quiz: Choose partitions A and A\* of r (a large number) uniformly

at random. What is the chance that A and A* are comparable?
Answer (Pittel): Almost zero.

Theorem (Paget-W 2016)

The maximal partitions A such that s\ appears in s, o s, are
precisely the maximal weights of the plethystic semistandard
tableaux of shape p”.

In deBoeck—Paget—W, Plethysms of symmetric functions and
highest weight representations, arXiv 1810.03448 (2018) we used
highest weight vectors to give a simpler proof.



Haskell software for enumerating PSSYT's

*Example> display $ maximalPSkewTableaux 3 ([3,31,[1) ([2,1],[])
[12,3,3]

11 11 11

2 2 2

11 11 11

3 3 3

[11,5,2]
11 11 11
2 2 2
11 11 12
3 3 2

[10,7,1]
11 11 11
2 2 2
11 12 12
3 2 2

[9,9]

11 11 11
2 2 2

12 12 12
2 2 2

Shows that s(3 3) © 5(2,1) has maximals

5(12,3,3)» 5(11,5,2) » 5(10,7,1) > 5(9,9) -
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Theorem (deBoeck—Paget-W 2018)
If r is at least the greatest part of u then
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Theorem (Brion 1993, deBoeck—Paget-W 2018)
If r € N then

(Sv 0 Syt ()5 Sxt () = (Su © S, )

» Both proofs determine when the multiplicity stabilises

» Qur proof also gives a combinatorial upper bound on the
stable multiplicity
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Progress on Foulkes' Conjecture: m < n

» True for m = 3: Thrall (1942), Dent-Siemons (2000,
symmetric group)

» True for m+ n < 17: Mueller—Neunhoffer (2005);

> Kimoto—Lee (2019): explicit highest weight vectors for
Sym3Sym"E;

» True for m = 4: McKay (2008): the obvious map
CQ(™) — QA proposed by Howe (1987), is injective;

» The obvious map CQG") — CQG*) is not injective:
Mueller—-Neunhoffer (2005);

» True for m+ n < 19: Evseev—Paget-W (2014);
» True for m = 5: Cheung—lkenmeyer—Mkrtchyan (2015)
Too easy?

Problem (Stanley Problem 9)

Find a combinatorial rule expressing s,y © S(m) as a non-negative
integral linear combination of Schur functions.
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Foulkes' Conjecture for m

Logarithms of multiplicities




Foulkes" Conjecture for m =7, n =8
Logarithmic differences in multiplicities: for big dots, smaller
multiplicity is 0.




