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§1 Motivation: the Wronskian isomorphism
Let V be a vector space.

I
Sym2V = V⊗2/〈v ⊗ w − w ⊗ v : v ,w ∈ V 〉

= 〈vw : v ∈ V ,w ∈ V 〉

I
∧2 V = V⊗2/〈v ⊗ v : v ∈ V 〉

= 〈v ∧ w : v ∈ V ,w ∈ V 〉

Observation. Sym2Cd and
∧2Cd+1 both have dimension

(d+1
2

)
.

I Proof. If e1, . . . , ed is a basis for Cd then Sym2Cd has basis
e21 , . . . , e

2
d , e1e2, . . . , ed−1ed , of size d +

(d
2

)
.

Question. Asked by on MathOverflow: Is there a
natural isomorphism between these vector spaces?

Answer. Yes! Let E be the 2-dimensional natural representation of
SL2(C). Then Symd−1E is d-dimensional and

Sym2Symd−1E ∼=SL2(C)

2∧
SymdE .
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Action of SL2(F ) on
∧2 Sym2E where E = 〈v ,w〉

( v w
α β

γ δ

)
7−→


v2 ∧ vw w2 ∧ vw v2 ∧ w2

α3δ − α2βγ αβ2δ − αβ2γ 2α2βδ − 2αβ2γ

−αγ2δ + βγ3 αδ3 − βγδ2 2βγ2δ − 2αγδ2

α2γδ − αγ2β β2γδ − αβδ2 α2δ2 − β2γ2



=


v2 ∧ vw w2 ∧ vw v2 ∧ w2

α2∆ −β2∆ 2αβ∆

−γ2∆ δ2∆ −2γδ∆

αγ∆ −βδ∆ (αδ + βγ)∆



=


v2 ∧ vw w2 ∧ vw v2 ∧ w2

α2 −β2 2αβ

−γ2 δ2 −2γδ

αγ −βδ αδ + βγ



I Even after the sign flip, this is not the matrix for Sym2E . The
matrices are not even conjugate if char F = 2! Instead it is
SL2(F ) acting on Sym2E = 〈v ⊗ v ,w ⊗ w , v ⊗ w + w ⊗ v〉.

I Thus (Sym2E )? ∼=SL2(F )

∧2 Sym2E and the duality is critical.
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Duality and the modular Wronskian isomorphism

Theorem (McDowell–W 2020)

Let F be any field. Let E be the 2-dimensional natural
representation of SL2(F ). There is an explicit isomorphism

SymrSym
`E ∼=SL2(F )

r∧
Symr+`−1E .

Here SymnV is the invariant subspace of V⊗n under the permutation
action of Sr on tensors and SymnV is the usual quotient of V⊗n.

As a corollary we obtain a modular version of Hermite reciprocity.

Corollary (Hermite 1854 over C, McDowell–W 2020)

Let F be any field. Let m, ` ∈ N and let E be the natural
2-dimensional representation of GL2(F ). Then

SymmSym`E ∼= Sym`SymmE

by an explicit map.

Question. What other classical SL2(C)-isomorphisms have
modular analogues?
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§2 Polynomial representations and plethysms of Schur functions
I Polynomial representations of GL(E ) with E =〈e1, e2, e3〉∼=C3.

• E ⊗ E ∼= Sym2E ⊕
∧2E

• E ⊗ E ⊗ E ∼= Sym3E ⊕
∧3E ⊕

Now take E = 〈e1, e2〉 ∼= C2

I Tensor product: Sym2E ⊗ Sym2E
I Symmetric power of symmetric power: Sym2Sym2E with basis

(e21 )(e21 ), (e21 )(e22 ), (e21 )(e1e2), (e22 )(e22 ), (e22 )(e1e2), (e1e2)(e1e2)

I Symmetric functions
• s(2)(y1, y2, y3) = y2

1 + y1y2 + y1y3 + y2
2 + y2y3 + y3

3

• s(2,1)(x1, x2, x3) = x
1 1
2 +x

1 1
3 +x

1 2
2 +x

1 2
3 +x

1 3
2 +· · ·+x

2 2
3 +x

2 3
3

= x21 x2+x21 x3+x1x
2
2 +2x1x2x3+· · ·+x22 x3+x2x

2
3

I Multiplication: s(2)(x1, x2)2 = (x21 + x22 + x1x2)2

I Evaluate s(2)(y1, y2, y3) at monomials in s(2)(x1, x2) to get

s(2)(x
2
1 , x

2
2 , x1x2) = (x21 )(x21 )+(x21 )(x22 )+(x21 )(x1x2)+· · ·+(x1x2)(x1x2).

This is the plethysm (s(2) ◦ s(2))(x1, x2), obtained by evaluating
s(2) at the monomials x21 , x22 , x1x2 in s(2)(x1, x2).
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(
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c

)
= eaeb ⊗ ec − eceb ⊗ ea ∈ Sym2E ⊗ E .

You might also know it as the adjoint representation of the
Lie algebra sl3(C).

α

α + β

β

1 1
3

2 2
3

1 1
2

2 3
3

1 2
2

1 3
3

1 2
3

1 3
2
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Combinatorial definition of plethysm
Given a tableau t let x t = xa11 xa22 . . . where ai is the number of
entries of t equal to i . We say t has weight (a1, a2, . . .).

Definition (Schur function)

Let µ be a partition. The Schur function sµ is the generating
function enumerating semistandard tableaux of shape µ by weight:

sµ =
∑

t∈SSYT(µ)

x t .

For instance

s(2)(x1, x2, . . .) = x
1 1

+ x
1 2

+ x
2 2

+ x
1 3

+ · · ·
= x21 + x1x2 + x22 + x1x3 + · · ·

Equivalently, sµ(x1, . . . , xd) is the trace of diag(x1, . . . , xn) acting
on ∇µ(E ). For instance s(n)(x1, . . . , xd) is the character of SymnE .

Definition (Plethysm of Schur functions)

Let µ and ν be partitions. Let SSYT(µ) = {t(1), t(2), . . .}. The
plethystic product of sν and sµ is sν ◦ sµ = sν(x t(1), x t(2), . . .).
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By definition of the Hall inner product, 〈f , sλ〉 is the multiplicity of
sλ as a summand of the symmetric function f .

Problem (Stanley’s Problem 9, 2000)

Find a combinatorial interpretation of the plethysm coefficients
〈s(n) ◦ s(m), sλ〉 that makes it clear they are non-negative.

Equivalently, find a combinatorial interpretation for the multiplicity
of the irreducible GLd(C)-module ∇λ(E ) in SymnSymmE .



§3 Decomposition numbers for S2n from SymnSym2E

Problem (Decomposition numbers)

Determine the composition factors of Specht modules over fields of
prime characteristic.

For instance in characteristic 3 the Specht module Sp(3,3) has
composition factors labelled by (5, 1) and (3, 3).

(6
)

(5
,1

)

(4
,2

)

(3
,3

)

(4
,1

,1
)

(3
,2

,1
)

(2
,2

,1
,1

)

(6) 1
(5, 1) 1 1
(4, 2) · · 1
(3, 3) · 1 · 1

(4, 1, 1) · 1 · · 1
(3, 2, 1) 1 1 · 1 1 1

(2, 2, 1, 1) · · · · · · 1
(2, 2, 2) 1 · · · · 1 ·

(3, 1, 1, 1) · · · · 1 1 ·
(2, 1, 1, 1, 1) · · · 1 · 1 ·

(1, 1, 1, 1, 1, 1) · · · 1 · · ·



Decomposition matrix of principal block of F2S10

(1
0)

(9
,1

)

(8
,2

)

(7
,3

)

(6
,4

)

(6
,3

,1
)

(5
,3

,2
)

(10) 1
(9, 1) 1 1
(8, 2) 1 1 1
(7, 3) 1 · 1 1
(6, 4) · · 1 1 1

(6, 3, 1) 1 · 2 1 1 1
(5, 3, 2) 2 1 1 · 1 1 1

(5, 5) · · 1 · 1 · ·
(8, 1, 1) 2 1 1 · · · ·
(6, 2, 2) 1 · 1 · · 1 ·
(4, 4, 2) 2 1 1 · 1 · 1
(4, 3, 3) 2 1 · · · · 1

(7, 1, 1, 1) 2 1 1 1 · · ·
(6, 2, 1) 2 1 3 1 1 1 ·

(5, 3, 1, 1) 3 1 3 1 2 1 1
(4, 4, 1, 1) 2 1 1 1 1 · 1
(5, 2, 2, 1) 3 1 2 1 1 1 1

(6, 1, 1, 1, 1) 2 1 2 1 1 · ·





SymnSym2E and even partitions
As usual, let E = 〈e1, . . . , ed〉 be the d-dimensional natural
representation of GLn(C). For n ∈ N,

Symn Sym2E =
∑

λ∈Par(n)
`(λ)≤d

∇2λ(E )

where 2λ is the even partition obtained by doubling each part of λ
and ∇2λ(E ) is an irreducible GLn(C)-representation. Equivalently

C
xS2n
S2oSn

=
⊕

λ∈Par(n)

Sp2λ.

Example. Take d = 4. Let F(V ) be the (1, 1, 1, 1)-weight space of V .

Sym2E ⊗ Sym2E
F−−−→

〈 e1e2 ⊗ e3e4 e3e4 ⊗ e1e2
e1e3 ⊗ e2e4 e2e4 ⊗ e1e3
e1e4 ⊗ e2e3 e2e3 ⊗ e1e4

〉
∼=−−−→ C

xS4

S2×S2

Sp(4)⊕Sp(3,1)⊕Sp(2,2)

−−−
�

−
�

Sym2 Sym2E
F−−−−−−−−→

〈 (e1e2)(e3e4)
(e1e3)(e2e4)
(e1e4)(e2e3)

〉
∼=−−−−−−→ C

xS4

S2oS2

−−
�

Sp(4)⊕Sp(2,2)
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From SymnSym2E =
⊕
∇2λ(E ) to decomposition numbers

Given a p-core γ, let E(γ) be the set of even partitions obtained
from γ by adding the least possible number of disjoint p-hooks.

I For example if p = 3 then E
( )

=
{

(6, 2), (4, 4), (4, 2, 2)
}

Theorem (Giannelli–W 2014)

Let p be an odd prime and let γ be a p-core. Let λ ∈ E(γ) be
greatest in the lexicographic order. The column of the
decomposition matrix labelled by λ has entries 0 and 1. Moreover
its non-zero entries are in rows labelled by E (γ).



Example: 3-block of S12 with core (3, 1, 1)

34 Matthew Fayers

A.7 The block of kS13 with 3-core (3, 1) (h3, 5, 3i-notation)

(1
2,

1)
(9
,4

)

(9
,2

2 )
(7
,4
,2

)
(6
,5
,2

)
(6
,4
,3

)
(6
,4
,2
,1

)

(6
,3
,2
,1

2 )

(5
,4
,2
,1

2 )

(4
2 ,

22 ,
1)

(12, 1) = h2i 1
(9, 4) = h2, 2i 1 1

(9, 22) = h2, 3i 2 1 1
(7, 4, 2) = h3i 1 1 1 1

(6, 5, 2) = h3, 2i 1 1
(6, 4, 3) = h2, 2, 3i 1 1 1 1

(6, 4, 2, 1) = h2, 2, 2i 1 1 1 1 1 1 1
(6, 3, 2, 12) = h1, 2i 2 1 1 1 1 1

(5, 4, 2, 12) = h1i 1 1 1 1 1 1 1
(42 , 22 , 1) = h3, 1i 2 1 1 1 1 1 1

(9, 14) = h2, 1i 1
(6, 4, 13) = h1, 2, 2i 1
(6, 23 , 1) = h1, 2, 3i 2 1 1

(6, 22 , 13) = h2, 3, 3i 1 1
(6, 17) = h1, 1, 2i 1

(42 , 2, 13) = h3, 3i 1 1 1 1 1 1
(34 , 1) = h1, 3i 1 1 1 1

(32 , 2, 15) = h1, 1i 1 1 1 1
(3, 25) = h1, 3, 3i 1 1

(3, 23 , 14) = h1, 1, 3i 1 1
(3, 22 , 16) = h3, 3, 3i 1 1

(3, 110) = h1, 1, 1i 1

A.8 The block of kS14 with 3-core (3, 12) (h4, 5, 2i-notation)

(1
2,

12 )
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,4
,1

)
(9
,3
,2
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2 ,
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,2

2 ,
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22 ,
12 )

(12, 12) = h2i 1
(9, 4, 1) = h2, 2i 1 1
(9, 3, 2) = h2, 1i 2 1 1

(8, 4, 2) = h1i 1 1 1 1
(62 , 2) = h1, 2i 1 1

(6, 44) = h1, 2, 2i 1 1 1 1
(6, 4, 22) = h2, 2, 2i 1 1 1 1 1 1 1

(6, 3, 22 , 1) = h1, 1, 2i 2 1 1 1 1
(5, 4, 22 , 1) = h1, 1i 1 1 1 1 1 1 1 1

(42 , 22 , 12) = h3i 1 1 1 1 1 1 1
(9, 15) = h2, 3i 1

(6, 4, 14) = h2, 2, 3i 1
(6, 3, 2, 13) = h1, 2, 3i 1 1 1 1

(6, 23 , 12) = h3, 2i 1
(6, 18) = h2, 3, 3i 1

(5, 4, 2, 13) = h1, 3i 2 1 1 1 1
(34 , 12) = h3, 1i 1 1 1 1

(32 , 24) = h1, 1, 3i 1 1
(32 , 22 , 14) = h1, 1, 1i 1 1 1 1

(32 , 2, 16) = h1, 3, 3i 2 1 1
(3, 23 , 15) = h3, 3i 1 1
(3, 111) = h3, 3, 3i 1
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From SymnSym2E =
⊕
∇2λ(E ) to decomposition numbers

Given a p-core γ, let E(γ) be the set of even partitions obtained
from γ by adding the least possible number of disjoint p-hooks.

I For example if p = 3 then E
( )

=
{

(6, 2), (4, 4), (4, 2, 2)
}

Theorem (Giannelli–W 2014)

Let p be an odd prime and let γ be a p-core. Let λ ∈ E(γ) be
greatest in the lexicographic order. The column of the
decomposition matrix labelled by λ has entries 0 and 1. Moreover
its non-zero entries are in rows labelled by E (γ)

Idea of proof. Study the reduction modulo p of the symmetric

group module C
xS2n
S2oSn

, corresponding to SymnSym2E .

I Main step: show that the only summands of Fp

xS2n

S2oSn
in the block

of S2n with p-core γ are projective.
I From the decomposition of Symn Sym2E , each projective lifts to a

direct sum of Specht modules over C labelled by even partitions.
I By Brauer reciprocity we get information about columns of

decomposition matrix.
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§4: Maximal summands in plethysms

A partition λ dominates a partition κ if the Young diagram of κ
can be obtained from the Young diagram of λ by repeatedly
moving boxes downwards. For instance

� 6� 6� .

Quiz. Choose partitions κ and λ of n (a very large number)
uniformly at random. What, roughly, is the chance that κ and λ
are comparable in the dominance order?

Answer. Asymptotically 0, by a theorem of Pittel (1997).

n 5 6 10 20 30 35

pcomparable 1 0.967 0.904 0.782 0.716 0.694

But no problem if you guessed something else: the convergence is
very slow, and the small cases are misleading.
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Most plethysms have many different maximal summands.

Extreme example: s(1n) ◦ s(2). Let n ∈ N. Given a partition α of n
with distinct parts, let 2[α] be the partition of 2n with leading
diagonal hook lengths 2α1, 2α2, . . .

α1

α2

α3

α1 α2 α3 . . .

2[3, 2, 1]

6
4

2

2[4, 2]

8
4

The plethysm s(1n) ◦ s(2) corresponding to
∧n Sym2E is

s(1n) ◦ s2 =
∑

α∈Pardistinct(n)

s2[α]

in which 2[α] and 2[β] are incomparable for all distinct α and β.

Thus every constituent of s(1n) ◦ s(2) is both maximal and minimal.
All of them are determined by our theorem.
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The plethysm s(1n) ◦ s(2) corresponding to
∧n Sym2E is

s(1n) ◦ s2 =
∑

α∈Pardistinct(n)

s2[α].

For instance, if n = 6 then

s(16) ◦ s2 = s(7,15) + s(6,3,1,1,1) + s(5,4,2,1) + s(4,4,4)

and (7, 15), (6, 3, 1, 1, 1), (5, 4, 2, 1), (4, 4, 4) are all incomparable.

in which 2[α] and 2[β] are incomparable for all distinct α and β.

Thus every constituent of s(1n) ◦ s(2) is both maximal and minimal.
All of them are determined by our theorem.
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Theorem (Paget–W 2018)

The maximal constituents of the plethysm sν ◦ sµ are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape ν and inner shape µ.

A plethystic semistandard tableaux of outer shape (1n) and inner
shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

Taking m = 2 we get the decomposition of s(1n) ◦ s(2). For n = 6:

{1, 1}

{1, 2}

{2, 2} {1, 3}

{2, 3} {1, 4}

{3, 3} {2, 4} {1, 5}

{1, 6}{2, 5}{3, 4}

1 1

1 2

1 5

2 3

2 4

3 3

(7, 15)
(6, 3, 1, 1, 1)
(5, 4, 2, 1)
(4, 4, 4)
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Theorem (Paget–W 2018)

The maximal constituents of the plethysm sν ◦ sµ are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape ν and inner shape µ.

A plethystic semistandard tableaux of outer shape (1n) and inner
shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

I The 2018 proof uses the symmetric group.

I In 2020 with Melanie de Boeck we gave a shorter proof using
polynomial representations of GLn(C).

I Our recent work in 2022–23 gives a still shorter combinatorial
proof, with an explicit ‘gap’ result on the separation between
maximal and minimal summands.



§5: Foulkes’ Conjecture and plethysm stability

Conjecture (Foulkes 1950)

If m ≤ n then s(m) ◦ s(n) is contained in s(n) ◦ s(m).

Equivalently
I There is an injective homomorphism of GL(E )-modules

SymmSymnE → SymnSymmE when dimE = mn.
I There is an injective homomorphism of CSmn-modules

C
xSmn

SnoSm → C
xSmn

SmoSn
I Let Smn act on set partitions of {1, . . . ,mn}. The permutation

character for the action on m sets of size n contains the
permutation character for the action on n sets of size m.

Proved when
I m = 2 Thrall (1942)
I m = 3 Thrall (1942), Dent and Siemons (2000)
I m = 4 McKay (2008),
I m = 5 Cheung, Ikenmeyer and Mkrychyan (2015)

and when m + n ≤ 20, Evseev, Paget and Wildon (2008).
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Foulkes Module Sym7Sym8E
Logarithms of multiplicities of irreducibles ∇λ(E )
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The marked interval, enlarged on right, is all partitions of 56 with
first part 19



Foulkes Module Sym7Sym8E
Logarithmic differences in multiplicities: for big dots, smaller
multiplicity is 0.
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Theorem (Stability for the Foulkes plethysm)

Let γ be a partition, and let (mn − |γ|; γ) denote the partition
(mn − |γ|, γ1, . . . , γ`). The plethysm coefficient

〈s(n) ◦ s(m), s(mn−|γ|;γ)〉

is constant for all m and n sufficiently large.

Hence stable Foulkes Conjecture holds, with equality. Proved by
I Weintraub (1988): recurrence relation on Schur functions
I Carré, Thibon (1992): vertex operators
I Brion (1993): dominant maps of algebraic varieties
I Manivel (1997): stable embeddings of varieties
I Bowman, Paget (2018): partition algebra
I Paget, W (2023): plethystic semistandard tableaux
I Bowman, Paget, W (2023): ramified partition algebra, any ν for (n)

The BP and BPW proofs are notable as the only ones to give an
explicit (if intricate) formula for the multiplicity that is clearly
non-negative. This is a significant step towards the solution of
Stanley’s Problem 9.
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Using combinatorial arguments with signed plethystic semistandard
tableaux Paget and I have given unified proofs of every stability
result in the literature.

Here are two representative examples.

Theorem (Brion 1993)

Let ν ∈ Par(n), µ ∈ Par(m), λ ∈ Par(mn). Let r ∈ N. The
plethysm coefficient

〈sν ◦ sµ+N(1r ), sλ+N(nr )〉

is constant for all N sufficiently large, with an explicit bound.

Theorem (Paget–W 2023)

Let ν ∈ Par(n), µ/µ? ∈ SkewPar(m), λ ∈ Par(mn). Let r ∈ N.
The plethysm coefficient

〈sν ◦ sµ+N(1r )/µ? , sλ+N(nr )〉

is constant for all N sufficiently large, with an explicit bound.



Theorem (Law–Okitani 2021: Proposition 5.3)

Let ν ∈ Par(n) and λ ∈ Par(mn). The plethysm coefficient

〈sν t (1N) ◦ s(2), sλ+(N)t (1N) 〉

is constant for N sufficiently large.

The generalization replacing 2 with an arbitrary m ∈ N and
λ+ (N) t (1N) with λ+ (m − 1)N t (1N) was announced by Law
at Oberwolfach in September 2022.

Our methods generalize the Law–Okitani result further, from (m)
to an arbitrary rectangular partition. The proof requires signed
plethystic semistandard tableaux with negative entries.

Theorem (Paget–W 2023)

Let ν ∈ Par(n), let a, b ∈ N and let λ ∈ Par(abn). The plethysm
coefficient

〈sν t (1N) ◦ s(ab), sλ+N(ab−1,a−1)t (1N) 〉

is constant for N sufficiently large, with an explicit bound on N.



Thank you! Any questions?


