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§1 Motivation: the Wronskian isomorphism
Let V be a vector space.
> Sym?V = V&2 /(vaw-—wev:v,we V)
=(w:veV,weV)
> ANV =V®/lvav:veV)
=(vAw:veV,weV)

Observation. Sym?C9 and A”C*! both have dimension (11).

> Proof. If ey, ..., eq is a basis for C¢ then Sym?CY has basis
2

: d
el,..., e, e1en, ..., e4 164, of size d + (5).
Question. Asked by 8s893s x0dmsdg on MathOverflow: Is there a
natural isomorphism between these vector spaces?

Answer. Yes! Let E be the 2-dimensional natural representation of

SLy(C). Then Sym?~1E is d-dimensional and
2

Sym?Sym9~1E () /\Syde.



§1 Motivation: the Wronskian isomorphism
Are there nice isomorphisms S2(k") = A2(k"*1)?

Asked 1 year, 1 monthago Active 1year, 1 monthago Viewed 349 times

A This might be forced to migrate to math.SE but let me still risk it.

12

19

The spaces S?(k") and A2(k"*!) from the title have equal dimensions. Is there a natural
isomorphism between them?

share cite edit close flag edited Jan 15 '19 at 10:52 asked Jan 15 '19 at 9:45
‘ 853m3s ROdIMIIY
13.9k 3 ©50 125

Let E be a 2-dimensional k-vector space. The Wronksian isomorphism is an isomorphism of SL(E)-
modules /" S™=1(E) =~ S™S"(E). Itis easiest to deduce it from the corresponding identity in
symmetric functions (specialized to 1 and g), but it can also be defined explicitly: see for example
Section 2.5 of this paper of Abdesselam and Chipalkatti.

In particular, identifying S" (E) with the homogeneous polynomial functions on E of degree n, their
definition becomes the map A>S"(E) — S2S"~!(E) defined by

of dg  of og
SNE= 5x oy ~arax

Now S"(E) 2 k™! and S""!(E) = k", so we have the required isomorphism S?k” = AZk™*!.

share cite edit delete flag edited Jan 15 '19 at 11:49 answered Jan 15 '19 at 11:09
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Action of SLy(F) on A\ Sym?E where E = (v, w)

V2 A vw w2 A vw vZ A w?
v w 35 2 26 _ 2 2 2 §—2 2
o B ¥ —oBy  affS—afty 20760 2087
(7 5 > — | —ay?5 4 B8 ad® — Byé? 26726 — 2ay6?
042'76 _ OZ’Y2ﬂ ﬁz’}/(s o a652 012(52 o 52,}/2
VEAvw w2 Avw vZ A w?
a’A —B2A 2a5A
= —72A A —2v6A
ayh  —BOA (ad + By)A
VEAvw w2 Avw vZ A w2
a? -5 2a3
= -2 52 —2v0

ary -5 ad + By



Action of SLy(F) on A\ Sym?E where E = (v, w)

V2 A vw w2 A vw vZ A w?
v w 35 2 25 _ 2 2 2 §—2 2
o B ¥ —oBy  affS—afty 20760 2087
(7 5 > — | —an?5 + 83 add — py62 26726 — 2ay6?
04276 _ OZ’Y2ﬂ ﬁz’}/(s o a652 012(52 o 52,}/2
VEAvw w2 Avw vZ A w?
a’A —B2A 2a5A
= —72A A —2v6A
ayA  —pB5A (ad + By)A
VEAVW v A w2 vZ A w2
a? 52 2a3
= 72 52 276
ary B4 ad + By

» Even after the sign flip,

this is not the matrix for Sym?E.



Action of SLy(F) on A\ Sym?E where E = (v, w)

V2 A vw w2 A vw vZ A w?
v w 35 2 25 _ 2 2 2 §—2 2
o B ¥ —oBy  affS—afty 20760 2087
(7 5 > — | —an?5 + 83 add — py62 26726 — 2ay6?
04276 _ OZ’Y2ﬂ ﬁz’}/(s o a652 012(52 o 52,}/2
VEAvw w2 Avw vZ A w?
a’A —B2A 2a5A
= —'yZA 52A —290A
ayA  —pB5A (ad + By)A
VEAVW v A w2 vZ A w2
a? (2 2a0
= 2 52 276
ary B4 ad + By

> Even after the sign flip, this is not the matrix for Sym?E. The
matrices are not even conjugate if char F = 2!



Action of SLy(F) on A\ Sym?E where E = (v, w)

VZA vw w2 A vw vZ A w2
C\; VBV a36 — a?Bry aB?6 — af?y 20266 — 2a3%y
(/7 5 > — | —an?5 + 83 add — py62 26726 — 2ay6?
04276 _ OZ’Y2ﬂ ﬁ2’75 o a652 012(52 o 52,}/2
VAV w2 A vw vZ A w?
a’A —B2A 2a5A
= A 52N —27v0A
ayA  —pB5A (ad + By)A
VZAVW  vw A w? vZ A w2
a? 52 2a3
= 72 52 276
ary B4 ad + By

> Even after the sign flip, this is not the matrix for Sym?E. The
matrices are not even conjugate if char F = 2! Instead it is
SLy(F) acting on SymyE = (v v, w @ w,v @ w + w ® v).

> Thus (Sym?E)* =g,(r) A” Sym?E and the duality is critical.



Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)

Let F be any field. Let E be the 2-dimensional natural
representation of SLy(F). There is an explicit isomorphism

r
Sym,Sym‘E =SL,(F) /\SymrM_lE.

Here Sym,,V is the invariant subspace of V®" under the permutation
action of S, on tensors and Sym"V is the usual quotient of V®",
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r
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As a corollary we obtain a modular version of Hermite reciprocity.

Corollary (Hermite 1854 over C, McDowell-W 2020)

Let F be any field. Let m, ¢ € N and let E be the natural
2-dimensional representation of GLy(F). Then

SymmSysz = SymeSymmE

by an explicit map.



Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)

Let F be any field. Let E be the 2-dimensional natural
representation of SLy(F). There is an explicit isomorphism

r
Sym,Sym‘E =SL,(F) /\SymrM_lE.

Here Sym,,V is the invariant subspace of V®" under the permutation
action of S, on tensors and Sym"V is the usual quotient of V®",

As a corollary we obtain a modular version of Hermite reciprocity.

Corollary (Hermite 1854 over C, McDowell-W 2020)

Let F be any field. Let m, ¢ € N and let E be the natural
2-dimensional representation of GLy(F). Then

SymmSysz = SymeSymmE
by an explicit map.

Question. What other classical SLy(C)-isomorphisms have
modular analogues?
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§2 Polynomial representations and plethysms of Schur functions
» Polynomial representations of GL(E) with E=(e1, e, e3) = C3,
o E®E=Sym’E® \’E
e ERE®E~Sym’E® \°E @ VRVE @ VRIE
Here V(21 (E) has basis all F(t) for t a semistandard
tableaux of shape (2, 1) with entries from {1, 2, 3}:

F( a b|> :eaeb®ec—eceb®ea€Sym2E®E.

c
You might also know it as the adjoint representation of the
Lie algebra sl3(C).
g 3(C)
*
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§2 Polynomial representations and plethysms of Schur functions
» Polynomial representations of GL(E)with E= ey, e, e3) =C3.
o E®E=Sym’E® \’E
e EQE®E~Sym*Ea \’E @ VEVE@ VRIE
Now take E = (e;, e2) = C?
» Tensor product: Sym?E @ Sym?E
> Symmetric power of symmetric power: Sym?Sym?E with basis
(ef)(ef), (ef)(€3), (ef)(ere2), (e3)(€3), (€3)(eren), (erez)(erer)
» Symmetric functions
o so(y1.y2,y3) =yi+yya+nys+yi+yys+y;

(1] [afa] [i]2] [if2] [1]3]
)—xr+xr+xrz+xr+xr+ +Xr+xr

= x1 Xo +x1 X3 —|—x1x2 +2x1X0Xx3 4+ - +X2X3—|—X2X3

® 5(2,1) (x1, X2, X3



§2 Polynomial representations and plethysms of Schur functions
» Polynomial representations of GL(E)with E={er, e, e3) =C3
o E®E=Sym’E® \’E
e EQE®E~Sym*Ea \’E @ VEVE@ VRIE
Now take E = (e;, e2) = C?
» Tensor product: Sym?E @ Sym?E
> Symmetric power of symmetric power: Sym?Sym?E with basis
(ef)(ef), (ef)(€3), (ef)(ere2), (e3)(€3), (€3)(eren), (erez)(erer)
» Symmetric functions
o so(y1.y2,y3) =yi+yya+nys+yi+yys+y;

o 501)(x1, %2, x3) = ANV EINEVE RSV EL IV El NNV ELIISVEL
= x12x2 +x12X3 —|—x1x22—|—2x1x2X3 +- - ~+X22X3 +x2x§
> Multiplication: sp)(x1,%2)? = (X§ + X3 + x1x2)?

> Evaluate s2)(y1, y2, ¥3) at monomials in s2)(x1, x2) to get

s (4,56, xx) = () () +06) (06)+(d) () ++ -+ (xaxe) (xaxe)-



§2 Polynomial representations and plethysms of Schur functions
» Polynomial representations of GL(E)with E={er, e, e3) =C3
o E®E=Sym’E® \’E
e EQE®E~Sym*Ea \’E @ VEVE@ VRIE
Now take E = (e;, e2) = C?
» Tensor product: Sym?E @ Sym?E
> Symmetric power of symmetric power: Sym?Sym?E with basis
(ef)(ef), (ef)(€3), (ef)(ere2), (e3)(€3), (€3)(eren), (erez)(erer)
» Symmetric functions
o so(y1.y2,y3) =yi+yya+nys+yi+yys+y;

2 3 2 3 2 3 3
o 501)(x1, %2, x3) = ANV EINEVE RSV EL IV El NNV ELIISVEL

= x12x2 +x12X3 —|—x1x22—|—2x1x2X3 +- - ~—|—x22><3 +x2x§
> Multiplication: sp)(x1,%2)? = (X§ + X3 + x1x2)?
> Evaluate s2)(y1, y2, ¥3) at monomials in s2)(x1, x2) to get
S (s X3, xe) = (04) 04)+04) 02)+0) (xie) 4+ - +(xxe) (xuxe).

This is the plethysm (s(2) o 52))(x1, X2), obtained by evaluating
s(2) at the monomials x7, X2, x1x2 in s2)(x1, x2).



Combinatorial definition of plethysm
Given a tableau t let x* = x{"x32 ... where a; is the number of
entries of t equal to i. We say t has weight (a1, a2, .. .).
Definition (Schur function)

Let 4 be a partition. The Schur function s, is the generating
function enumerating semistandard tableaux of shape y by weight:

. t
N
teSSYT (1)

For instance

5(2)(X17X27---):X+X+X+X+...

2 2
=X] tx1x2+ X5 +Xx1x3+ -



Combinatorial definition of plethysm
Given a tableau t let x* = x{"x32 ... where a; is the number of
entries of t equal to i. We say t has weight (a1, a2, .. .).
Definition (Schur function)

Let 4 be a partition. The Schur function s, is the generating
function enumerating semistandard tableaux of shape y by weight:

_ t
s= Y
teSSYT (1)
For instance

s2)(x1, X2, - - .) S R ENE TRV EIE TRV EET
:X12—|-X1X2 —|—x22+x1X3+---
Equivalently, s,(x1,...,Xg) is the trace of diag(xy,. .., x,) acting
on V#(E). For instance s(,)(x1, ..., Xg) is the character of Sym"E.
Definition (Plethysm of Schur functions)
Let & and v be partitions. Let SSYT(u) = {t(1),t(2),...}. The
plethystic product of s, and s, is s, 05, = 5, (x!(1) x*(2) ).



By definition of the Hall inner product, (f,s)) is the multiplicity of
sy as a summand of the symmetric function f.
Problem (Stanley’'s Problem 9, 2000)

Find a combinatorial interpretation of the plethysm coefficients
(S(n) © S(m)> Sx) that makes it clear they are non-negative.

Equivalently, find a combinatorial interpretation for the multiplicity
of the irreducible GLg4(C)-module V*(E) in Sym”Sym™E.



§3 Decomposition numbers for S,, from Sym”Sym?E

Problem (Decomposition numbers)

Determine the composition factors of Specht modules over fields of
prime characteristic.

For instance in characteristic 3 the Specht module Sp(3’3) has
composition factors labelled by (5,1) and (3, 3).

—_ —_

(4,11)
(3.21)
(2211

e )
L LT 2
6) 1
(,1) 1 1
(42) - - 1
33 - 1 - 1
(41,1 - 1 - - 1
321 1 1 - 1 1 1
(2,2,1,1) - - - . . .1
(2,22 1 - - - - 1 -
(3,1,1,1) - 11
(2,1,1,1,1) 1 1
(1,1,1,1,1,1) - 1



Decomposition matrix of principal block of F,5;

(10) 1
(9,1) 1
(82 1 1
(7,3) 1 -
(6,4)
(6,3,1)
(5,3,2)
(5,5)
(8,1,1)
(6,2,2)
(4,4,2)
(4,3,3)
(7,1,1,1)
(6,2,1)
(5,3,1,1)
(4,4,1,1)
(5,2,2,1)
(6,1,1,1,1)

N =
-
H R R R RN RR R
[
R R R
=

N WNWNDDNMNDNDNDEFEDN -
e e e
NN W W -
e = T e T e S =
e

[






Sym”"Sym?E and even partitions
As usual, let E = (eq, ..., eq) be the d-dimensional natural
representation of GL,(C). For n € N,

Sym"Sym’E = > VNE
A€Par(n)
L(N)<d

where 2\ is the even partition obtained by doubling each part of A
and V2(E) is an irreducible GL,(C)-representation. Equivalently

S2n _ 2)\
5225,1 @ Sp
A€Par(n)

Example. Take d = 4. Let F(V) be the (1,1,1,1)-weight space of V.

. e D e3en e3¢ Q€€
Sym?E ® Sym’E —— ( e1es Q@ exeq @264 @ 163
€164 Q e263 €63 €164

CTSQXSQ

PN CEIE S CE)



Sym”"Sym?E and even partitions
As usual, let E = (eq, ..., eq) be the d-dimensional natural
representation of GL,(C). For n € N,

Sym"Sym’E = > VNE
A€Par(n)
L(N)<d

where 2\ is the even partition obtained by doubling each part of A
and V2(E) is an irreducible GL,(C)-representation. Equivalently

S2n _ 2)\
5225,1 @ Sp
A€Par(n)

Example. Take d = 4. Let F(V) be the (1,1,1,1)-weight space of V.

€16 K e361 €364 D €16 >

_F
Sym2E®Sym2E E— <e1e3®eze4 €64 X e1€e3 ? (CT52><52

€164 Q e263 €63 €164 pWeSpBasp?)
l |
- (e1e2)(eses) o
Sym® Sym’E —— (e1e3)(e264) T52152
(e1€1)(e263) SpWasp?



From Sym"Sym?E = @ V?)(E) to decomposition numbers

Given a p-core 7, let £(7y) be the set of even partitions obtained
from ~ by adding the least possible number of disjoint p-hooks.

» For example if p =3 then 5(5) = {(6,2), (4,4), (4,2,2)}

Theorem (Giannelli-W 2014)

Let p be an odd prime and let v be a p-core. Let X € E(y) be
greatest in the lexicographic order. The column of the
decomposition matrix labelled by \ has entries 0 and 1. Moreover
its non-zero entries are in rows labelled by E(7).



Example: 3-block of Sy, with core (3,1, 1)

_=a<4
I N S B
AT 0T 0 T T
[ R I R R
12,15 =2 1
9,4H)=2,2) 1 1
9.3.2=, D] 2 11
®42)=M| 1 1 111
(6%,2) = (1,2) 11
6,4%) =(1,2,2) IR R
6,425=2,22 1 1 1011 1 1
6,3,22,)=(1, 1,2 2 1 1 11
5,422, )=, 1 1 1 111 11
42,22,15=3)| 1 1 11 11 1
9,15 =(2,3) 1
(6,4,1%) = (2,2,3) 1
(6,3,2,13) =(1,2,3) 1 11
6,23,12) = (3,2) 1
6,13)=(2,3,3) 1
(5,4,2,13) =(1,3) 21 1 1 1
@ 1H=3,n| 1 1 1 1
(32,24 =(1,1,3)| 1 1
(32,22, 1% = (1,1,1) 11 11
(3%,2,1%)=(1,3,3) 2 1 1
(3,23,15)=@3,3) 1 1
(3,1 =(3,3,3) 1
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Example: 3-block of Sy, with core (3,1, 1)

9,4,1)
9,3,2)
(8,4,2)
(62.2)

(6,4%
(6,4,2%)

(6,3,22,1)
(5.4,22,1)
“2,22,1%)

(12,12) = 2)
9,4,1)=(2,2)
9,3,2)=(2,1)

(8,4,2) = (1)

(6%,2) = (1,2)
6,4%) =(1,2,2)
(6,4,22) = (2,2,2)
(6,3,22,1)=(1,1,2)
(5.4,22, 1) =(1,1)
42,22,1%) = (3)
9,15 =(2,3)
(6,4,1%) = (2,2,3)
(6,3,2,13) =(1,2,3)
6,23,12) = (3,2)
6,13)=(2,3,3)
(5,4,2,13) =(1,3)
3413 =3, 1)
(32,24 =(1,1,3)
(32,22, 1% = (1,1,1)
(32,2,1%) = (1,3,3)
(3,23,15)=@3,3)
(3,1 =(3,3,3)

o = =] (12,12)

_— N =

—_—

—_—— -

_— s =

R

qﬂ@'l




Example: 3-block of Sy, with core (3,1, 1)

_=a<4
T8 goataq
AT 0T 0 T T
[ R I R R
12,15 =2 1
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9.3.2=, D] 2 11
®42)=M| 1 1 111
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3419 =31 1 1 1 1
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(3,1 =(3,3,3) 1




From Sym"Sym?E = @ V?)(E) to decomposition numbers

Given a p-core 7, let £(7y) be the set of even partitions obtained
from ~ by adding the least possible number of disjoint p-hooks.

» For example if p =3 then 5(5) = {(6,2), (4,4), (4,2,2)}

Theorem (Giannelli-W 2014)
Let p be an odd prime and let v be a p-core. Let X € E(y) be
greatest in the lexicographic order. The column of the

decomposition matrix labelled by \ has entries 0 and 1. Moreover
its non-zero entries are in rows labelled by E(7)

Idea of proof. Study the reduction modulo p of the symmetric
group module (CT;:S , corresponding to Sym”Sym?E.



From Sym"Sym?E = @ V?)(E) to decomposition numbers

Given a p-core 7, let £(7y) be the set of even partitions obtained
from ~ by adding the least possible number of disjoint p-hooks.

» For example if p =3 then 5(5) = {(6,2), (4,4), (4,2,2)}

Theorem (Giannelli-W 2014)

Let p be an odd prime and let vy be a p-core. Let A\ € E(7y) be
greatest in the lexicographic order. The column of the
decomposition matrix labelled by \ has entries 0 and 1. Moreover
its non-zero entries are in rows labelled by E(7)

Idea of proof. Study the reduction modulo p of the symmetric
group module (CTS 'S, corresponding to Sym”Sym E.

2n

s S, in the block

» Main step: show that the only summands of F,
of Sy, with p-core 7y are projective.

» From the decomposition of Sym” Sym?E, each projective lifts to a
direct sum of Specht modules over C labelled by even partitions.

» By Brauer reciprocity we get information about columns of

decomposition matrix.



§4: Maximal summands in plethysms

A partition A\ dominates a partition k if the Young diagram of «
can be obtained from the Young diagram of X\ by repeatedly
moving boxes downwards. For instance

- | [
> !

Quiz. Choose partitions  and X of n (a very large number)
uniformly at random. What, roughly, is the chance that x and A
are comparable in the dominance order?



§4: Maximal summands in plethysms

A partition A\ dominates a partition k if the Young diagram of «
can be obtained from the Young diagram of X\ by repeatedly
moving boxes downwards. For instance

- | [
> !

Quiz. Choose partitions  and X of n (a very large number)
uniformly at random. What, roughly, is the chance that x and A
are comparable in the dominance order?

Answer. Asymptotically 0, by a theorem of Pittel (1997).

n 5 6 10 20 30 35
Pcomparable 1 0.967 0.904 0.782 0.716 0.694

But no problem if you guessed something else: the convergence is
very slow, and the small cases are misleading.



Most plethysms have many different maximal summands.

Extreme example: s(1n) o s2). Let n € N. Given a partition « of n
with distinct parts, let 2[a] be the partition of 2n with leading
diagonal hook lengths 2a1, 2an, ...

| 2[4,2] 23,2,1]
8 | |6

The plethysm s(1n) o 52y corresponding to A" Sym?E is

S(ln) oS = Z Sg[a]

acPargistinct (n)



Most plethysms have many different maximal summands.

Extreme example: s(1n) o s2). Let n € N. Given a partition « of n
with distinct parts, let 2[a] be the partition of 2n with leading
diagonal hook lengths 2a1, 2an, ...

| 2[4,2] 2[3,2,1]
8 | |6

The plethysm s(1n) o 52y corresponding to A" Sym?E is

sanes= ), S

a€Pargistinct (1)

For instance, if n = 6 then
S(16) © $2 = 5(7,15) + S(6,3,1,1,1) T S(5.4.2,1) + S(4.4.)
and (7,1%),(6,3,1,1,1),(5,4,2,1), (4,4, 4) are all incomparable.



Most plethysms have many different maximal summands.

Extreme example: s(1n) o s2). Let n € N. Given a partition « of n
with distinct parts, let 2[a] be the partition of 2n with leading
diagonal hook lengths 2a1, 2an, ...

| 2[4,2] 23,2,1]
8 | |6

The plethysm s(1n) o 52y corresponding to A" Sym?E is
S(ln) oS = Z Sg[a]
a€Pargistinct (N)
in which 2[a] and 2[3] are incomparable for all distinct o and 5.

Thus every constituent of s(;n) o 52 is both maximal and minimal.
All of them are determined by our theorem.



Theorem (Paget-W 2018)

The maximal constituents of the plethysm s, o s, are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape v and inner shape ji.

A plethystic semistandard tableaux of outer shape (1”) and inner
shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

Taking m = 2 we get the decomposition of s(1n) 0 52). For n = 6:

N/ N/ N/
{3,4} {2,5} {1,6}

/SN /NS
(3,3} (2,4} {1,5)

NN S

{2,3} {1,4}

/N S
22 {13

N/

9]

|
(1,1}
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The maximal constituents of the plethysm s, o s, are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape v and inner shape ji.

A plethystic semistandard tableaux of outer shape (1”) and inner
shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

Taking m = 2 we get the decomposition of s(1n) 0 52). For n = 6:

N/ N/ N/
{3,4} {2,5} {1,6}

SN /N S
33} {24 {15 ;
NSNS (7,1%)
{2,3} {1,4}
/NS
{2,2} {1,3}
N/
9]
| BE
(1,1}



Theorem (Paget-W 2018)

The maximal constituents of the plethysm s, o s, are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape v and inner shape ji.

A plethystic semistandard tableaux of outer shape (1”) and inner
shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

Taking m = 2 we get the decomposition of s(1n) 0 52). For n = 6:

N/ N/ N/
{3,4} {2,5} {1,6}

S N /N S
(33} {24} {15} ;
N SN\ S : (7,1°) )
{2,3} {1,4} 6,3,1,1,1
RN
{2,2} {1,3}
NS
{1,2}
|
(1,13



Theorem (Paget-W 2018)

The maximal constituents of the plethysm s, o s, are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape v and inner shape ji.

A plethystic semistandard tableaux of outer shape (1”) and inner
shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

Taking m = 2 we get the decomposition of s(1n) 0 52). For n = 6:

N/ N/ N/
{3,4} {2,5} {1,6}

/SN /S N/

(3,3} {24} {15} i
NSNS : (7,1%) )
{2,3} {1,4} 3, 1,1,
SN/ (5,4,2,1)

2,2} (1,3}

N/
(1,2}
|
{1,1}



Theorem (Paget-W 2018)

The maximal constituents of the plethysm s, o s, are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape v and inner shape ji.

A plethystic semistandard tableaux of outer shape (1”) and inner
shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

Taking m = 2 we get the decomposition of s(1n) 0 52). For n = 6:

N/ N/ N/
{3,4} {2,5} {1,6}

SN /N S
3.3} {24} {15} ;

NSNS ( (7,15) |

2.3 {14 6.3,1,1,

SN S (5.4.2.1)
{2,2} {1,3} (4,4,4)

N

(1,2}

|
(1,1}



Theorem (Paget-W 2018)

The maximal constituents of the plethysm s, o s, are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape v and inner shape ji.

A plethystic semistandard tableaux of outer shape (1”) and inner

shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

» The 2018 proof uses the symmetric group.
» In 2020 with Melanie de Boeck we gave a shorter proof using
polynomial representations of GL,(C).

» Our recent work in 2022-23 gives a still shorter combinatorial
proof, with an explicit ‘gap’ result on the separation between
maximal and minimal summands.



§5: Foulkes' Conjecture and plethysm stability

Conjecture (Foulkes 1950)
If m < n then sy o s(n) is contained in S(p) © S(pm).-
Equivalently
» There is an injective homomorphism of GL(E)-modules
Sym™Sym"E — Sym"Sym™E when dim E = mn.
» There is an injective homomorphism of CS,,-modules

CTsnzsm - CTsmzsn

» Let S, act on set partitions of {1,..., mn}. The permutation
character for the action on m sets of size n contains the
permutation character for the action on n sets of size m.



§5: Foulkes' Conjecture and plethysm stability

Conjecture (Foulkes 1950)
If m < n then sy o s(n) is contained in S(p) © S(pm).-

Equivalently
» There is an injective homomorphism of GL(E)-modules
Sym™Sym"E — Sym"Sym™E when dim E = mn.
» There is an |nJect|ve homomorphism of CS,,-modules
CTsnzsm - CTsmzsn
» Let S, act on set partitions of {1,..., mn}. The permutation
character for the action on m sets of size n contains the
permutation character for the action on n sets of size m.
Proved when
» m =2 Thrall (1942)
» m = 3 Thrall (1942), Dent and Siemons (2000)
» m =4 McKay (2008),
» m =5 Cheung, lkenmeyer and Mkrychyan (2015)
and when m + n < 20, Evseev, Paget and Wildon (2008).



Foulkes Module Sym’Sym®E
Logarithms of multiplicities of irreducibles V*(E)

The marked interval, enlarged on right, is all partitions of 56 with
first part 19



Foulkes Module Sym’Sym®E

Logarithmic differences in multiplicities: for big dots, smaller
multiplicity is 0.




Theorem (Stability for the Foulkes plethysm)

Let v be a partition, and let (mn — |7|; ) denote the partition
(mn—|v|,7,-..,7). The plethysm coefficient

(S(n) © S(m)> S(mn—11:7))

is constant for all m and n sufficiently large.

Hence stable Foulkes Conjecture holds, with equality. Proved by

|

vVvvyVvYvyy

Weintraub (1988): recurrence relation on Schur functions

Carré, Thibon (1992): vertex operators

Brion (1993): dominant maps of algebraic varieties

Manivel (1997): stable embeddings of varieties

Bowman, Paget (2018): partition algebra

Paget, W (2023): plethystic semistandard tableaux

Bowman, Paget, W (2023): ramified partition algebra, any v for (n)



Theorem (Stability for the Foulkes plethysm)

Let v be a partition, and let (mn — |7|; ) denote the partition
(mn—|v|,7,-..,7). The plethysm coefficient

(S(n) © S(m)> S(mn—11:7))

is constant for all m and n sufficiently large.

Hence stable Foulkes Conjecture holds, with equality. Proved by

|

vVvvyyvyy

>

Weintraub (1988): recurrence relation on Schur functions

Carré, Thibon (1992): vertex operators

Brion (1993): dominant maps of algebraic varieties

Manivel (1997): stable embeddings of varieties

Bowman, Paget (2018): partition algebra

Paget, W (2023): plethystic semistandard tableaux

Bowman, Paget, W (2023): ramified partition algebra, any v for (n)

The BP and BPW proofs are notable as the only ones to give an
explicit (if intricate) formula for the multiplicity that is clearly
non-negative. This is a significant step towards the solution of
Stanley's Problem 9.



Using combinatorial arguments with signed plethystic semistandard
tableaux Paget and | have given unified proofs of every stability
result in the literature.

Here are two representative examples.

Theorem (Brion 1993)

Let v € Par(n), u € Par(m), A\ € Par(mn). Let r € N. The
plethysm coefficient

(v 0 Syt N(1r)s SA+ N(nr))

is constant for all N sufficiently large, with an explicit bound.

Theorem (Paget-W 2023)

Let v € Par(n), u/p* € SkewPar(m), A\ € Par(mn). Let r € N.
The plethysm coefficient

(5,/ o SM+ N(1r)/p*> 5)\+N(nr)>

is constant for all N sufficiently large, with an explicit bound.



Theorem (Law—Okitani 2021: Proposition 5.3)
Let v € Par(n) and \ € Par(mn). The plethysm coefficient

(S, M) © S(2)s Sx+ (W)L (V) )
is constant for N sufficiently large.

The generalization replacing 2 with an arbitrary m € N and

A+ (N) U (V) with A+ (m — 1)N U (1V) was announced by Law
at Oberwolfach in September 2022.

Our methods generalize the Law—Okitani result further, from (m)
to an arbitrary rectangular partition. The proof requires signed
plethystic semistandard tableaux with negative entries.

Theorem (Paget-W 2023)

Let v € Par(n), let a, b € N and let A € Par(abn). The plethysm
coefficient

(S (1) © S(ab)s SA+ N(ab~1,a—1) LI (1N) )

is constant for N sufficiently large, with an explicit bound on N.



Thank you! Any questions?




