The Liar Game Truths and Proofs from Euclid to Turing

Mark Wildon

I think ... therefore I am

Which National Football League player wears a prime number?

Which National Football League player wears a prime number?

- Not 10 because $10=2 \times 5$

Which National Football League player wears a prime number?

- Not 10 because $10=2 \times 5$
- Not 57 because $57=3 \times 19$

Which National Football League player wears a prime number?

- Not 10 because $10=2 \times 5$
- Not 57 because $57=3 \times 19$
- Not 25 because $25=5 \times 5$

Which National Football League player wears a prime number?

- Not 10 because $10=2 \times 5$
- Not 57 because $57=3 \times 19$
- Not 25 because $25=5 \times 5$
- 31 is prime

- I is not a prime

- I is not a prime - says who?

$2,3,5,7, I I, I 3, \ldots, 2003,20 I I, 20 I 7,2027,2029, \ldots$
$2,3,5,7, I I, 13, \ldots, 2003,20 I I, 2017,2027,2029, \ldots, 1000000007, \ldots$
$2,3,5,7, I I, I 3, \ldots, 2003,20 I I, 20 I 7,2027,2029, \ldots, 1000000007, \ldots$
- Does the sequence of primes ever stop?
- Or maybe there are infinitely many primes?
- The first three primes are 2, 3, 5
- The first three primes are $2,3,5$
- $2 \times 3 \times 5=30$
- The first three primes are 2, 3, 5
- $2 \times 3 \times 5=30$
- $30+\mathrm{I}=31$
- The first three primes are 2, 3, 5
- $2 \times 3 \times 5=30$
- $30+1=31$
- 3I leaves remainder I when we divide it by 2, 3, 5

- The first three primes are 2, 3, 5
- $2 \times 3 \times 5=30$
- $30+1=31$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$

- The first three primes are 2, 3, 5
- $2 \times 3 \times 5=30$
- $30+1=31$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$

- The first three primes are 2, 3, 5
- $2 \times 3 \times 5=30$
- $30+1=31$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$

- The first three primes are $2,3,5$
- $2 \times 3 \times 5=30$
- $30+1=31$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$
- But 31 is either prime or divisible by a prime
- The first three primes are $2,3,5$
- $2 \times 3 \times 5=30$
- $30+\mathrm{I}=3 \mathrm{I}$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$
- But 31 is either prime or divisible by a prime
- So $2,3,5$ are not all the primes.
- The first six primes are $2,3,5,7, I I, 13$

- The first three primes are $2,3,5$
- $2 \times 3 \times 5=30$
- $30+\mathrm{I}=3 \mathrm{I}$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$
- But 31 is either prime or divisible by a prime
- So $2,3,5$ are not all the primes.
- The first six primes are $2,3,5,7, I I, 13$
- $2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$

- The first three primes are $2,3,5$
- $2 \times 3 \times 5=30$
- $30+\mathrm{I}=3 \mathrm{I}$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$
- But 31 is either prime or divisible by a prime
- So $2,3,5$ are not all the primes.
- The first six primes are $2,3,5,7, \mathrm{II}, 13$
- $2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
- $30030+\mathrm{I}=30031$

- The first three primes are $2,3,5$
- $2 \times 3 \times 5=30$
- $30+\mathrm{I}=3 \mathrm{I}$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$
- But 31 is either prime or divisible by a prime
- So $2,3,5$ are not all the primes.
- The first six primes are $2,3,5,7, \mathrm{II}, 13$
- $2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
- $30030+\mathrm{I}=3003 \mathrm{I}$
- 3003 I leaves remainder I when we divide it by $2,3,5,7, \mathrm{II}, \mathrm{I} 3$.
- The first three primes are $2,3,5$
- $2 \times 3 \times 5=30$
- $30+1=31$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$
- But 31 is either prime or divisible by a prime
- So $2,3,5$ are not all the primes.
- The first six primes are $2,3,5,7, \mathrm{II}, 13$
- $2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
- $30030+\mathrm{I}=3003 \mathrm{I}$
- 3003 I leaves remainder I when we divide it by $2,3,5,7, \mathrm{II}, \mathrm{I} 3$.
- $3003 \mathrm{I}=\mathrm{I} 50 \mathrm{I} 5 \times 2+\mathrm{I}$
- The first three primes are 2, 3, 5
- $2 \times 3 \times 5=30$
- $30+\mathrm{I}=3 \mathrm{I}$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$
- But 31 is either prime or divisible by a prime
- So $2,3,5$ are not all the primes.
- The first six primes are $2,3,5,7, \mathrm{II}, 13$
- $2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
- $30030+\mathrm{I}=3003 \mathrm{I}$
- 3003 I leaves remainder I when we divide it by $2,3,5,7, \mathrm{II}, \mathrm{I} 3$.
- $3003 \mathrm{I}=15015 \times 2+1$
- $30031=10010 \times 3+1$
- The first three primes are 2, 3, 5
- $2 \times 3 \times 5=30$
- $30+\mathrm{I}=3 \mathrm{I}$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$
- But 31 is either prime or divisible by a prime
- So $2,3,5$ are not all the primes.
- The first six primes are $2,3,5,7, \mathrm{II}, 13$
- $2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
- $30030+\mathrm{I}=3003 \mathrm{I}$
- 3003 I leaves remainder I when we divide it by $2,3,5,7, \mathrm{II}, \mathrm{I} 3$.
- $3003 \mathrm{I}=15015 \times 2+1$
- $30031=10010 \times 3+1$
- $30031=2310 \times 13+1$
- The first three primes are 2, 3, 5
- $2 \times 3 \times 5=30$
- $30+\mathrm{I}=3 \mathrm{I}$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$
- But 31 is either prime or divisible by a prime
- So $2,3,5$ are not all the primes.
- The first six primes are $2,3,5,7, \mathrm{II}, 13$
- $2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
- $30030+\mathrm{I}=3003 \mathrm{I}$
- 3003 I leaves remainder I when we divide it by $2,3,5,7, \mathrm{II}, \mathrm{I} 3$.
- $3003 \mathrm{I}=15015 \times 2+1$
- $30031=10010 \times 3+1$
- $30031=2310 \times 13+1$
- But 3003I is either prime or divisible by a prime
- The first three primes are 2, 3, 5
- $2 \times 3 \times 5=30$
- $30+\mathrm{I}=3 \mathrm{I}$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$
- But 31 is either prime or divisible by a prime
- So $2,3,5$ are not all the primes.
- The first six primes are $2,3,5,7, \mathrm{II}, 13$
- $2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
- $30030+\mathrm{I}=3003 \mathrm{I}$
- 3003 I leaves remainder I when we divide it by $2,3,5,7, \mathrm{II}, \mathrm{I} 3$.
- $3003 \mathrm{I}=15015 \times 2+1$
- $30031=10010 \times 3+1$
- $3003 \mathrm{I}=2310 \times 13+1$
- But 3003 I is either prime or divisible by a prime (in fact $3003 \mathrm{I}=59 \times 209$)
- The first three primes are 2, 3, 5
- $2 \times 3 \times 5=30$
- $30+1=31$
- 3I leaves remainder I when we divide it by 2, 3, 5
- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$
- But 31 is either prime or divisible by a prime
- So 2, 3, 5 are not all the primes.
- The first six primes are $2,3,5,7, \mathrm{II}, 13$
- $2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
- $30030+\mathrm{I}=3003 \mathrm{I}$
- 3003 I leaves remainder I when we divide it by $2,3,5,7, \mathrm{II}, \mathrm{I} 3$.
- $3003 \mathrm{I}=\mathrm{I} 50 \mathrm{I} 5 \times 2+\mathrm{I}$
- $30031=10010 \times 3+1$
- $30031=2310 \times 13+1$
- But 3003I is either prime or divisible by a prime (in fact $3003 \mathrm{I}=59 \times 209$)
- So $2,3,5,7, I I, I 3$ are not all the primes.

- Socrates: I think $p_{I}, p_{2}, \ldots, p_{r}$ might be all the primes

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+I$

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+I$
- Socrates: If I must ...

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+I$
- Socrates: If I must ...
- Euclid: N leaves remainder I when divided by all your primes

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+I$
- Socrates: If I must ...
- Euclid: N leaves remainder I when divided by all your primes
- Socrates: You are correct

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+I$
- Socrates: If I must ...
- Euclid: N leaves remainder I when divided by all your primes
- Socrates: You are correct
- Euclid: But N is divisible by some prime

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+I$
- Socrates: If I must ...
- Euclid: N leaves remainder I when divided by all your primes
- Socrates: You are correct
- Euclid: But N is divisible by some prime
- Socrates: Yes. So there is a prime not in my list.

Ask a friend to thinks of a number between I and 15 . How many YES/NO questions do you need to ask to find the secret number?

Ask a friend to thinks of a number between I and 15 . How many YES/NO questions do you need to ask to find the secret number?

Ask a friend to thinks of a number between I and 15 . How many YES/NO questions do you need to ask to find the secret number?

In a computer everything is stored as lists of bits (binary digits) 0 and I .

In a computer everything is stored as lists of bits (binary digits) 0 and I. The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', `No', 'No'.

In a computer everything is stored as lists of bits (binary digits) 0 and I. The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', `No', 'No'.

In a computer everything is stored as lists of bits (binary digits) 0 and I. The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', `No', 'No'.

In a computer everything is stored as lists of bits (binary digits) 0 and I. The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', `No', 'No'.

In a computer everything is stored as lists of bits (binary digits) 0 and I . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', ‘No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

OIOIOIOO OIIOIIII OOIOOOOO OIIOOOIO OIIOOIOI OOIOIIOO OOIOOOOO OIIOIIII OIIIOOIO OOIOOOOO OIIOIIIO 0110111101110100001000000111010001101111001000000110001001100101001110100010000001110100 OIIOIO00 OIIOOOOI OIIIOIOO OOIOOOOO OIIOIOOI OIIIOOII OOIOOOOO OIIIOIOO OIIOIOOO OIIOOIOI OOIOOOOO OIIIOOOI OIIIOIOI OIIOOIOI OIIIOOII OIIIOIOO OIIOIOOI OIIOIIII OIIOIIIO OOIIIOIO OOOOIOIO OIOIOIII OIIOIO00 OIIOOIOI OIIIOIOO OIIOIO00 OIIOOIOI OIIIOOIO OOIOO000 OOIOOIII OIIIOIOO OIIOIOOI OIIIOOII 0010000001101110011011110110001001101100011001010111001000100000011010010110111000100000 OIIIOIOO OIIOIOOO OIIOOIOI 00100000 OIIOIIOI OIIOIOOI OIIOIIIOOIIOOIOO OOIOOOOO OIIIOIOO OIIOIIII OOIOOOOO OIIIOOII OIIIOIOI OIIOOIIO OIIOOIIO OIIOOIOI OIIIOOIO OOOOIOIO OIOIOIOO OIIOIOOO OIIOOIOI 0010000001110011011011000110100101101110011001110111001100100000011000010110111001100100
 OIIOIIII OIIIOIOI OIIIOIOO OIIIOOIO OIIOOOOI OIIOOIII OIIOOIOI OIIOIIIIOIIIOIOI OIIIOOII OOIOOOOO OIIOOIIO OIIOIIII OIIIOOIO OIIIOIOO OIIIOIOI OIIOIIIO OIIOOIOI OOIOIIOO

William Shakespeare (approx 1600)

In a computer everything is stored as lists of bits (binary digits) 0 and I . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', ‘Yes', ‘No', ‘No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

OIOIOIOO OIIOIIII 00100000 OIIOOOIO OIIOOIOI OOIOIIOO OOIOOOOO OIIOIIII OIIIOOIO OOIOOOOO OIIOIIIO 0110111101110100001000000111010001101111001000000110001001100101001110100010000001110100 OIIOIO00 OIIO000I OIIIOIO0 00100000 OIIOIOOI OIIIOOII 0010000001110100011010000110010100100000 OIIIOOOI OIIIOIOI OIIOOIOI OIIIOOII OIIIOIOO OIIOIOOI OIIOIIII OIIOIIIO OOIIIOIO OOOOIOIO OIOIOIII OIIOI000 OIIOOIOI OIIIOIOO OIIOIO00 OIIOOIOI OIIIOOIO 0010000000100111011101000110100101110011 00100000 OIIOIIIO OIIOIIII OIIO00IO OIIOIIOO OIIOOIOI OIIIOOIO OOIO0000 OIIOIOOI OIIOIIIO 00100000 OIIIOIOO OIIOIOOO OIIOOIOI 00100000 OIIOIIOI OIIOIOOI OIIOIIIOOIIOOIOO OOIOOOOO OIIIOIOO OIIOIIII OOIOOOOO OIIIOOII OIIIOIOI OIIOOIIO OIIOOIIO OIIOOIOI OIIIOOIO OOOOIOIO OIOIOIOO OIIOIOOO OIIOOIOI 0010000001110011011011000110100101101110011001110111001100100000011000010110111001100100
 OIIOIIII OIIIOIOI OIIIOIOO OIIIOOIO OIIOOOOI OIIOOIII OIIOOIOI OIIOIIII OIIIOIOI OIIIOOII OOIOOOOO OIIOOIIO OIIOIIII OIIIOOIO OIIIOIOO OIIIOIOI OIIOIIIOOIIOOIOI OOIOIIOO

William Shakespeare (approx 1600)
To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,

In a computer everything is stored as lists of bits (binary digits) 0 and I . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', ‘Yes', ‘No', ‘No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

OIOIOIOO OIIOIIII 00100000 OIIOOOIO OIIOOIOI OOIOIIOO OOIOOOOO OIIOIIII OIIIOOIO OOIOOOOO OIIOIIIO OIIOIIII 01110100001000000111010001101111001000000110001001100101001110100010000001110100 OIIOIO00 OIIO000I OIIIOIO0 00100000 OIIOIOOI OIIIOOII 0010000001110100011010000110010100100000 OIIIOOOI OIIIOIOI OIIOOIOI OIIIOOII OIIIOIOO OIIOIOOI OIIOIIII OIIOIIIO OOIIIOIO OOOOIOIO OIOIOIII OIIOI000 OIIOOIOI OIIIOIOO OIIOIO00 OIIOOIOI OIIIOOIO 0010000000100111011101000110100101110011 00100000 OIIOIIIO OIIOIIII OIIO00IO OIIOIIOO OIIOOIOI OIIIOOIO OOIO0000 OIIOIOOI OIIOIIIO OOIOOOOO OIIIOIOO OIIOIOOO OIIOOIOI 00100000 OIIOIIOI OIIOIOOI OIIOIIIOOIIOOIOO 00100000 OIIIOIOO OIIOIIII 00100000 OIIIOOII OIIIOIOI OIIOOIIO OIIOOIIO OIIOOIOI OIIIOOIO OOOOIOIO OIOIOIOO OIIOIOOO OIIOOIOI 0010000001110011011011000110100101101110011001110111001100100000011000010110111001100100
 OIIOIIII OIIIOIOI OIIIOIOO OIIIOOIO OIIOOOOI OIIOOIII OIIOOIOI OIIOIIII OIIIOIOI OIIIOOII OOIOOOOO OIIOOIIO OIIOIIII OIIIOOIOOIIIOIOO OIIIOIOI OIIOIIIO OIIOOIOI OOIOIIOO

William Shakespeare (approx 1600)
To be, or not to be: that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune,

In a computer everything is stored as lists of bits (binary digits) 0 and I. The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', ‘No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

OOIIOO00 OIIIOIII OIO00IIO IO000000 000IIO00 0000000I OIOIIIOI OOOIIIIO IOIOIIOO 00000000 IOIOIIIO 0000101110101100001010110110101101101001000011100010111010101100001010010010111010001101 OOIOOIOO OOIOOIOI IOIOIIOO OOIOIOII OIIOIOII OIIOIOOI OOOOIIIO OOOOIIII IOOOIOOO OIOOIOII OIIOOIOO IIOOIOIO IIOOIIOO IIOOIIII IIOOIIII $0000100000000101000101000000110000110000010000000 I O I I O I O$ $00110000110000100011000000110000100000000001101000111010001100001000011010111101000 I I O I 0$ 1010110000000000000010110010111010101001001010111110100010101000110010111000100110100111 10101001 IOIOIOIO IIOOIOII IOIOOIOI IIOOIOIO OIOOIOOI OOOOIIIO IIOOIIOO IIOOIIII IIOOIIII 00001000 OOOIOIOO IOOOOOOI OIOIIOIO OOIIOOOO OIOOOIOI OOOIOOOI OIIIIOIO OOIIOOOO IOIOOIOI OIOIIOIO IOIOIIOO 0000000000001011111010101110101101101001001011100010110000101011101010010110110000001011 IOIOIIII IIIOIOII OIIOIOIO IOIOIOIO IOIOIIOO OOIOIOII IOIOIIIO IIOOIOII IOIOIIOO OOIOIOII IOIOIOII OOIOIOII OOIOIIIO IIIOIOIO OIOOIOOI IOOOIOOI OOIOOIII IOIOOIOO IOIOIOOI IOIOIOIO IIOOIOII IOIOOIOI 1100101001001001000011101100110011001111110011110000100000010100

Anonymous Microsoft Programmer (2010)

In a computer everything is stored as lists of bits (binary digits) 0 and I . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', ‘No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

OOIIOOOO OIIIOIII OIO00IIO IO000000 OOOIIO00 0000000I OIOIIIOI OOOIIIIO IOIOIIOO 00000000 IOIOIIIO OOOOIOII 10101100001010110110101101101001000011100010111010101100001010010010111010001101 OOIOOIOO OOIOOIOI IOIOIIOO OOIOIOII OIIOIOII OIIOIOOI OOOOIIIO OOOOIIII IOOOIOOO OIOOIOII OIIOOIOO IIOOIOIO IIOOIIOO IIOOIIII IIOOIIII 00001000000001010001010000001100001100000100000001011010 $00110000110000100011000000110000100000000001101000111010001100001000011010111101000 I I O I 0$ IOIOIIOO 0000000000001011001011101010100100101011 IIIOIO00 IOIOIO00 IIOOIOII IOOOIOOI IOIOOIII IOIOIOOI IOIOIOIO IIOOIOII IOIOOIOI IIOOIOIO OIOOIOOI OOOOIIIO IIOOIIOO IIOOIIII IIOOIIII OOOOIOOO OOOIOIOO IOOOOOOI OIOIIOIO OOIIOOOO OIOOOIOI OOOIOOOI OIIIIOIO OOIIOOOO IOIOOIOI OIOIIOIO IOIOIIOO 0000000000001011111010101110101101101001001011100010110000101011101010010110110000001011 IOIOIIII IIIOIOII OIIOIOIO IOIOIOIO IOIOIIOO OOIOIOII IOIOIIIO IIOOIOII IOIOIIOO OOIOIOII IOIOIOII OOIOIOII OOIOIIIO IIIOIOIO OIOOIOOI IOOOIOOI OOIOOIII IOIOOIOO IOIOIOOI IOIOIOIO IIOOIOII IOIOOIOI 1100101001001001000011101100110011001111 IIOOIIII 0000100000010100

Anonymous Microsoft Programmer (2010)

Part of the machine code for Microsoft Word 201 I.

In a computer everything is stored as lists of bits (binary digits) 0 and I. The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.
Books, music, videos, computer programs, bitcoins ..., all become bits.

Alice wants to send a message to Bob. She can communicate with him by sending him a sequence of bits 0 and I

Every time 0 is sent, there is a chance that I is received, and every time I is sent, there is a chance that 0 is received.

How can Alice and Bob communicate reliably?

Alice wants to send a message to Bob. She can communicate with him by sending him a sequence of bits 0 and I

Every time 0 is sent, there is a chance that I is received, and every time I is sent, there is a chance that 0 is received.

How can Alice and Bob communicate reliably?

- Alice (aside): my number is I2

Alice wants to send a message to Bob. She can communicate with him by sending him a sequence of bits 0 and I

Every time 0 is sent, there is a chance that I is received, and every time I is sent, there is a chance that 0 is received.

How can Alice and Bob communicate reliably?

- Alice (aside): my number is 12

- Alice (to Bob): IIOO

Alice wants to send a message to Bob. She can communicate with him by sending him a sequence of bits 0 and I

Every time 0 is sent, there is a chance that I is received, and every time I is sent, there is a chance that 0 is received.

How can Alice and Bob communicate reliably?

- Alice (aside): my number is 12

- Alice (to Bob): IIOO
- Bob: I hear I000, which is 8

Alice wants to send a message to Bob. She can communicate with him by sending him a sequence of bits 0 and I

Every time 0 is sent, there is a chance that I is received, and every time I is sent, there is a chance that 0 is received.

How can Alice and Bob communicate reliably?

- Alice (aside): my number is 12

- Alice (to Bob): IIOO
- Bob: I hear I000, which is 8
- Alice: No that's wrong

Alice wants to send a message to Bob. She can communicate with him by sending him a sequence of bits 0 and I

Every time 0 is sent, there is a chance that I is received, and every time I is sent, there is a chance that 0 is received.

How can Alice and Bob communicate reliably?

- Alice (aside): my number is 12

- Alice (to Bob): IIOO
- Bob: I hear I000, which is 8
- Alice: No that's wrong
- Bob: What did you say?

Alice wants to send a message to Bob. She can communicate with him by sending him a sequence of bits 0 and I

Every time 0 is sent, there is a chance that I is received, and every time I is sent, there is a chance that 0 is received.

How can Alice and Bob communicate reliably?

- Alice (aside): my number is 12

- Alice (to Bob): IIOO
- Bob: I hear I000, which is 8
- Alice: No that's wrong
- Bob: What did you say?
- Alice: Let's try again.

Alice wants to send a message to Bob. She can communicate with him by sending him a sequence of bits 0 and I

Every time 0 is sent, there is a chance that I is received, and every time I is sent, there is a chance that 0 is received.

How can Alice and Bob communicate reliably?

- Alice (aside): my number is 12

- Alice (to Bob): IIOO
- Bob: I hear I000, which is 8
- Alice: No that's wrong
- Bob: What did you say?
- Alice: Let's try again.
- Bob: I hear III IOI 000 00|

Alice wants to send a message to Bob. She can communicate with him by sending him a sequence of bits 0 and I

Every time 0 is sent, there is a chance that I is received, and every time I is sent, there is a chance that 0 is received.

How can Alice and Bob communicate reliably?

- Alice (aside): my number is 12

- Alice (to Bob): IIOO
- Bob: I hear I000, which is 8
- Alice: No that's wrong
- Bob: What did you say?
- Alice: Let's try again.
- Bob: I hear III IOI 000 00I It sounds most like three repeats of 1100 , which is 12

Ask a friend to think of a number between 0 and 15. How many YES/NO questions do you need to ask to find the secret number? Your friend may lie but only once.

It is not compulsory to lie.

Ask a friend to think of a number between 0 and I5. How many YES/NO questions do you need to ask to find the secret number? Your friend may lie but only once.

It is not compulsory to lie.
The Alice/Bob code gives a 12 question solution

Number	Encoded as	Number	Encoded as
0	000000000000	8	111000000000
1	000000000111	9	11100000111
2	000000111000	10	111000111000
3	000000111111	11	111000111111
4	000111000000	12	111111000000
5	000111000111	13	111111000111
6	000111111000	14	111111111000
7	000111111111	15	111111111111

Richard Hamming (1915 - 1998) discovered a one-error correcting binary code of length 7 with 16 codewords.

He invented it because he was fed up with the paper tape reader on his early computer misreading his programs.

Find the codeword corresponding to your secret number.
For instance if your number is 12 then the codeword is 0111100.

0	0000000	8	1110000
1	1101001	9	0011001
2	0101010	10	1011010
3	1000011	11	0110011
4	1001100	12	0111100
5	0100101	13	1010101
6	1100110	14	0010110
7	0001111	15	1111111

I'll ask you:
'What is the bit in the first position (far left) of the codeword?',
'What is the bit in the second position of the codeword?',
and so on. The Hamming code will reveal the number, even if you lie once.

Find the codeword corresponding to your secret number.
For instance if your number is 12 then the codeword is 0111100 .

0	0000000	8	1110000
1	1101001	9	0011001
2	0101010	10	1011010
3	1000011	11	0110011
4	1001100	12	0111100
5	0100101	13	1010101
6	1100110	14	0010110
7	0001111	15	1111111

I'll ask you:
'What is the bit in the first position (far left) of the codeword?',
'What is the bit in the second position of the codeword?', and so on. The Hamming code will reveal the number, even if you lie once.

No strategy can guarantee to use fewer than 7 questions. So the Hamming code is optimal.

Ada Lovelace (1815 - I857) inventor of programming

Katherine Johnson (1918 -) NASA `computer'

Alan Turing (1912 - 1952) was another pioneer of early computing

SHERBORNE SCHOOL

Mathematics papers are mostly words.

A PROOF OF LIOUVILLE'S THEOREM

EDWARD NELSON
Consider a bounded harmonic function on Euclidean space. Since it is harmonic, its value at any point is its average over any sphere, and hence over any ball, with the point as center. Given two points, choose two balls with the given points as centers and of equal radius. If the radius is large enough, the two balls will coincide except for an arbitrarily small proportion of their volume. Since the function is bounded, the averages of it over the two balls are arbitrarily close, and so the function assumes the same value at any two points. Thus a bounded harmonic function on Euclidean space is a constant.

Princeton University
Received by the editors June 26, 1961.

He helped crack the Enigma code used by the German Navy in the Second World War

Turing's finest mathematical achievement is the following theorem.
Theorem. There is no algorithm that will decide the truth or falsity of a mathematical statement

- There are infinitely many primes
- It takes 4 bits to store a number between 0 and 15
- There are infinitely many primes ending I
- There is a way to win the Liar Game in 6 questions

True
True
True
False

Turing's finest mathematical achievement is the following theorem.
Theorem. There is no algorithm that will decide the truth or falsity of a mathematical statement

- There are infinitely many primes
- It takes 4 bits to store a number between 0 and 15
- There are infinitely many primes ending I
- There is a way to win the Liar Game in 6 questions
- 2^{3} and 3^{2} are the only consecutive integer powers

True
True
True
False

Turing's finest mathematical achievement is the following theorem.
Theorem. There is no algorithm that will decide the truth or falsity of a mathematical statement

- There are infinitely many primes
- It takes 4 bits to store a number between 0 and 15
- There are infinitely many primes ending I
- There is a way to win the Liar Game in 6 questions
- 2^{3} and 3^{2} are the only consecutive integer powers

True
True
True
False

- There are infinitely many twin primes such as 3,5 or 5, 7 or II, I3 or 17, I9 or \ldots or 2027, 2029 or \ldots???

Turing's finest mathematical achievement is the following theorem.
Theorem. There is no algorithm that will decide the truth or falsity of a mathematical statement

- There are infinitely many primes
- It takes 4 bits to store a number between 0 and 15
- There are infinitely many primes ending I
- There is a way to win the Liar Game in 6 questions
- 2^{3} and 3^{2} are the only consecutive integer powers

True
True
True
False

- There are infinitely many twin primes such as 3,5 or 5, 7 or II, I3 or 17, I9 or ... or 2027, 2029 or ...???
- There is a fast way to factorize large numbers into primes ???

Thank you. Any questions?

You and nine friends are lined up. A red or blue hat is put on each person's head. You can see all the hats in front of you, but not your own, or those behind.

So the person at the back of the line can see nine hats, the next person can see eight, and so on.

You and nine friends are lined up. A red or blue hat is put on each person's head. You can see all the hats in front of you, but not your own, or those behind.

So the person at the back of the line can see nine hats, the next person can see eight, and so on.

Starting at the back of the line, each person is asked to guess the colour of his or her hat.

You and nine friends are lined up. A red or blue hat is put on each person's head. You can see all the hats in front of you, but not your own, or those behind.

So the person at the back of the line can see nine hats, the next person can see eight, and so on.

Starting at the back of the line, each person is asked to guess the colour of his or her hat.

Question: What is a good strategy?

