
MT362/462/5462 Cipher Systems
Mark Wildon, mark.wildon@rhul.ac.uk

Administration:

I Sign-in sheet. Please return to the lecturer after each
lecture.

I Make sure you get the Part A Notes and preliminary problem
sheet. Please pass everything onwards, and eventually to
the back, even if you the person you are passing to
already has a copy.

I Please take a clicker and use it!
I All handouts will be put on Moodle. The first marked problem

sheet will be on Moodle by Wednesday.
I Lectures: Monday 4pm (MFLEC), Friday 11am (MC201),

Friday 4pm (MC336).
I Extra lecture for MT5462: Friday 9am (MC201).
I Office hours in McCrea 240: Tuesday 3.30pm, Wednesday

10am, Thursday 11am.



Part A: Introduction: alphabetic ciphers and the language of
cryptography

§1 Introduction: Security Requirements

I Confidentiality: Eve cannot read the message.
I Data integrity: any change made by Eve to the ciphertext is

detectable
I Authentication: Alice and/or Bob are who they claim to be
I Non-repudiation: Alice cannot plausibly deny she sent the

message

Quiz. True or false: When you log in to gmail, Google is sent your
password (through an encrypted channel) and their computer
checks it matches their record.

(A) False (B) True

In fact they are sent a ‘hash’ of your password: see Part D of the
course. For instance, the SHA-256 hash of my password is

10240091319433958220940827083398838418293955470930775768

5269621393941480523360.
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Cryptography Matters!

What do the following have in common?

I Mary, Queen of Scots

I The Equifax share price

I Satoshi Nakamoto

I Edward Snowden?



§2 Alphabet Ciphers

Example 2.1

The Caesar cipher with key s ∈ {0, 1, . . . , 25} encrypts a word by
shifting each letter s positions forward in the alphabet, wrapping
round at the end. For example if the key is 3 then ’hello’ becomes
KHOOR and ’zany’ becomes CDQB. The table in the printed notes
shows all 26 possible shifts.

Exercise 2.2

(a) Malcolm (the mole) knows that the plaintext ’apple’ was
encrypted as CRRNG. What is the key?

(b) Eve has intercepted the ciphertext ACCB. What is the key and
what is the plaintext?

(c) Repeat (a) supposing the intercepted ciphertext is GVTJPO.
Suppose Eve later intercepts XKIX. What can she conclude?



Substitution Ciphers

Example 2.3

Let π : {a, . . . , z} → {A, . . . ,Z} be a bijection. The substitution
cipher eπ applies π to each letter of a plaintext in turn. For
example, if

π(a) = Z, π(b) = Y, . . . , π(z) = A

then eπ(hello there) = SVOOL GSVIV. (In practice spaces were
deleted before encryption, but we will keep them to simplify the
cryptanalysis.) The Caesar cipher with key s is the special case
where π shifts each letter forward s times.



Frequency Analysis

Example′ 2.4

(Here ′ means this is similar, but not the same, as the example in
the printed notes.) Eve intercepts the ciphertext

IFJAJ DAJ BNXKBWM UADLIKLDE AJDMBTM PBA MIWOCKTQ

LACUIBQADUFC IFJ MWNRJLI KM DEMB PWEE BP HDIFJHDIKLDE

KTIJAJMI IFJAJ DAJ LBTTJLIKBTM IB EKTJDA DEQJNAD TWHNJA

IFJBAC MIDIKMIKLM DTO UABNDNKEKIC IFJBAC DM GJEE DM

IFJBAJIKLDE LBHUWIJA MLKJTLJ

We will decrypt this in Lecture 2, using the Mathematica
notebook AlphabeticCiphers on Moodle to do the donkey work.
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Frequency distribution of English, probability as percentages.

e t a o i n s h r d

12.7 9.1 8.2 7.5 7.0 6.7 6.3 6.1 6.0 4.3



Frequency Analysis

Example′ 2.4

(Here ′ means this is similar, but not the same, as the example in
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We will decrypt this in Lecture 2, using the Mathematica
notebook AlphabeticCiphers on Moodle to do the donkey work.

Exercise′ 2.5
(a) After deciphering, we know that π(a) = D, π(b) = N, and so

on. Do we know the key π?

(b) Will we have any difficulty in decrypting further messages
encrypted using the same substitution cipher?



In Praise of Programming

You can get Mathematica for free from the College: see the top
hit for Google on ‘RHUL Mathematica’.

This is a chance to develop some useful transferable programming
skills!

“What I mean is that if you really want to understand
something, the best way is to try and explain it to someone
else. That forces you to sort it out in your own mind. And the
more slow and dim-witted your pupil, the more you have to
break things down into more and more simple ideas. And
that’s really the essence of programming. By the time you’ve
sorted out a complicated idea into little steps that even a
stupid machine can deal with, you’ve certainly learned
something about it yourself.”

Douglas Adams, Dirk Gently’s Holistic Detective Agency (1987)



Colossus at Bletchley Park



Vigenère Cipher
Define a bijection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b ←→ 1, . . . , z ←→ 25.

Using this bijection we identify a word of length ` with an element
of {0, 1, . . . , 25}`. For example,

‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s
becomes the function x 7→ x + s mod 26.
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(C) (1, 2, 2) = (2, 1, 1),
(D) If u = (0, 1, 2, . . . , 25) then ui = i − 1 for i ∈ {1, . . . , 26}.

(A) (B) (C) (D)
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Vigenère Cipher
Define a bijection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b ←→ 1, . . . , z ←→ 25.

Using this bijection we identify a word of length ` with an element
of {0, 1, . . . , 25}`. For example,

‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s
becomes the function x 7→ x + s mod 26.

Definition 2.6
The key k for the Vigenère cipher is a word. Suppose that k has
length `. Given a plaintext x with its spaces deleted, we define its
encryption by

ek(x) = (x1 + k1, x2 + k2, . . . , x` + k`, x`+1 + k1, . . .)

where xi + ki is computed by converting xi and ki to numbers and
adding them mod 26.



Vigenère Example

Example 2.7

Take k = emu, so k has length 3. Under the bijection between
letters and numbers, emu←→ (4, 12, 20). The table below shows
that

eemu(meetatmidnightnear) = QQYXMNQUXRUALFHIML.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

xi
m e e t a t m i d n i g h t n e a r
12 4 4 19 0 19 12 8 3 13 8 6 7 19 13 4 0 17

ki 4 12 20 4 12 20 4 12 20 4 12 20 4 12 20 4 12 20

xi + ki
16 16 24 23 12 13 16 20 23 17 20 0 11 5 7 8 12 11
Q Q Y X M N Q U X R U A L F H I M L



A Weakness in the Vigenère Cipher

Exercise 2.8

(a) If you had to guess, which of the following would you say was
more likely to be the ciphertext from a substitution cipher?

QXNURA , QMUUFM , QNRFLX.

These come from taking every 2nd, 3rd and 4th position in the
ciphertext QQYXMNQU. . . , starting at the second Q, supposing the
plaintext continues ‘. . . near the tree’.

(b) Why should we expect the split ciphertext to have the most
spiky frequency distribution at the length of the key?



Index of Coincidence

Definition 2.9
The index of coincidence of a ciphertext y , denoted I (y), is the
probability that two entries of y , chosen at random from different
positions, are equal.

Exercise 2.10
Explain why I (QXNURA) = I (QNRFLX) = 0 and check that
I (QMUUFM) = 2

15 . What is I (AAABBC)?

There is a simple formula for I (y). (An examinable proof: there
are notes on Moodle revising discrete probability.)

Lemma 2.11
If the ciphertext y of length n has exactly fi letters corresponding
to i , for each i ∈ {0, 1, . . . , 25} then

I (y) =
25∑

i=0

fi (fi − 1)

n(n − 1)
.
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Attack on the Vigère Cipher

We now have a strategy for decrypting a Vigenère ciphertext.

Attack 2.12
Given a Vigenère ciphertext, split it into groups by taking every
`-th letter for all small `, as in Exercise 2.8. If the ciphertext is long
enough, the Index of Coincidence will be greatest at the key length.
Each split ciphertext is the output of a Caesar cipher; assuming the
most common letter is the encryption of ‘e’ determines the shift.

Example 2.13

The following ciphertext is the output of a Vigènre cipher:

KYEYAXBICDMBRFXDLCDPKFXLCILLMOVRMCE ...

(The full ciphertext is in the printed notes, and in the
Mathematica notebook.) We wil decrypt this in the lecture
using the Index of Coincidence to get started.



Question 3 on Problem Sheet 1

(3) In a chosen plaintext attack, the attacker chooses a
plaintext x , and is given the corresponding ciphertext ek(x) for the
key k . Explain how to recover the key by a chosen plaintext
account when the cipher is

(a) a substitution cipher eπ;

(b) the Vigenère cipher ek where k has length at most 10.



Administration

I Please take next page of handout

I Please do the preliminary problem sheet. We need
conditional probability on Friday! Answers will be posted to
Moodle this evening.

I You must do Problem Sheet 1. Everything relevant has
been covered in lectures. Spare copies at front.

I Deadline: noon Wednesday week: or hand in on Monday.

I Office hours in McCrea 240: Tuesday 3.30pm, Wednesday
10am, Thursday 11am.

I Session Id: 131312 (or use a physical clicker)



§3 Cryptosystems, Attack Models and
Perfect Secrecy

The three different encryption functions for the Caesar cipher on
the ‘alphabet’ {0, 1, 2} are shown in the diagram below.

0

1

2

0

1

2

key 0
0

1

2

0

1

2

key 1
0

1

2

0

1

2

key 2



Exercise 3.1: Which are Plausible Cryptosystems?
Please vote A for ’Good’, B for ’Bad’

(i)
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2
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(ii)
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(iii)

0
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(vi)

0
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Definition of Cryptosystem

Definition 3.2
Let K,P, C be finite sets. A cryptosystem is a family of encryption
functions ek : P → C and decryption functions dk : C → P one for
each k ∈ K, such that for each k ∈ K ,

dk
(
ek(x)

)
= x (?)

all x ∈ P. We call K the keyspace, P the set of plaintexts, and C
the set of ciphertexts.

Exercise 3.3

(a) What is special about ciphertext 2 in (iii)?

(b) Define ek and ek ′ so that (iv) becomes a cryptosystem. How
many choices did you have? Should (iv) be allowed as the
definition of a cryptosystem?

(c) What is the problem with (v)?

(d) What are the two problems with (vi)?
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Cryptosystems

Exercise 3.4
Prove that the encryption functions in a cryptosystem are injective
and that the decryption functions are surjective.

Recall that a function f : P → C is injective if, for all x , x ′ ∈ P,
f (x) = f (x ′) implies x = x ′ and surjective if for all y ∈ C there
exists x ∈ P such that f (x) = y .

Quiz: True or false? In any cryptosystem . . .

I the encryption functions determine the decryption functions.
(A) False (B) True

I if k ∈ K and x , x ′ are distinct plaintexts then ek(x) 6= ek(x ′).
(A) False (B) True

I if x ∈ P and k , k ′ are distinct keys then ek(x) 6= ek ′(x).
(A) False (B) True
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Affine cipher

Example 3.5

Let p be prime. The affine cipher on Zp has P = C = Zp and

K = {(a, c) : a ∈ Zp, c ∈ Zp, a 6= 0}.

The encryption maps are defined by e(a,c)(x) = ax + c mod p. The
decryption maps are defined by d(a,c)(x) = b(x − c) mod p, where
b ∈ Zp is the unique element such that ab = 1 mod p. With these
definitions, the affine cipher is a cryptosystem.

Exercise 3.6
Consider the affine cipher on Z5.

(i) Suppose that Eve observes the ciphertext 2. Does she learn
anything about the plaintext?

(iii) Suppose that Malcolm knows that e(e,c)(1) = 2. What does
he learn about the key?



Attack Models
In each of the attack models below, we suppose that Alice is
sending ciphertexts to Bob encrypted using the key k ∈ K. The
aim of the adversary (Eve or Malcolm) is to determine k .

I Known ciphertext. Eve knows ek(x) ∈ C.
I Known plaintext and ciphertext. Malcolm knows x ∈ P and

ek(x) ∈ C.
I Chosen plaintext. Malcolm may choose any x ∈ P and is

given the encryption y = ek(x).
I Chosen ciphertext. Malcolm may choose any y ∈ C and is

given the decryption x = dk(y).

Each attack model has a generalization where the adversary
observes multiple plaintexts and/or ciphertexts.

Remark 3.7
(1) All the cryptosystems we have seen so far are broken by a

chosen plaintext attack. The affine cipher requires two choices
and by Question 3 on Sheet 1, the substitution cipher and the
Vigenère cipher just one.
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Probability and Perfect Secrecy
Fix a cryptosystem. Suppose that the plaintext x ∈ P is sent with
probability px . Let X , Y and K be the random variables for the
plaintext, ciphertext and key, respectively.

Assumption 3.8

The plaintext X and the key K are independent.

Example 3.9

Suppose the keys are chosen with equal probability.

(a) In Exercise 3.1(i),

P[Y = 1] =
p0 + p1

2
, P[X = 0|Y = 1] =

p0
p0 + p1

.

In general P[X = 0|Y = 1] 6= p0. (For instance take
p0 = p1 = p2 = 1

3) so an Eve intercepting ciphertext 1 learns
something about the plaintext.

(b) In the Caesar cipher on {0, 1, 2}, shown before Exercise 3.1 we
have P[X = x |Y = y ] = px for all x , y ∈ {0, 1, 2}. Knowing
the ciphertext tells Eve nothing about the plaintext.



Conditional Probability

Earlier we used the formula for conditional probability:

P[A|B] =
P[A and B]

P[B]
.

Quiz. Let Ω = {HH,HT ,TH,TT} be the probability space for
two flips of a fair coin. What is the probability of two heads, given
that at least one flip was a head?

(A) 2/3 (B) 1/2 (C) 1/3 (D) 1/6
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two flips of a fair coin. What is the probability of two heads, given
that at least one flip was a head?

(A) 2/3 (B) 1/2 (C) 1/3 (D) 1/6



Perfect secrecy

Definition 3.10
A cryptosystem has perfect secrecy if P[X = x |Y = y ] = px for all
plaintexts x ∈ P and all ciphertexts y ∈ C such that P[Y = y ] > 0.

By Example 3.9(b), the Caesar cipher on {0, 1, 2} has perfect
secrecy when keys are used with equal probability. If instead
P[K = 0] = P[K = 1] = 1

2 and P[K = 2] = 0 we get the
cryptosystem in Example 3.9(a), which does not have perfect
secrecy.

Quiz. True or false:
(1) ‘if and only if’ is the pretentious way mathematicians say ‘if’.

(A) False (B) True

(2) ‘P if and only if Q’ can be written as ‘P ⇐⇒ Q’.
(A) False (B) True

(2) ‘P ⇐⇒ Q’ is the same as P =⇒ Q and Q =⇒ P.
(A) False (B) True
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Shannon’s Theorem

Lemma 3.11
A cryptosystem has perfect secrecy if and only if

P[Y = y |X = x ] = P[Y = y ]

for all plaintexts x ∈ P such that px > 0 and all ciphertexts y ∈ C.

Theorem 3.12 (Shannon 1949)

Suppose a cryptosystem (in our usual notation) has perfect secrecy
and that P[Y = y ] > 0 for all y ∈ C.

(a) For each x ∈ P such that px > 0 and each y ∈ C there is a
key k such that ek(x) = y .

(b) |K| ≥ |C|.
(c) Suppose |K| = |C|. For all x ∈ P such that px > 0 and all

y ∈ C there exists a unique key k ∈ K such that ek(x) = y .
Moreover for each fixed y ∈ C, the keys k such that ek(x) = y
for some x ∈ P with px > 0 are used with equal probability.



Corollary of Shannon’s Theorem

Corollary 3.13

Suppose a cryptosystem (in our usual notation) has perfect secrecy
and that

(i) P[Y = y ] > 0 for all y ∈ C;

(ii) |K| = |C|;
(iii) px > 0 for all x ∈ P.

Then for all x ∈ P and y ∈ C there exists a unique key k ∈ K such
that ek(x) = y . Moreover each key is used with equal probability.



§4 Entropy and Key Uncertainty

The entropy of a random variable is a measure of how uncertain it
is. The right mathematical way to capture this notion was
discovered by Shannon.

Definition 4.1
The entropy H(X ) of a random variable X taking values in a finite
set R is

H(X ) =
∑

x∈R
P[X = x ] log2

1

P[X = x ]
.



Entropy Examples

Example 4.2

(1) Suppose X records a single coin flip of a coin, biased to land
heads with probability p. Then
H(X ) = p log2

1
p + (1− p) log2

1
1−p , as shown in the graph

below.

p

p log2
1
p + (1− p) log2

1
1−p

0

1
2

1
2

1

1



Corrections to Problem Sheet 2

I Q4(b): Is there a cryptosystem with perfect secrecy such that
|K| < |C|? [Here < was misprinted as ≤.]

I Q8(a): Deduce from Gibbs’ inequality that H(X |Y ) ≤ H(X )
. . . . [Here H(X ) was misprinted as H(Y ).]

Session Id: 265863.



Example 4.2 [continued]

(2) Suppose a cryptographic key K is equally likely to be any
element of the keyspace K. If |K| = n then H(K ) = log2 n.

(3′) Consider the cryptosystem in Exercise 3.1(iii). Suppose that
P[X = 0] = p, and so P[X = 1] = 1− p, and so by (1)

H(X ) = p log2
1

p
+ (1− p) log2

1

1− p
.

Suppose the keys are used with probabilities r (red) and 1− r
(black). Exercise: find P[Y = 0] and P[Y = 1]. If r = 1

2 then
H(Y ) = 1; if r = 0 or r = 1 then H(Y ) = H(X ): there is no
‘extra’ uncertainity from the key. If r = 1/4 get (varying p):

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

blue: H(Y )
black: H(X )



Example 4.2 [continued]

(4) Consider the affine cipher on Z5, as in Exercise 3.6. The keys
are all (a, c) with a ∈ {1, 2, 3, 4} and c ∈ {0, 1, 2, 3, 4}. If
each key is used with equal probability then, by (2),

H(K ) = log2 20 ≈ 4.322.

Exercise: what, intuitively, is the entropy in K , given that
Malcolm has observed e(a,c)(1) = 2?



Question 2 on Preliminary Problem Sheet

(2) A friend knows a number between 0 and 15 (inclusive).

(a) How many questions do you need to guess it? What is the
connection to binary? [Hint: how many bits do you learn?]
How would your answer change if 15 is replaced with 26?

(b) Now suppose your friend is permitted to lie in the answer to
at most one question.

(i) Show that no strategy can guarantee to find the number by
asking exactly six questions. [Hint: as well as learning four bits
of information about the number, you learn about the lie.]

(ii) (Optional, but instructive.) Suggest a good strategy.



4 Yes/No Questions for 4 Bits of Information

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q1
Is the number

8, 9, 10, 11, 12, 13, 14 or 15?

YES
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Q1
Is the number
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YES

Q2
Is the number

12, 13, 14 or 15?

YES
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4 Yes/No Questions for 4 Bits of Information

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q1
Is the number

8, 9, 10, 11, 12, 13, 14 or 15?

YES

Q2
Is the number

12, 13, 14 or 15?

YES

Q3
Is the number
14 or 15?

NO

Q4
Is the number

13?

NO



4 Yes/No Questions for 4 Bits of Information

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

NO
0

YES
1

YES

YES

NO

NO



Exercise′ 4.3
(a) Bob chooses a random number K in {0, 1, 2, 3, 4}. If

P[K = k] = 1/5 for each k, what is H(K )?
(A) 2 (B) log2 5 ≈ 2.322 (C) 3 (D) 4

(b) Now Bob chooses X in the same set, but with probabilities
1
2 ,

1
8 ,

1
8 ,

1
8 ,

1
8 . What is H(X )?
(A) 2 (B) log2 5 ≈ 2.322 (C) 3 (D) 4

How many questions on average do you need to guess X?
(A) 2 (B) log2 5 ≈ 2.322 (C) 3 (D) 4

Would your answer change if Bob’s probabilities change to
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
2?

(A) No (B) Yes

No, since the entropy of a random variable depends only on
the probabilities it takes each value, not the values themselves.

A random variable has entropy h if and only if you can learn its
value by asking, on average, h well-chosen yes/no questions.
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Definition 4.4
Let K and Y be random variables each taking values in finite sets
K and C, respectively. The joint entropy of K and Y is defined by

H(K ,Y ) =
∑

k∈K

∑

y∈C
P[K = k and Y = y ] log2

1

P[K = k and Y = y ]
.

The conditional entropy of K given that Y = y is defined by

H(K |Y = y) =
∑

k∈K
P[K = k |Y = y ] log2

1

P[X = k |Y = y ]
.

The conditional entropy of K given Y is defined by

H(K |Y ) =
∑

y∈C
P[Y = y ]H(K |Y = y).



Definition 4.4
Let K and Y be random variables each taking values in finite sets
K and C, respectively. The joint entropy of K and Y is defined by

H(K ,Y ) =
∑

k∈K

∑

y∈C
P[K = k and Y = y ] log2

1

P[K = k and Y = y ]
.

The conditional entropy of K given that Y = y is defined by

H(K |Y = y) =
∑

k∈K
P[K = k |Y = y ] log2

1

P[X = k |Y = y ]
.

The conditional entropy of K given Y is defined by

H(K |Y ) =
∑

y∈C
P[Y = y ]H(K |Y = y).

Example 4.5

Consider the Caesar cryptosystem in which all 26 keys are equally
likely. What is H(K )? What is H(K |Y = ACCB)? What if instead
you observe NCYP?



Definition 4.4
Let K and Y be random variables each taking values in finite sets
K and C, respectively. The joint entropy of K and Y is defined by

H(K ,Y ) =
∑

k∈K

∑

y∈C
P[K = k and Y = y ] log2

1

P[K = k and Y = y ]
.

The conditional entropy of K given that Y = y is defined by

H(K |Y = y) =
∑

k∈K
P[K = k |Y = y ] log2

1

P[X = k |Y = y ]
.

The conditional entropy of K given Y is defined by

H(K |Y ) =
∑

y∈C
P[Y = y ]H(K |Y = y).

Lemma 4.6 (Chaining Rule)

Let K and Y be random variables. Then

H(K ,Y ) = H(K |Y ) + H(Y ).



Shannon’s Theorem on Key Uncertainty

Lemma 4.7
Let K and X be random variables.

(a) If K and X are independent then H(K ,X ) = H(K ) + H(X ).

(b) If f is a bijective function then H(f (X )) = X .

The proof of (a) is Question 1 on Sheet 3. The idea behind (b) is
the same as the final part of Exercise 4.3(b). If this does not
convince you then please see the optional Question 7 on Sheet 2.

Theorem 4.8
Take a cryptosystem in our usual notation. Then

H(K |Y ) = H(K ) + H(X )− H(Y ).



Alphabetic Ciphers: the One-Time Pad

Exercise 4.9
If Yn is equally likely to be each element of An, what is H(Yn)?

Example 4.10

Fix n ∈ N. The one-time pad is a cryptosystem with plaintexts,
ciphertexts and keyspace An. The encryption maps are defined by

ek(x) = (x1 + k1, x2 + k2, . . . , xn + kn)

where, as in the Vigenère cipher, xi + ki is computed by converting
xi and ki to numbers and adding modulo 26. For example, if n was
fixed as 8,

eabcdefgh(goodwork) = gpqgatxr.

Suppose that all keys are equally likely. Then

H(Xn) ≈ (log2 26− R)n

H(K ) ≈ (log2 26)n

H(Yn) ≈ (log2 26)n

H(K |Yn) ≈ (log2 26− R)n.
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Unicity Distance

Exercise 4.12
Show that if Yn is equally likely to be each element of An then
H(Yn)− H(Xn) = Rn and so

H(K |Y ) = H(K )− Rn. (†)

What is the largest n for which (†) could hold with equality?

Definition 4.13
The quantity H(K )/R is the unicity distance of the cryptosystem.

Exercise 4.14
In Question 2 on Sheet 1, the ciphertext y , of length 356 (without
spaces), determined the key π up to π(j), π(x), π(z) ∈ {F, S, V}.
Assuming equally likely keys, what is H(K |Y356 = y)?



Ciphertexts with High g(y) are More Likely: Intuition
Quiz: Suppose I ask you how many siblings you have (not counting
yourself). If the mean is s, then 1 + s is a good estimate for the
average number of children in a family.

(A) False (B) True

Sampling the school, the observed probabilities are 0 (no children),
1/4 (3 green only children), 1/2 (6 red children), 1/4 (3 black
children).So we observe the 1 + Bin(12 , 2) distribution.
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Example 4.15

(i) The unicity distance for the substitution cipher is
log(26!)/R ≈ 88.382/3.200 = 27.6. So 28 characters of
ciphertext should, in theory, determine most of the key.

For instance the first 28 characters of the ciphertext in
Question 2 on Sheet 1 are (with extra spaces) XNKWBMOW KWH

JKXKRJKRZJ RA KWRJ. A computer search using a corpus of
about 70000 words gives 13 decryptions, all of the form
’although the statistics i? this’; the only plausible choice for ?
is n. This essentially unique decryption is in good agreement
with Shannon’s argument.

Since 12 characters do not appear in the ciphertext,
H(K |Y = y28) = log2 12! = 28.3. But since π is determined
on the most common plaintext letters, further decryptions will
not be hard.



Example 4.15(ii)

Suppose that the plaintext is made by concatenating arbitrary four
letter English words in the New General Service List. There are
493 such words, so H(X4m) = (log2 493)m = 8.945m, compared
with (4 log2 26)m ≈ 18.811m for an arbitrary string of 4m
characters. The per-character redundancy is

4 log2 26− log2 493

4
≈ 2.464

and so Shannon’s argument says that the unicity distance for the
substitution cipher is about log2(26!)/2.464 = 35.868. Therefore
about 9 words should determine a large part of the key.



Example 4.15(ii) [ctd]
The blue points in the graph below show H(K |Yn) for the
randomly chosen plaintext (shown with spaces for readability) ‘case
sale thin coal bore will much fuel gain soil site wear form fill wise
task bend wild pray easy’. The black line shows the average of
over 600 randomly chosen plaintexts.
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Again there is good agreement with Shannon’s argument.



Example 4.15(ii) [ctd]
The contrived plaintext ‘away bank city drug exam from have lazy
joke pose’ was chosen to contain every letter except ‘q’.
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Almost all the key is known by the unicity distance. In fact, by the
final character, there are just 6 decryptions consistent with the
NGSL; one is the plaintext, another is ‘away bank city drug exam
from save lazy joke hope’, obtained by permuting the plaintext by
the 3-cycle h 7→ s 7→ p 7→ h.



Sheet 2: Reminder of Notation
(1) The cryptosystem shown below uses three keys from the affine cipher
on Z3, each with probability 1

3 . Suppose that plaintext 1 is sent with
probability p and plaintext 2 is sent with probability 1− p.
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Here P = C = {0, 1, 2}. The diagrams show the encryption
functions for three different keys. The probability that the
plaintext is 0 is p0 = 0, since p1 + p2 = p + (1− p) = 1.

(a) Recall that e(a,c)(x) = ax + c . Which keys (a, c) are used in this
cryptosystem?

(b) Express P[Y = 1|X = 1], P[Y = 1], P[X = 1|Y = 1] in terms of p.

(c) When does the cryptosystem have perfect secrecy?



Sheet 2: Hint for Question (2)
Let q be prime. Suppose that Alice and Bob communicate using
the affine cipher on Zq, and that Alice sends plaintext x ∈ Zq with
probability px .

(a) What is the size |K| of the key space?
(b) Show that for each x , y ∈ Zq there are exactly q − 1 keys k

such that ek(x) = y .
(c) Show that if each key is used with equal probability then the

cryptosystem has perfect secrecy.
(d) Show that the key can be determined by a chosen plaintext

attack using two plaintexts. Does this contradict perfect
secrecy? Does a single plaintext suffice?

In Question 1 we used three keys from the affine cipher on
Z3. So a good example to look at is Z3. For instance, in (b),
suppose x = 1, y = 2 (for an example). We have

e(a,c)(1) = 2 ⇐⇒ a× 1 + c = 2 ⇐⇒ a + c = 2.

You need to show this equation has exactly q − 1 = 2
solutions (a, c) ∈ K.



Correction to Problem Sheet 3

(2) Eve intercepts the three ciphertexts cqhk, wqvj, bqsq [typo:
was bpsq] encrypted using the same one-time pad. Find all three
plaintexts and the key.

[Hint: the code used in the lecture is online at
https://repl.it/M78M/3. If you do it by hand, it will be helpful
to know that the plaintexts are four letter words related to
cryptography.]



Sheet 2

(1) The cryptosystem shown below uses three keys from the affine cipher
on Z3, each with probability 1

3 . Suppose that plaintext 1 is sent with
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(a) Recall that e(a,c)(x) = ax + c . Which keys (a, c) are used in this
cryptosystem?

(b) Express P[Y = 1|X = 1], P[Y = 1], P[X = 1|Y = 1] in terms of p.

(c) When does the cryptosystem have perfect secrecy?



Sheet 2

(2) Let q be prime. Suppose that Alice and Bob communicate
using the affine cipher on Zq, and that Alice sends plaintext
x ∈ Zq with probability px .

(a) What is the size |K| of the key space?

(b) Show that for each x , y ∈ Zq there are exactly q − 1 keys k
such that ek(x) = y .

(c) Show that if each key is used with equal probability then the
cryptosystem has perfect secrecy.

(d) Show that the key can be determined by a chosen plaintext
attack using two plaintexts. Does this contradict perfect
secrecy? Does a single plaintext suffice?



Part B: Stream ciphers

§5 Linear Feedback Shift Registers

Example 5.1

Consider the function F : F4
2 → F4

2 defined by

F
(
(x0, x1, x2, x3)

)
= (x1, x2, x3, x0 + x1).

(i) Solving the equation F
(
(x0, x1, x2, x3)

)
= (y0, y1, y2, y3) shows

that F has inverse

F−1
(
(y0, y1, y2, y3)

)
= (y0 + y3, y0, y1, y2).

(ii) Starting with x = 0001, the sequence x ,F (x),F 2(x),F 3(x),
. . . is (0001, 0010, 0100, 1001, 0011, 0110, . . .).

Quiz: What is the set of m ∈ Z such that Fm(x) = x?

(A) {15, 30, 45, . . .} (B) {0, 15, 30, 45, . . .} (C) 15Z (D) other

Would your answer change if x was replaced with any other
x ′ ∈ F`

2? (Be careful!)

(A) No (B) Yes
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(ii) Starting with x = 0001, the sequence x ,F (x),F 2(x),F 3(x),
. . . is (0001, 0010, 0100, 1001, 0011, 0110, . . .).

Example′ 5.2

Define H : F4
2 → F4

2 by H
(
(x0, x1, x2, x3)

)
= (x1, x2, x3, x1 + x2).

True or false: H is invertible?

(A) False (B) True

There is a cycle of length 7 in H.

(A) False (B) True
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Definition of LFSRs

Definition 5.3
A linear feedback shift register of width ` ∈ N with taps
T ⊆ {0, 1, . . . , `− 1} is a function F : F`

2 → F`
2 of the form

F
(
(x0, x1, . . . , x`−2, x`−1)

)
= (x1, . . . , x`−1,

∑

t∈T
xt).

The function f : F`
2 → F2 defined by f (x) =

∑
t∈T xt is called the

feedback function.

We abbreviate ‘linear feedback shift register’ to LFSR. Thus an
LFSR shifts the bits in positions 1 to `− 1 left, and puts a new bit,
defined by its feedback function, into the rightmost position `− 1.

Exercise 5.4
What is ‘linear’ about an LFSR?



Exercise 5.5

(a) Let F be as in Example 5.1. Find the sequence F t(0111)0 for
t ∈ N0. (Note that F 0 is, by definition, the identity function.)

(b) Let F be an LFSR of width ` and let k ∈ F`. Show that
F t(k)0 = kt if 0 ≤ t < ` and that F `(k)0 = f (k0, . . . , k`−1).

Definition 5.6
Let F be an LFSR of width `.

(a) The keystream defined by F with key k ∈ F`
2 is the sequence

(k0, k1, k2, . . . , kt , . . .)

where kt = F t(k)0 for each t ∈ N0.

(b) Fix n ∈ N. The cryptosystem defined by F has P = C = Fn
2

and keyspace K = F`
2. The encryption functions are defined by

ek(x) = (k0, k1, . . . , kn−1) + (x0, x1, . . . , xn−1)

for each k ∈ K and x ∈ P.



Keystream Example

Example 5.7

In Exercise 5.5(a) we found that the keystream for the LFSR F in
Example 5.1 with key k = 0111 was

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

By Question 2 on Sheet 4,

F s(k) = (ks , ks+1, . . . , ks+`−1)

for each s ∈ N. For example,

F 3(0111) = (k3, k4, k5, k6) = (1, 1, 0, 0)

F 14(0111) = (k14, k15, k16, k17) = (1, 0, 1, 1)

F 15(0111) = (k15, k16, k17, k18) = (0, 1, 1, 1) = k .

The keystream has period 15. Correspondingly 15 is the smallest
number m such that Fm

(
(0, 1, 1, 1)

)
= (0, 1, 1, 1).
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Matrix Representation of an LFSR

Definition 5.8
We define the period of an invertible LFSR F to be the least m
such that Fm = id, the identity function.

Proposition 5.9

Let F be an LFSR of width ` and taps T ⊆ {0, 1, . . . , `− 1}. The
matrix (acting on row vectors) representing F is




0 0 0 . . . 0 [0 ∈ T ]
1 0 0 . . . 0 [1 ∈ T ]
0 1 0 . . . 0 [2 ∈ T ]
...

...
. . .

...
...

0 0 0 . . . 0 [`− 2 ∈ T ]
0 0 0 . . . 1 [`− 1 ∈ T ]




where

[t ∈ T ] =

{
1 if t ∈ T

0 otherwise.



Extra Example of Matrix Representing an LFSR
Let F be the LFSR of width 4 with taps {0, 1} seen in Examples
5.1, 5.5(a), 5.7, so F

(
(x0, x1, x2, x3)

)
= (x1, x2, x3, x0 + x1). The

keystream for key 0111 was found in Example 5.7.

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

By Proposition 5.9, F is represented by M =




0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0


. So

F (x) = xM for each x ∈ F`
2 and we can compute the keystream by

repeatedly multiplying by M: each time M shifts the bits to the
left, and we get a new bit at the far right.
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keystream for key 0111 was found in Example 5.7.

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

By Proposition 5.9, F is represented by M =




0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0


. So

F (x) = xM for each x ∈ F`
2 and we can compute the keystream by

repeatedly multiplying by M: each time M shifts the bits to the
left, and we get a new bit at the far right.

For Lemma 5.10 we look at action on column vectors


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0







0
0
0
1


 =




1
1
0
0






Minimal Polynomial of an LFSR

Recall that the minimal polynomial of a matrix M with coefficients
in F2 is the non-zero polynomial g(X ) ∈ F2[X ] of least degree
such that g(M) = 0.

In the following lemma we work with column vectors of length `.
For i ∈ {0, 1, . . . , `− 1}, let v(i) denote the column vector with 1
in position i (numbering positions from 0), and 0 in all other
positions.

Lemma 5.10
Let F be an LFSR of width ` with taps T representing by the
matrix M. Define g(X ) = X ` +

∑
t∈T X t .

(a) If t < ` then Mtv(0) = v(t);

(b)
∑

t∈T Mtv(0) = M`v(0),

(c) g(M)v = 0 for all column vectors v,

(d) g(X ) is the minimal polynomial of M.



Period of an LFSR
We define the minimal polynomial of an LFSR F of width ` with
taps T to be gF (X ) = X ` +

∑
t∈T X t .

Correction: in the ‘useful property’ of the minimal polynomial
g(X ) of a matrix M, I said

if f (M) = 0 then g(X ) divides h(X )

here h(X ) should be f (X ).

Corollary 5.11

The period of an invertible LFSR F is the least m such that gF (X )
divides Xm + 1.

It is a useful fact that every invertible LFSR has a cycle of length
equal to its period. For a proof see the optional Question 7 on
Sheet 4.

To illustrate Corollary 5.11 we find an LFSR with period
211 − 1 = 2047 using Mathematica to do the calculations.



Attacks on LFSRs

Example 5.12

Malcolm the mole knows the plaintext/ciphertext pair

x = (0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1)
y = (0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

for an LFSR cryptosystem of width 5, and deduces the keystream
starts

x + y = (0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 ... k19

The keystream does not obviously repeat, so he guesses that the
period of the LFSR is more than 20. Taking the first five bits,
Malcolm learns that k = (0, 0, 0, 0, 1).



Example 5.12 [continued]
By Question 2 on Sheet 4 (see also Example 5.7), he knows that

F (k) = (k1, . . . , k5) = (0, 0, 0, 1, 1)

F 2(k) = (k2, . . . , k6) = (0, 0, 1, 1, 1)

F 3(k) = (k3, . . . , k7) = (0, 1, 1, 1, 1)

and so on. The six vectors k ,F (k), . . . ,F 5(k) lie in the
5-dimensional vector space F5

2 so are linearly dependent. By
row-reducing the matrix

k
F (k)
F 2(k)
F 3(k)
F 4(k)
F 5(k)




0 0 0 0 1
0 0 0 1 1
0 0 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 0




or by inspection, he sees that k + F 4(k) + F 5(k) = (0, 0, 0, 0, 0).
This suggests that the minimal polynomial of the LFSR is
1 + X 4 + X 5, and so the taps are {0, 4}.



Quiz on Perfect Secrecy (Explanation on Next Slide)
Fix a cryptosystem with plaintexts P, ciphertexts C and keyspsace
K. Assume that all ciphertexts are used in the cryptosystem, so
P[Y = y ] > 0 for each y ∈ C.

(a) Perfect secrecy means the cryptosystem is unbreakable.
(A) False (B) True

(b) The system is perfectly secret if and only if
P[X = x |Y = y ] = P[X = x ] for all x ∈ P and y ∈ C.

(A) False (B) True

(c) If all ciphertexts are equally likely to appear then the
cryptosystem is perfectly secret.

(A) False (B) True

(d) If all keys are used with equal probability then the
cryptosystem is perfectly secret.

(A) False (B) True

(e) Suppose |C| = |K| and px > 0 for all x ∈ P. The
cryptosystem is perfectly secret if and only if all keys are used
with equal probability.

(A) False (B) True
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Explanations for Quiz on Perfect Secrecy

(a) False: perfect secrecy has the technical definition in (b) which
you will have to learn.

(b) True: an informal interpretation of the definition is ‘observing
a single ciphertext gives no information about the plaintext’.
Different observations may give more information. For
example, the one-time pad with equiprobable keys is perfectly
secret. But:

I the key can usually be found from multiple known ciphertexts:
See Question 2 on Sheet 3;

I the key can trivially be found from a known plaintext /
ciphertext pair x , y = x + k by subtracting x from y .



Explanations for Quiz on Perfect Secrecy

(c) False: For example take the cryptosystem in Example 3.1(i)
with

P[K = k] = P[K = k ′] = 1
2

and P[X = 1] = P[X = 2] = P[X = 3] = 1
3 . All ciphertexts

are equally likely, but

P[X = 0|Y = 2] = 0 6= 1
3 = P[X = 0],

so the cryptosystem is not perfectly secret.

0

1

2

0

1

2

k
0

1

2

0

1

2

k ′

(d) False: The keys are equiprobable in this example.

(e) True: This is Corollary 3.13.



Quiz on Rest of Sheet 3
(a) If K is chosen equiprobably from K then H(K ) is

(A) 0 (B) log2 |K| (C) log2 |K|! (D) need more information

(b) P[Y = y |X = x ] = P[Y = y ]px
(A) False (B) True

(c) Let A = {a, . . . , z}. The number of bijections A → A is
(A) 26 (B) 26× 25 (C) 26! (D) 2626

(d) A good way to break a substitution cipher by a chosen
plaintext attack is frequency analysis.

(A) False (B) True

(e) The sequence 00101110010111 . . . of period 7 is the output of
an LFSR of width 3.

(A) False (B) True

(f) The sequence 00101000001001 could be part of the output of
an LFSR of width 5.

(A) False (B) True

False, since after 00000 the only possible next bit is 0 (by
linearity). In fact the least width LFSR generating the sequence in
(f) has width 7 and taps {0, 1, 2, 3, 4, 6}. (For interest only.)
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§6 Pseudo-random Number Generation

Exercise 6.1
Let F be the LFSR of width 4 with taps {0, 1} and period
15 = 24 − 1, the maximum possible. The keystream for
k = (1, 1, 0, 0) is (1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0 . . .)
By taking the first 15 positions we get the generating cycle

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14

(a) Find all positions t with (kt , kt+1, kt+2, kt+3) = (0, 1, 1, 1).

(b) What is the only element of F4
2 not appearing in the

keystream?

(c) Why is the generating cycle for (0, 1, 1, 1) a cyclic shift of the
generating cycle for (1, 1, 0, 0)?

(d) Find all the positions t such that (kt , kt+1, kt+2) = (0, 1, 1).

(e) Repeat (d) changing (0, 1, 1) to (0, 1) and then (0, 0).
Explain!



LFSRs Generate Randomish Sequences

Proposition 6.2

Let F be an invertible LFSR of width ` and period 2` − 1. Let
k ∈ F`

2 be non-zero and let (k0, k1, . . . , k2`−2) be its generating
cycle. We consider positions t within this cycle, so 0 ≤ t < 2`− 1.

(a) For each non-zero x ∈ F`
2 there exists a unique t such that

(kt , . . . , kt+`−1) = x .

(b) Given any non-zero y ∈ Fm
2 where m ≤ `, there are precisely

2`−m positions t such that (kt , . . . , tt+m−1) = y .

(c) There are precisely 2`−m − 1 positions t such that
(kt , . . . , kt+m−1) = (0, 0, . . . , 0) ∈ Fm

2 .

Please correct final sentence from lectures to ‘there are 2`−m − 1
positions, corresponding to the 2`−m−1 choices for (b1, . . . , b`−m).
(I wrote ` both times, and only corrected one.)



Example of Proposition 6.2
The LFSR of width 5 with taps {0, 2} has maximum possible
period 25 − 1. The first 31 bits in the keystream for key
(0, 0, 0, 0, 1) are:

(0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1).

According to Proposition 6.2, given any non-zero y ∈ Fm
2 for

m ≤ 5 there are precisely 25−m positions t such that
(kt , . . . , kt+m−1) = y . If y = (0, . . . , 0) there are 25−m − 1
positions.

For example when m = 3 there should be 22 = 4 positions for each
of (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1) . . . , (1, 1, 1) and
22 − 1 = 3 positions for (0, 0, 0).

Proof for (1, 0, 1): extend to (1, 0, 1, b1, b2) in 4 ways, each
extension appears in a unique position.
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Experiment

Exercise 6.3
Write down a sequence of 33 bits, fairly quickly, but trying to
make it seem random. Count the number of 0s and the number of
1s. Now count the number of adjacent pairs 00, 01, 10, 11. Does
your sequence still seem random?



Monobit Test

Exercise 6.4
Let M0 be the number of zeros and let M1 be the number of ones
in a binary sequence B0,B1, . . . ,Bn−1 of length n.

(a) Explain why if the bits are random we would expect that M0

and M1 both have the Bin(12 , n) distribution.

(b) Show that the χ2 statistic with (a) as null hypothesis is
(M0 −M1)2/n.

(c) A sequence with n = 100 is observed to have 60 zeros. Does
this suggest it is not truly random? [Hint: if Z ∼ N(0, 1) then
P[Z 2 ≥ 3.841] ≈ 0.05 and P[Z 2 ≥ 6.635] ≈ 0.01.]

(d) The ‘monobit test’ in the 2001 version of FIPS 140-2 required
that 9725 < M0 < 10275 when n = 20000. This requirement
was withdrawn in 2002. Suggest a possible reason for this
change.



Correlation

Another interesting measure of randomness is the degree to which
a sequence is correlated with a shift of itself.

Definition 6.5
Given (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1) ∈ Fn

2 define

nsame =
∣∣{i : xi = yi}

∣∣
ndiff =

∣∣{i : xi 6= yi}
∣∣.

The correlation between x and y is (nsame − ndiff)/n.

Exercise 6.6
Find the correlation between a generating cycle for the LFSR of
width 3 with taps {0, 1} and each cyclic shift of itself. Why is
there no need to specify the key?



Autocorrelation for LFSRs

Proposition 6.7

Let (k0, k1, . . . , k2`−2) be a generating cycle of a maximal period
LFSR of width `. The correlation between (k0, k1, . . . , k2`−2) and
any proper cyclic shift of (k0, k1, . . . , k2`−2) is −1/(2` − 1).



Race Equality Survey

I This survey will be invaluable in helping us understand your
experiences of studying here, and identify issues you/your
fellow students may be facing.

I On the back on the survey, we will develop a 4-year action
plan which we will share with you.

I It is important that ALL STUDENTS from ALL
BACKGROUNDS complete the survey, including those who
don’t identify as members of ethnic minority groups.

I Search ‘race equality survey rhul’ on Google.
I £1 donation for each survey completed to your choice of

I The Sickle Cell Society
I African Caribbean Careers & Employment Support Services

UK (Access UK)
I Rethink Mental Illness
I UK Black Pride

I Harvard Project Implicit: implicit.harvard.edu



Flatland: a Romance of Many Dimensions

(Or, a Geometric Satire on Victorian Values.)

http://www.gutenberg.org/ebooks/97. Unfortunately this is
missing the illustrations, which add a lot to the charm. Here is one
from near the end of the book, when the Sphere visits Flatland.



Quiz on Random Sequences

Let (B0,B1, . . . ,B31) be a random cyclic sequence of 32 bits.

I How many 10s do you expect to see on average? (Allow wrap
around so if B31 = 1 and B0 = 0, this counts as a 10.)

(A) 4 (B) 8 (C) 16 (D) 24

I How many 11s do you expect to see on average?

(A) 4 (B) 8 (C) 16 (D) 24

I What is the probability that 10 occurs before 11, assuming at
least one occurs?

(A) < 1
2 (B) 1

2 (C) > 1
2 (D) about 2

3

I What is the probability that 01 occurs before 11, assuming at
least one occurs?

(A) < 1
2 (B) 1

2 (C) > 1
2 (D) about 2

3
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§7 Non-linear Stream Ciphers

Mathematically an LFSR of width ` is a function F : F`
2 → F`

2.
The domain F`

2 corresponds to the ` bits stored in the registers: we
call these bits the internal state of the LFSR. It is updated by the
linear function F .

The cryptosystem in Definition 5.6(b) is trivially broken by a
known plaintext/ciphertext attack (see bottom page 27) because
every bit of internal state appears, unmodified, in the keystream.



Sum of LFSRs

Example 7.1

Totally Trusted Transmission Technologies thinks that taking the
sum of the keystreams for two LFSRs with different keys should
obscure the keys and give a cryptographically strong sequence.

I Let F be the LFSR of width 3 with taps {0, 1}.
I Let F ′ be the LFSR of width 4 with taps {0, 3}.

The periods of F and F ′ are 7 and 15, maximum possible for their
widths.



Example 7.1 [continued]

(a) The first 20 bits in the keystreams for F ′ with keys
k = (0, 0, 0, 1) and k ′ = (1, 0, 0, 0) sum to the sequence
(u0, u1, . . . , u19) below:

ki 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1
k ′i 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1

ui 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

TTTT are soon informed by an irate customer that
(u0, u1, u2, . . .) is generated by F ′.

Quiz: which key for F ′ gives (u0, u1, u2, . . .)?

(A) 0001 (B) 1001 (C) 1000 (D) 1010

Quiz: can the keys k and k ′ be recovered from
(u0, u1, . . . , u19)?

(A) No (B) Yes

If so, explain how; if not, will this deter attackers?
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Example 7.1 [continued]

(b) TTTT decides their error was to use the same LFSR twice.
The first 20 bits in the keystreams for F and F ′ with keys
k = (0, 0, 1) and k ′ = (1, 0, 0, 0) and their sum
(u0, u1, . . . , u19) are:

ki 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1
k ′i 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1

ui 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Quiz: what is the period of (u0, u1, u2, . . .)?

(A) 7 (B) 15 (C) 105 (D) need more info

The linear algebra method from Example 5.13 or Question 2
on Sheet 5 shows that the first 10 bits of (u0, u1, u2, . . .) are
generated by the LFSR of width 7 with taps {0, 1, 5, 6}.
Exercise: check this holds for the first 20 bits.
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Geffe Generator

Example 7.2

A Geffe generator is constructed using three LFSRs F , F ′ and G of
widths `, `′ and m, all with maximum possible period. Following
Kerckhoff’s Principle, the widths and taps of these LFSRs are
public knowledge.

I Let (k0, k1, k2, . . .) and (k ′0, k
′
1, k
′
2, . . .) be keystreams for F

and F ′

I Let (c0, c1, c2, . . .) be a keystream for G .

The Geffe keystream (u0, u1, u2, . . .) is defined by

ui =

{
ki if ci = 0

k ′i if ci = 1.



Example 7.2 [continued]
For example, if F and F ′ and their keystreams are as in Example
7.1 and G is the LFSR of width 4 with taps {0, 1} and
(c0, c1, c2, c3) = (0, 0, 0, 1) then

ki 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1
k ′i 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1

ci 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0

ui 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Quiz: What is P[ki = ui ]?

(A) 1/4 (B) 1/2 (C) 3/4 (D) 1

For instance, suppose we guess (wrongly) that
(k0, k1, k2) = (1, 1, 0). The correlation between the implied
keystream (v0, v1, v2, . . . , v19) and (u0, u1, . . . , u19) is
(7− 13)/20 = − 3

10 .

vi 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0
ui 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1
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Correlation Attack on Geffe Generator

Attack 7.3
Suppose that n bits of the Geffe keystream are known. The
attacker computes, for each candidate key (v0, v1, . . . , v`−1) ∈ F`

2,
the correlation between (v0, v1, . . . , vn−1) and (u0, u1, . . . , un−1). If
the correlation is not nearly 1

2 then the candidate key is rejected.
Otherwise it is likely that (k0, . . . , k`−1) = (v0, . . . , v`−1).

Exercise: is it better to guess the key for F or for F ′?

One can repeat Attack 7.3 to learn (k ′0, k
′
1, . . . , k

′
`′−1). Overall this

requires at most 2` + 2`
′

guesses. This is a huge improvement on
the 2`+`′ guesses required by trying every possible pair of keys.
(There are also faster ways to finish: see Question 1 on Sheet 7.)
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Q-cipher

Exercise 7.4
Let x , y , z be independent unbiased bits. Find the correlation
between xy + z and x , and between xy + z and z .

Alternative: This morning we found P[xy = 0] = 3
4 . Hence

corr(xy , 0) = P[xy = 0]− P[xy 6= 0] = 3
4 − 1

4 = 1
2 .

Adding z (same to both sides . . . ) shows that

corr(xy + z , z) = corr(xy , 0) = 1
2 .

Example 7.5

Let F be the LFSR of width 5 with taps {0}. The keystream of F
with key (k0, k1, k2, k3, k4) is simply (k0, k1, k2, k3, k4, k0, k1, . . .).

Define Q(x0, x1, x2, x3, x4) = (x1, x2, x3, x4, x0 + x1x2).

Exercise. Prove that Q is invertible.
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Example 7.5 [continued]

Define the Q-state stream for key (k0, k1, k2, k3, k4) by

qs = Qs(k0, k1, k2, k3, k4)0 for s ∈ N0

For example, since 00011 is in the cycle 00011→ 00110→
01100→ 11001→ . . .→ 11100→ 110000→ 10001→ 00011 of
Q of length 21, its Q-state stream is

qs 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

of period 21.

Since Q is invertible, any 5 consecutive bits in the Q-state stream
determine the internal state and hence the key. For example, if
(q7, q8, q9, q10, q11) = (1, 1, 0, 1, 1) then working back through the
state stream above shows that the key is (0, 1, 1, 1, 0).



No problem sheet this week. (Part B notes refer to Question 1 on
Sheet 7: this should have been Question 2(b) on Sheet 6.)



Example 7.5 [continued]

We avoid this weakness by taking the bits in even-numbered
positions in the state stream to define the Q-keystream. For
example, the Q-keystreams for keys (0, 0, 0, 1, 1) and (1, 1, 1, 0, 1)
are [Correction: please use us not ks for keystream, to avoid
a notational clash: e.g. (u0, u1, u2, u3) = (k0, k2, k4, k1 + k2k3)]

us 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1
u′s 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0

where the bottom row shows the positions in the state stream.

Exercise 7.6
(a) Check the Q-keystream for (1, 1, 1, 0, 1) is as claimed. [Hint:

you can use the Q-state stream for (0, 0, 0, 1, 1).]

(b) Why is the period of both keystreams 21?

(c) Show by example that 5 consecutive bits in the Q-keystream
do not, in general, determine the key.



Exercise 7.7
Suppose we take ` = 12 and, since the first few bits in the
Q-keystream are noticeably less random, drop the first 200 bits.
For 200 ≤ s ≤ 1000, the maximum correlation between a bit qs of
the Q-state stream and one of the bits kj of the key is

1012
212

= 253
210
≈ 1

4 ;

with equality when (s, j) ∈ {(751, 0), (752, 1), . . . , (762, 11)}.
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Exercise 7.7
Suppose we take ` = 12 and, since the first few bits in the
Q-keystream are noticeably less random, drop the first 200 bits.
For 200 ≤ s ≤ 1000, the maximum correlation between a bit qs of
the Q-state stream and one of the bits kj of the key is

1012
212

= 253
210
≈ 1

4 ;

with equality when (s, j) ∈ {(751, 0), (752, 1), . . . , (762, 11)}.
Note that q752 = u376, and so on, up to q762 = u381. You know
(u376, u377, u377, u378, u379, u380, u381) and have to guess the key.
How should the search be organized?



Correlation attack on Q-cipher
A naive search going through all 212 keys in lexicographic order
requires on average 2018.8 guesses. (The code is online at
https://repl.it/NE32/3.) Ordering the keys so that the 64
keys of the form

(?, u376, ?, u377, ?, u378, ?, u379, ?, u380, ?, u381)

are tried first, then the 64× 6 keys differing in a single odd
numbered position, and so on, reduces the mean number of
guesses to 1425.0. The histograms below show the distribution of
the number of guesses for the naive search (left) versus the
organized search (right).
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Entropy Argument

Remark 7.8
This improvement can be predicted theoretically. The correlation
between q752 and k1 is P[q752 = k1]− P[q752 6= k1], or
equivalently, 2P[q752 = k1]− 1. Therefore
P[q752 = k1] ≈ 1

2(1 + 1
4) ≈ 5

8 , and similarly, for P[q754 = k3], and
so on. Therefore the entropy in the key is

6× f (12) + 6× f (58) ≈ 6× 1 + 6× 0.9544 = 11.7266

where f (p) = −p log2 p − (1− p) log2 p, as in Example 4.2(1),
gives the entropy for each bit. Since on average we find the key
halfway through the search, this predicts that 211.7266−1 ≈ 1694.45
guesses (or ‘questions about the key’) will be required, versus
212−1 = 2048 for a naive search. In practice the attack is better
than this argument predicts.



Trivium

Example 7.9 (Trivium)

Take three LFSRs of widths 93, 84 and 101, tapping positions
{0, 27}, {0, 15} and {0, 45}, with internal states x ∈ F93

2 , x ′ ∈ F84
2 ,

x ′′ ∈ F101
2 . The keystream is defined by

ks = x0 + x27 + x ′0 + x ′15 + x ′′0 + x ′′45.

The feedback functions are

f
(
(x0, . . . , x92)

)
= x0 + x27 + x1x2 + x ′6

f ′
(
(x ′0, . . . , x

′
84)
)

= x ′0 + x15 + x ′1x
′
2 + x ′′24

f ′′
(
(x ′′0 , . . . , x

′′
101

)
= x ′′0 + x ′′14 + x ′′1 x

′′
2 + x24

In each case the final summand introduces a bit from a different
shift register.



Trivium Diagram



Quiz on Sheet 5
Under the null hypothesis, a statistic x has the χ2-distribution with
3 degrees of freedom. If X ∼ χ2

3 then P[X > 0.216] ≈ 0.975,
P[X > 1] ≈ 0.198 and P[X > 7.378] ≈ 0.025.

(a) If x = 8.3 then the null hypothesis should be rejected.
(A) False (B) True

(b) If x = 0.15 then the null hypothesis should be rejected.
(A) False (B) True

(c) If x = 0.001 then one might suspect someone has cheated.
(A) False (B) True

(d) If x = 1 the null hypothesis is true with probability about 4
5 .

(A) False (B) True

For (d), the statement really makes no sense: the probability
distribution is on x assuming the null hypothesis. There is no
probability distribution on the null hypothesis itself.

(More broadly, the absence of evidence against the null hypothesis
should not be taken as evidence for it.)
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End of Part B Quiz

Let K and K′ be keyspaces.

(a) An attack exhausting over all keys in K ×K′ requires on
average how many guesses:

(A) |K|+ |K′| (B) |K|+|K
′|

2 (C) |K||K′| (D) |K||K
′|

2

(b) The Geffe attack by correlations finds k ∈ K = F`
2 and then,

once k is known, finds k ′ ∈ K′ = F`′
2 . On average how many

guesses:

(A) |K|+ |K′| (B) |K|+|K
′|

2 (C) |K||K′| (D) |K||K
′|

2
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End of Part B Quiz

Let F be an invertible LFSR of width `. As in Definition 5.6(b), a
plaintext (x0, . . . , xn−1) is encrypted by a key (k0, . . . , k`−1) by
adding the keystream (k0, . . . , kn−1).

(c) ` consecutive bits from a plaintext/ciphertext pair determine
the key

(A) False (B) True

(d) any ` bits of keystream determine the key
(A) False (B) True

(e) dropping every other bit of the keystream, to get k0, k2, k4, . . .
would significantly improve the LFSR cryptosystem.

(A) False (B) True

(e) is like Example 5.1: the modified keystream is still the
keystream of an LFSR. If F has maximum period 2` − 1 then
k0, k2, k4, . . . is even generated by F . (The proof needs some finite
field theory.)
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Part C: Block ciphers

§8 Introduction to Block Ciphers and
Feistel Networks

In stream ciphers a binary plaintext of arbitrary length n is
encrypted by adding the first n bits of the keystream for the
chosen key. In a block cipher of block size n, we also have
P = C = Fn

2, but the plaintext is typically mixed up with the key in
more complicated ways.

Since P = C each encryption function ek for k ∈ K is bijective,
and the cryptoscheme is determined by the encryption functions.

Example 8.1

The binary one-time pad of length n is the block cipher of block
size n and key length n in which ek(x) = x + k for all k ∈ Fn

2.

Modern block ciphers aim to be secure even against a chosen
plaintext attack allowing arbitrarily many plaintexts. That is, even
given all pairs (x , ek(x)) for x ∈ Fn

2, there should be no faster way
to find the key k then exhausting over all possible keys in F`

2.
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Feistel Networks

Definition 8.2
Let m ∈ N and let f : Fm

2 → Fm
2 be a function. Given v , w ∈ Fm

2 ,
let (v ,w) denote (v0, . . . , vm−1,w0, . . . ,wm−1) ∈ F2m

2 . The Feistel
function for f is the function F : F2m

2 → F2m
2 defined by

F
(
(v ,w)

)
= (w , v + f (w)).

This can be compared with an LFSR: we shift left by m bits to
move w to the first position. The feedback function is
(v ,w) 7→ v + f (w). It is linear in v , like an LFSR, but typically
non-linear in w .

Exercise 8.3
Show that, for any function f : Fm

2 → Fm
2 , the Feistel function F

for f is invertible. Give a formula for its inverse in terms of f .



Example 8.4 (Q-Block Cipher)

Take m = 4 and let

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

We define a block cipher with block size 8 and key length 12
composed of three Feistel functions. If the key is k ∈ F16

2 then

k(1) = (k0, k1, k2, k3), k(2) = (k4, k5, k6, k7), k(3) = (k8, k9, k10, k11).

The Feistel function in round i is x 7→ S(x + k(i)). Denoting the
output of round i by (v (i),w (i)), the plaintext (v ,w) ∈ F16

2 is
encrypted to the cipher text ek

(
(v ,w)

)
= (v (4),w (4)) in three

rounds:

(v ,w) 7→
(
w , v + S(w + k(1))

)
= (v (1),w (1))

7→
(
w (1), v (1) + S(w (1) + k(2))

)
= (v (2),w (2))

7→
(
w (2), v (2) + S(w (2) + k(3))

)
= (v (3),w (3))



Q-Block Cipher

Exercise 8.5

(a) Suppose that k = 0001 0011 0000, shown split into the three
round keys. Show that

ek
(
(0, 0, 0, 0, 0, 0, 0, 0)

)
= (1, 1, 1, 0, 1, 1, 0, 1)

(b) Find dk
(
(0, 0, 0, 0, 0, 0, 0, 1)

)
if the key is as in (a).

(c) Suppose Eve observes the ciphertext (v (3),w (3)) from the
Q-block cipher. Show that she can determine w (2). What
does she need to know to determine v (2)?



DES (Data Encryption Standard)

DES is a Feistel block cipher of block size 64. The keyspace is F56
2

and each round key has 48 bits. The Feistel function f : F32
2 → F32

2

is defined in four steps using 8 functions S1, . . . ,S8 : F6
2 → F4

2.
Start with w ∈ F32

2 and a round key k(i) ∈ F48
2 .

(a) Expand w by a linear function (details omitted) to w ′ ∈ F48
2 .

(b) Add the 48-bit round key to get w ′ + k(i).

(c) Let w ′ + k(i) = (y (1), . . . , y (8)) where y (i) ∈ F6
2. Let

z =
(
S1(y (1)), . . . ,S8(y (8))

)
∈ F32

2 . Confusion: obscure
relationship between plaintext and ciphertext.

(d) Apply a permutation (details omitted) of the positions of z .
Diffusion: turn short range confusion into long range
confusion.

Note that (a) and (d) are linear, and (b) is a conventional key
addition in F48

2 . So the S-boxes in (c) are the only source of
non-linearity.



DES is Impressive, but Now Broken
No subexhaustive attacks on DES are known. But the relatively
small keyspace F56

2 means that it cannot be considered secure.

I 1997: 140 days, distributed search on internet
I 1998: 9 days ‘DES cracker’ (special purpose) $250000
I 2017: 6 days ‘COPACOBONA’ (35 FPGA’s) $10000

Roughly how many keys does COPACOBONA test in each second?

(A) 232 (B) 236 (C) 237 (D) 240

Exercise 8.6
Suppose we apply DES twice, first with key k ∈ F56

2 then with
k ′ ∈ F56

2 . So the keyspace is F56
2 × F56

2 and for (k, k ′) ∈ F56
2 × F56

2 ,

e(k,k ′)(x) = e ′k
(
ek(x)

)
.

(a) Roughly how long would a brute force exhaustive search over
F56

2 × F56
2 take? (Assume you own a COPACOBONA.)

(A) 12 days (B) 36 days (C) 106 years (D) 1015 years

(b) Does this mean 2DES is secure?

(A) False (B) True

See Question 5 on Problem Sheet 7 for 3DES: it has keyspace
F56

2 × F56
2 × F56

2 .
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Meet-in-the-Middle Attack on 2DES
In a known plaintext attack on 2DES we are given a plaintext
x ∈ F64

2 and its encryption y ∈ F64
2 , by some unknown key

(k , k ′) ∈ F56
2 × F56

2 .

We defined

E = {ek(x) : k ∈ F56
2 }

D = {dk ′(y) : k ′ ∈ F56
2 }

Assume that k and k ′ are chosen independently. Given a random
w ∈ F64

2 , what is P[w ∈ E ]?

(A) 1/256 (B) 1/128 (C) 1/8 (D) 1

What is P[w ∈ E ∩ D]?

(A) 1/232 (B) 1/216 (C) 1/28 (D) 1/24

How many operations does it take to find the key?
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AES (Advanced Encryption Standard)
AES is the winner of an open competition to design a successor to
DES. Belgian cryptographers Vincent Rijmen and Joan Daemen.

I Block size 128 bits
I Keyspace F128

2 (also versions for F192
2 and F256

2 )
I Not Feistel, but still multiple rounds like DES. In each round:
I Confusion: apply S-box: P : F8

2 → F8
2 on each subblock.

using pseudo-inversion in the finite field F28 :

P(x) =

{
0 if x ↔ 0

x−1 otherwise.

I Diffusion: Row permutation and a linear map on columns.
I Key addition: add a round key in F128

2 derived from the key.

What is the pseudo-inverse of β in F4?
(A) 0 (B) 1 (C) α (D) 1 + β

True or false: the pseudo-inversion function F4 → F4 is linear?
(A) False (B) True

Surprisingly! It is highly non-linear in any F2d for d ≥ 3.
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Modes of Operation
A block cipher with block size n encrypts plaintexts x ∈ Fn

2. If x is
longer it has to be split into blocks x (1), . . . , x (m) ∈ Fn

2:

x = (x (1), . . . , x (m)).

Fix a key k ∈ K: this is only key used.

I Electronic Codebook Mode:

x (1) 7→ ek(x (1))

x (2) 7→ ek(x (2))
...

x (m) 7→ ek(x (m))

I Cipher Block Chaining:

x (1) 7→ ek(x (1)) = y (1)

x (2) 7→ ek(y (1) + x (2)) = y (2)

...

x (m) 7→ ek(y (m−1) + x (m)) = y (m)



Same In Implies Same Out

If x (i) = x (j) then, in Electronic Codebook Mode, the ciphertext
blocks ek(x (i) and ek(x (j)) are equal. This is a weakness of the
mode of operation, not of the underlying block cipher.

Cipher Block Chaining (and the many other modes of operation
you don’t need to know about) avoid this problem.



§9 Differential Cryptanalysis

Differential cryptanalysis was known to the designers of DES in
1974 and was considered when designing the DES S-boxes. They
kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time
pad in Question 2 on Problem Sheet 3. We have unknown
plaintexts x , x ′ ∈ Fn

2, an unknown key kotp ∈ Fn
2, and known

ciphertexts x + kotp and x ′ + kotp. Adding the known ciphertexts
gives x + x ′, independent of kotp.



Attack 9.1
Let ek : Fn

2 → Fn
2 for k ∈ F`

2 be the encryption functions for a block
cipher of block size n and key length `. For (kotp, k) ∈ Fn

2 × F`
2

[typo in printed notes], define E(kotp,k) : Fn
2 → Fn

2 by

E(kotp,k)(x) = ek(x + kotp). [Typo in printed notes!]

Let ∆ ∈ Fn
2. In a chosen plaintext attack on this ‘composed’

cipher, we choose x ∈ Fn
2 and obtain the ciphertexts

z = E(kotp,k)(x)

z∆ = E(kotp,k)(x + ∆)

Set Γ = z + z∆. Then e−1
k (z) + e−1

k (z∆) = ∆. Moreover, for
kguess ∈ F`

2, either

e−1
kguess

(z) + e−1
kguess

(z∆) 6= ∆

and we deduce kguess 6= k , or

e−1
kguess

(z) + e−1
kguess

(z∆) = ∆

and kguess ∈ Kz =
{
kguess ∈ Fn

2 : e−1
kguess

(z) + e−1
kguess

(z + Γ) = ∆
}

.



Attack 9.1

Intuitively: for the correct key k , undoing the second cipher we get
back the difference ∆; for wrong keys, we get ∆ only if kguess has
the special property that kguess ∈ Kz , where z = E(kotp,k)(x).

If the block cipher is good then Kz is small. Therefore false keys,
where we do not immediately see that our guess is wrong, are rare.
Note that we do not guess kotp, only k.



Attack on the AES S-box

Example 9.2

Let α be an indeterminate. Define

F28 = {x0 + x1α + · · ·+ x7α
7 : x0, x1, . . . , x7 ∈ F2}.

Elements of F8
2 are added and multiplied like polynomials in α, but

whenever you see a power αd where d ≥ 8, eliminate it using the
rule

1 + α + α3 + α4 + α8 = 0.

We identify F8
2 with F2(α) by

(x0, x1, . . . , x7)↔ x0 + x1α + x2α
2 + · · ·+ x7α

7.

I 1000 0000↔ 1 ∈ F28 and 1−1 = 1, so

P(1000 0000) = 10000000.
I 0100 0000↔ α ∈ F28 and, multiplying the defining rule for α

by α−1, we get α−1 + 1 + α2 + α3 + α7 = 0 so
α−1 = 1 + α2 + α3 + α7 and P(0100 0000) = 1011 0001.

Exercise: Show that P(0010 0000) = 1101 0011.



Example 9.3

Let n = 8, ` = 8 and let P : F8
2 → F8

2 be the pseudo-inverse
function. For k ∈ F8

2, define ek(y) = P(y) + k . Note that
e−1
k (z) = P(z + k) and so

e−1
kguess

(z) + e−1
kguess

(z∆) = P(z + kguess) + P(z∆ + kguess).

By definition z∆ = z + Γ. Hence the set Kz [typo in printed
notes] in Attack 9.1 is

Kz = {kguess ∈ F8
2 : P(z + kguess) + P(z + kguess + Γ) = ∆}.

Running the attack: Take ∆ = 1000 0000; this corresponds to
1 ∈ F28 . For each kguess ∈ F8

2, we compute
P(z + kguess) + P(z∆ + kguess). If the answer is ∆ then kguess ∈ Kz

and kguess is either k or a false key. Otherwise we reject kguess.

By Exercise 9.6, there are usually exactly two different kguess ∈ F8
2

such that P(z + kguess) + P(z + kguess + Γ) = ∆. One must be k .



Example 9.3 [continued]
In the following examples we take kotp = 0000 0000.

(1) If k = 0000 0000 and x = 0100 0000 then, since
P(0100 0000) = 1011 0001 and P(1100 0000) = 0110 1111,
z + z∆ = 1101 1110. There are exactly 2 keys kguess such that
k ∈ Kz , namely

0000 0000, 1101 1110.

(2) If k = 0000 0000 and x = 0000 0000 then z + z∆ = 1000 0000
and there are exactly 4 keys kguess such that k ∈ Kz , namely

0000 0000, 1000 0000, 0011 1101, 1011 1101.

(To check this you need P(0011 1101) = 1011 1101 and so,
since P(P(x)) = x for all x ∈ F8

2, P(1011 1101) = 0011 1101.)
This is the exceptional case when ∆−1 = Γ.

(3) Exercise: let k = 1111 1111. What are the guesses kguess if
x = 0100 0000? What if x = 0000 0000? [Hint: these can be
deduced from (1) and (2).]



Cost of the Attack

Exercise 9.4

(a) Show that the attack typically finds k and the false key k + Γ
using at most 2× 28 decryptions to calculate e−1

kguess
(z) and

e−1
kguess

(z∆).

(b) How many encryptions are needed to test all the pairs
(kotp, k) and (kotp, k + Γ) for kotp ∈ F8

2?

(c) Deduce that the attack finds the key (kotp, k) using at most
210 decryptions/encryptions. Why is this sub-exhaustive?

Exercise 9.5
Let Γ ∈ F8

2 be non-zero. Show that for each non-zero ∆ ∈ F8
2,

{
w ∈ F8

2 : P(w) + P(w + Γ) = ∆
}

has size 0 or 2, except when ∆−1 = Γ, when it has size 4. [Hint:
quadratic equations over any field have at most two roots.]



Attack on the Q-Block Cipher: Weak First Round
Recall from Example 8.4 that round i of the Q-block cipher is

(v ,w) 7→
(
w , v + S(v + k(i))

)

where k(i) ∈ F4
2 is the round key. There are three rounds:

(v ,w) 7→
(
w , v + S(w + k(1))

)
= (v (1),w (1))

7→
(
w (1), v (1) + S(w (1) + k(2))

)
= (v (2),w (2))

7→
(
w (2), v (2) + S(w (2) + k(3))

)
= (v (3),w (3))

Lemma 9.6

(i) For any x ∈ F4
2 we have S(x + 1000) = S(x) + 0010.

(ii) For any (v ,w) ∈ F8
2 and any round key k(1) ∈ F4

2 we have

(
w , v + S(w + k(1))

)
+
(
w + 1000, v + S(w + 1000 + k(1))

)

= (1000, 0010).



Attack on the Q-Block Cipher

Example 9.7

We run Attack 9.1 on the Q-block cipher by taking
∆ = (0000, 1000) and guessing the final 8 bits of the key k to
undo the final two rounds.

Take k = 0000 0000 0000 and x = 0000 0001. There are 16 keys
kguess ∈ F8

2 such that kguess ∈ Kz , namely all binary words of the
form ?0?0 ?0?0. These are the possibilities for

(k(2)
guess, k

(3)
guess) ∈ F8

2.

Trying each guess together with all 16 possibilities for k
(1)
guess ∈ F 4

2

we get

k ∈ {0000 0000 0000, 1000 0010 1000, 1110 1000 0010, 0110 1010 1010}.

All these keys encrypt 0000 0001 to the same ciphertext, namely
0000 0100.



Attack on a 5-round Q-block cipher
By definition, round i of the Q-block cipher is

(v ,w) 7→
(
w , v + S(v + k(i))

)

By taking a key of length 4r we can define the Q-block cipher for
any number of rounds. With 5 rounds there is a 20 bit key

k = (k(1), k(2), k(3), k(4), k(5))

After 1 round the difference ∆ = 0000 1000 always goes to
∆′ = 0001 0010. By Question 1 on Problem Sheet 8, after 2
rounds there are four possibilities:

0010 0000, 0010 0001, 0010 0010, 0010 0011.

Guessing the 12 bit key (k(3), k(4), k(5)) we rule out kguess if

e−1
kguess

(z)+e−1
kguess

(z∆) 6∈ {0010 0000, 0010 0001, 0010 0010, 0010 001}.
After 212 guesses there are 64 = 26 possible keys kguess. Trying
each of these with the 256 = 28 possibilities for (k(1), k(2)) gives
64 possibilities for k. The total work is 212 + 26 × 28 = 212 + 214.
This is about 64 = 26 times faster than guessing all of k in one go.

qAttackBothKeys 2 5 (zeros 20) [0,0,0,0,0,0,0,1]

qAttackNaive 2 5 (zeros 20) [0,0,0,0,0,0,0,1]



Part D: Public Key Cryptography and Digital Signatures

§10 Introduction to Public Key Cryptography

We begin with a way that Alice and Bob can establish a shared
secret key, communicating only over the insecure channel on
page 4.

Everything in red is private. Everything not in red is known to the
whole world— this includes the eavesdropper Eve.

Example 10.1

Alice and Bob need a 128-bit key for use in AES. They agree a
prime p such that p > 2128. Then

(1) Alice chooses a secret a ∈ N with 1 ≤ a < p. Bob chooses a
secret b ∈ N with 1 ≤ b < p.

(2) Alice sends Bob 2a mod p. Bob sends Alice 2b mod p.

(3) Alice computes (2b)a mod p and Bob computes (2a)b mod p.

(4) Now Alice and Bob both know 2ab mod p. They each write
2ab mod p in binary and take the final 128 bits to get an AES
key.



Example 10.1 [continued]

After (2), the eavesdropper Eve knows p, 2a mod p and 2b mod p.
It is believed that it is hard for her to use this information to find
2ab mod p. The difficulty can be seen even in small examples.

Exercise 10.2
Let p = 11. As Eve you know that Alice has sent Bob 6. Do you
have any better way to find a such that 2a = 6 than trying each
possibility?

n 0 1 2 3 4 5 6 7 8 9

2n mod 11 1 2

n 10 11 12 13 14 15 16 17 18 19

2n mod 11

After (4) Alice and Bob can communicate using the AES
cryptosystems, which has no known sub-exhaustive attacks.
So remarkably, Alice and Bob can communicate securely without
exchanging any private key material.
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Integers Modulo a Prime

I By Fermat’s Little Theorem, cp−1 ≡ 1 mod c for any c not
divisible by p.

I If cm 6≡ 1 mod p for m < p − 1 then c is said to be a
primitive root modulo p and, working modulo p,

{1, c , c2, . . . , cp−2} = {1, 2, . . . , p − 1}

Primitive roots always exist: often one can take 2.

I Equivalently: Z×p is cyclic of order p − 1.

I For instance 2 is a primitive root modulo 11 but 5 is not,
because 5 ≡ 24 mod 11, so 55 ≡ 210 ≡ 1 mod 11.



Diffie–Hellman Key Exchange
This is nothing more than Example 10.1, modified to avoid some
potential weaknesses, and implemented efficiently.

I The prime p is chosen so that p − 1 has at least one large
prime factor. (This is true of most primes. There are fast
ways to decide if a number is prime.)

I Rather than use 2, Alice and Bob use a primitive root modulo
p, so every element of {1, . . . , p − 1} is congruent to a power
of g . (The base is public.)

I Alice and Bob compute ga mod p and gb mod p by repeated
squaring. See Question 3 on Sheet 8 for the idea. For
example 221 mod 177 is computed as follows:

I 22 ≡ 4 mod 199
I 24 ≡ 42 = 16 mod 199
I 28 ≡ 162 = 256 ≡ 57 mod 199
I 216 ≡ 572 = 3249 ≡ 65 mod 199

Now use 221 = 216+4+1 ≡ 65× 16× 2 = 2080 ≡ 90 mod 199.

I The shared key is now gab mod p.



One-way Functions

A one-way function is a bijective function that is fast to compute,
but whose inverse is hard to compute. It is beyond the scope of
this course to make this more precise.

It is not known whether one-way functions exist. Their existence
implies P 6= NP: very roughly, if P = NP then any problem whose
solution is quick to check, such as Sudoku, is also quick to solve.

Diffie–Hellman key exchange is secure only if, given g and g x it is
hard to find x . (This is called the Discrete Log Problem.)
Equivalently, the function

f : {0, . . . , p − 2} → {1, . . . , p − 1}

defined by f (x) = g x mod p, is one-way.

Exercise 10.3
Why do we exclude p − 1 from the domain of f ?



ElGamal Cryptosystem and Further Comments

Diffie–Hellman can be turned into the ElGamal cryptosystem: see
Question 2 on Sheet 9.

I ElGamal avoids the drawback of Diffie–Hellman that either
Alice and Bob both have to be online at the same time, or
one must wait for the other to respond before they can
exchange messages.

I It is faster to use Diffie–Hellmann to agree a secret key, and
then switch to a a block cipher such as DES or AES using this
key.

I Diffie–Hellman is secure only if the Discrete Log Problem is
hard. This is widely believed to be true. But it is more likely
that the Discrete Log Problem is easy than that AES has a
sub-exhaustive attack.

For these reasons block ciphers and stream ciphers are still widely
used.



Inverting exponentiation mod p

In the RSA cryptosystem, we use modular exponentiation as the
encryption map. We therefore need to know when it is invertible.

Lemma 10.4
If p is prime and hcf(a, p − 1) = 1 then the inverse of x 7→ xa mod
p is y 7→ y r mod p, where ar ≡ 1 mod p − 1.

For example, if p = 29 then x 7→ x7 is not invertible, and x 7→ x3

is invertible, with inverse y 7→ y19. This works, since after doing
both maps, in either order, we send x to x57; by Fermat’s Little
Theorem, x57 = x28×2+1 = (x28)2x ≡ x mod 29.

Given p and a, one can use Euclid’s algorithm to find s, t ∈ Z such
that as + (p − 1)t = 1. Then as = 1− pt so as ≡ 1 mod p − 1,
and we take r ≡ s mod p − 1.

This proves Lemma 10.4, and shows that it is fast to find r . Thus
we cannot use x 7→ xa mod p as a secure encryption function.



Inverting exponentiation mod n

Fact 10.5
Let p and q be distinct primes. Let n = pq. If

hcf
(
a, (p − 1)(q − 1)

)
= 1

then x 7→ xa mod n is invertible with inverse y 7→ y r mod n, where
ar ≡ 1 mod (p − 1)(q − 1).

Example 10.6

Let p = 11, q = 17, so n = pq = 187 and (p − 1)(q − 1) = 160.
Let a = 9. Adapting the proof for Lemma 10.4, we use Euclid’s
Algorithm to solve 9s + 160t = 1, getting s = −71 and t = 4.
Since −71 ≡ 89 mod 160, the inverse of x 7→ x9 mod 187 is
y 7→ y89 mod 187.

Thus given a, p and q it is easy to find r as in Fact 10.5. But it is
believed to be hard to find r given only a and n. This makes
x 7→ xa mod n suitable for use in a cryptosystem.



RSA Cryptosystem
Let n = pq be the product of distinct primes p and q. In the RSA
Cryptosytem for n,

P = C = {0, 1, . . . , n − 1}

and

K = {a ∈ {1, . . . , n − 1} : hcf
(
a, (p − 1)(q − 1)

)
= 1.

The encryption functions are defined by

ea(x) = xa mod n.

Alice’s public key is the pair (a, n). In private Alice computes r
such that ar ≡ 1 mod (p − 1)(q − 1). As just seen, she can do this
because she knows p and q, and so (p − 1)(q − 1). The decryption
function is then

da(y) = y r mod n.

Alice’s private key is the pair (r , n).



No-one has found an attack on RSA other than factorizing n. The
best known algorithm (the Number Field Sieve) was used to
factorize a 768 bit n in 2010. This took about 1500 computer
years, in 2010 technology.

NIST (the US standard body) now recommend that n should have
2048 bits.
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Quiz on Diffie–Hellman and RSA
Let p and q be primes of size about 2512. Let n = pq.

(a) Given g and a it is fast to compute ga mod p.

(A) False (B) True

(b) Given g and ga mod p, with a known to be in {1, . . . , p − 2},
it is fast to compute a.

(A) False (B) True

(c) The function {1, . . . , p − 1} → {1, . . . , p − 1} defined by
x 7→ x2 is invertible.

(A) False (B) True

(d) If hcf(a, p − 1) = 1 then the function
{1, . . . , p − 1} → {1, . . . , p − 1} defined by x 7→ xa mod p is
invertible, and it is fast to compute its inverse.

(A) False (B) True

(e) Suppose x 7→ xa mod n is invertible. Given a and n it is fast
to compute its inverse.

(A) False (B) True
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Mathematica Versus Lecturer

Example 10.7

(1) For a small example, take p and q as in Example 10.6. If
Alice’s public key is (9, 187) then her private key is (89, 187).
If Bob’s message is 10 then he sends 109 to Alice, since
109 ≡ 109 mod 187. Alice decrypts to 10 by computing 10989

mod 187.

(2) The Mathematica notebook PKCExamples.nb available
from Moodle can be used to give examples where p and q are
large.

At the end of the previous lecture I demonstrated RSA by taking a
message m, computing its encryption ea(x) ≡ xa mod n and its
decryption da

(
ea(m)

)
≡ (xa)r ≡ m mod n.

Unfortunately my message x was more than n. So the decryption
was x mod n (a number < n), not x itself. Otherwise it all worked
perfectly!
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§11 Digital Signatures and Hash Functions

Suppose Alice and Bob have the RSA keys:

public private

Alice (a,m) (r ,m)
Bob (b,m) (s, n)

Suppose Bob wants to tell Alice his bank details in a message x .
He looks up her public key (a,m) and sends her xa mod m.

Malcolm cannot decrypt xa mod m, because he does not know r .
But if he has control of the channel, he can replace xa mod m with
another x ′a mod m, of his choice.

This requires Malcolm to know Alice’s public key. So the attack is
specific to public key cryptosystems such as RSA. If the key k is
secret, only Alice and Bob know the encryption function ek .

How can Alice be confident that a message signed ‘Bob’ is from
Bob, and not from Malcolm pretending to Bob?
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Motivation for Hash Functions

public private

Alice (a,m) (r ,m)
Bob (b,m) (s, n)

Example 11.1

Alice is expecting a message from Bob. She receives z , and
computes da(z) = z r mod m, but gets garbage. Thinking that Bob
has somehow confused the keys, she computes zb mod n, and gets
the ASCII encoding of

‘Bob here, my account number is 40081234’.

(a) Should Alice believe z was sent by Bob?

(b) How did Bob compute z?

(c) Can Malcolm read z?

(d) How can Bob avoid the problem in (c)?



Signed Messages using RSA

Let x ∈ N0 be Bob’s message. If Bob’s RSA number n is about
22048 then the message x is a legitimate ciphertext only if
x < 22048. This may seem big, but, using the 7-bit ASCII coding,
it means only 2048/7 ≈ 290 characters can be sent.

Bob can get round this by splitting the message into blocks, but
computing ds(x (i)) for each block x (i) ∈ {1, . . . , n − 1} is slow. It
is better to send x , and then append db(h(x)) where
h(x) ∈ {1, . . . , n − 1} is a hash of x .

The pair
(
x , db(h(x))

)
is a signed message from Bob. [Typo in

printed notes: db, not ds , is the inverse of eb.]



Hash Functions

Definition 11.2
A hash function of length r is a function h : N0 → Fr

2. The value
h(x) is the hash of the message x ∈ N0.

A cryptographically useful hash function has the following
properties:

(a) It is fast to compute h(x).

(b) Given a message x ∈ N0, and its hash h(x), it is hard to find
x ′ ∈ N such that x ′ 6= x and h(x ′) = h(x). (Preimage
resistance.)

(c) It is hard to find a pair (x , x ′) with x 6= x ′ such that
h(x) = h(x ′). (Collision resistance.)



Birthday Paradox

Exercise 11.3
Let h : N→ Fr

2 be a good hash function. On average, how many
hashes does an attacker need to calculate to find a pair (x , x ′) with
h(x) = h(x ′)?

The mathematics behind Exercise 11.3 is the well-known Birthday
Paradox: in a room with 23 people, the probability is about 1

2 that
two people have the same birthday.

Lemma 11.4
If there are B possible birthdays then in a room of

√
2 log 2

√
B

people, the probability is about 1
2 that two people have the same

birthday.

In (c) the birthdays are hash values, so we have B = 2r . Since√
2r = 2r/2 we interpret ‘hard to find’ as ‘requires at least 2r/2

hashes’.
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Hash Functions In Practice

Example 11.5 (SHA-256)

SHA-256 is the most commonly used hash function today. It has
length 256. There is an internal state of 256 bits, divided into 8
blocks of 32 bits.

The blocks are combined with each other by multiplying bits in the
same positions (this is ‘logical and’), addition in F32

2 , cyclic shifts
(like an LFSR), and addition modulo 232, over 64 rounds.

The best attack can break (b) when the number of rounds is
reduced to 57, and (c) when the number of rounds is reduced
to 46.



Wiring Diagram for SHA256



Hashing Passwords

When you create an account online, you typically choose a
username, let us say ‘Alice’ and a password, say ‘alicepassword’. A
well run website will not store your password. Instead,
oversimplifying slightly, your password is converted to a number x
and the SHA-256 hash h(x) is stored. By (b), it is hard for anyone
to find another word whose hash is also h(x).

Provided your password is hard to guess, your account is secure,
and you have avoided telling the webmaster your password.

Exercise 11.6
As described, it will be obvious to a hacker who has access to the
password database when two users have the same password.
Moreover, if you use the same password on two different sites, the
same hash will be stored on both. How can this be avoided?



Example 11.7 (Bitcoin blockchain)

The bitcoin blockchain is a distributed record of all transactions
involving bitcoins. When Alice transfers a bitcoin b to Bob, she
appends a message x to his bitcoin, saying ‘I Alice give Bob the
bitcoin b’, and signs this message, by appending da(h(x)). [My
notation error: b was used for Bob and bitcoin. Changed to
Alice on slides and on Moodle printed notes, so sign by da.]

Signing the message ensures that only Alice can transfer Alice’s
bitcoins. But as described so far, Alice can double-spend: a few
minutes later she can make another

(
b, x ′, da(h(x ′))

)
where x ′ says

‘I Alice give Charlie the bitcoin b’.

To avoid this, transactions are validated. To validate a list of
transactions

(
b(1), x (1), da(1)(h(x (1)))

)
,
(
b(2), x (2), da(2)(h(x (2)))

)
, . . .

a miner searches for c ∈ N such that, when this list is converted to
a number, its hash, by two iterations of SHA-256, has a large
number of initial zeros.



Example 11.7 [continued]

When Bob receives
(
b, x ′, da(h(x ′))

)
, he looks to see if there is a

block already containing a transaction involving b. When Bob
finds (b, x , da(h(x))) as part of a block with the laboriously
computed c, Bob knows Alice has cheated.

Vast numbers of hashes must be computed to grow the blockchain.
Miners are incentivized to do this: the reward for growing the
blockchain is given in bitcoins.

This morning the bitcoin traded at $15879.79; the reward for
growing the blockchain is 12.5 bitcoins. (This gradually decreases;
there will never be more than 21× 106 bitcoins in circulation.)
Most transactions therefore involve small fractions of a bitcoin. A
typical block verifies about 2500 separate transactions.

Miners are further incentivized by transaction fees, again paid in
bitcoins, attached to each transaction. These will become more
important as the per block reward gets smaller.



Feedback

Please take a 362 or 5462 form as appropriate.

I In this context I am the ‘tutor’.

I Please comment on how you find the pace of the course:
much too slow, a bit too slow, about right, a bit too fast,
much too fast.

I Any comments will be read very carefully.


