
MT5462 ADVANCED CIPHER SYSTEMS

MARK WILDON

These notes cover the part of the syllabus for MT5462 that is not part of
the undergraduate course. Further installments will be issued as they
are ready. All handouts and problem sheets will be put on the MT362
Moodle page, marked M.Sc.

I would very much appreciate being told of any corrections or possible
improvements to these notes.

You are warmly encouraged to ask questions in lectures, and to talk to
me after lectures and in my office hours. I am also happy to answer ques-
tions about the lectures or problem sheets by email. My email address is
mark.wildon@rhul.ac.uk.

Lectures: Monday 4pm (MFLEC), Friday 11am (MC201), Friday 4pm
(MC336).

Extra lecture for MSc students: Friday 9am (MC201).

Office hours in McCrea 240: Tuesday 3.30pm, Wednesday 10am, Thurs-
day 11am or by appointment.

Date: First time 2017/18.

2

OVERVIEW

We start with a secret sharing scheme related to Reed–Solomon codes.
We then look at boolean functions, the Berlekamp–Massey algorithm and
the Discrete Fourier Transform, and see how these mathematical ideas
have been applied to stream ciphers and block ciphers.

1. REVISION OF FIELDS AND POLYNOMIALS

Essentially every modern cipher makes use of the finite field F2. Many
use other finite fields: for example, a fundamental building block in AES
(Advanced Encryption Standard) is the inversion map x 7→ x−1 on the
finite field F28 with 256 elements.

This section should give enough background for the course. It will
also be useful for MT5461 Theory of Error Correcting Codes, next term.
Proofs in this section are non-examinable.

Fields. Informally, a field is a set in which one can add, subtract and mul-
tiply any two elements, and also divide by non-zero elements. Examples
of infinite fields are the rational numbers Q and the real numbers R. If p
is a prime, then the set Fp = {0, 1, . . . , p− 1}, with addition and multi-
plication defined modulo p is a finite field: see Theorem 1.3.

The formal definition is below. You do not need to memorise this.

Definition 1.1. A field is a set of elements F with two operations, + (ad-
dition) and × (multiplication), and two special elements 0, 1 ∈ F such
that 0 6= 1 and

(1) a + b = b + a for all a, b ∈ F;
(2) 0 + a = a + 0 = a for all a ∈ F;
(3) for all a ∈ F there exists b ∈ F such that a + b = 0;
(4) a + (b + c) = (a + b) + c for all a, b, c ∈ F;

(5) a× b = b× a for all a, b ∈ F;
(6) 1× a = a× 1 = a for all a ∈ F;
(7) for all non-zero a ∈ F there exists b ∈ F such that a× b = 1;
(8) a× (b× c) = (a× b)× c for all a, b, c ∈ F;

(9) a× (b + c) = a× b + a× c for all a, b, c ∈ F.
If F is finite, then we define its order to be its number of elements.

It may be helpful to note that (1)–(4) imply that F is an abelian group
under addition, and that (5)–(8) imply that (F\{0},×) is an abelian group
under multiplication. The final axiom (9) is the distributive law relating
addition and multiplication.

3

It is usual to write −a for the element b in (4); we call −a the additive
inverse of a. We write a−1 for the element b in (8); we call a−1 the multi-
plicative inverse of a. We usually write ab rather than a× b.

Exercise: Show, from the field axioms, that if x ∈ F, then x has a unique
additive inverse, and that if x 6= 0 then x has a unique multiplicative
inverse. Show also that if F is a field then a× 0 = 0 for all a ∈ F.

Exercise: Show from the field axioms that if F is a field and a, b ∈ F are
such that ab = 0, then either a = 0 or b = 0.

We will use the second exercise above many times.

Theorem 1.2. Let p be a prime. The set Fp = {0, 1, . . . , p− 1} with addition
and multiplication defined modulo p is a finite field of order p.

There is a unique (up to a suitable notion of isomorphism) finite field
of any given prime-power order. The smallest field not of prime order is
the finite field of order 4.

Example 1.3. The addition and multiplication tables for the finite field
F4 = {0, 1, α, 1 + α} of order 4 are shown below.

+ 0 1 α 1 + α

0 0 1 α 1 + α

1 1 0 1 + α α

α α 1 + α 0 1
1 + α 1 + α α 1 0

× 1 α 1 + α

1 1 α 1 + α

α α 1 + α 1
1 + α 1 + α 1 α

Probably the most important thing to realise is that F4 is not the integers
modulo 4. Indeed, in Z4 = {0, 1, 2, 3} we have 2× 2 = 0, but if a ∈ F4
and a 6= 0 then a× a 6= 0, as can be seen from the multiplication table.
(Alternatively this follows from the second exercise above.)

4

Polynomials. Let F be a field. Let F[x] denote the set of all polynomials

f (x) = a0 + a1x + a2x2 + · · ·+ amxm

where m ∈N0 and a0, a1, a2, . . . , am ∈ F.

Definition 1.4. If f (x) = a0 + a1x + a2 + · · ·+ amxm where am 6= 0, then
we say that m is the degree of the polynomial f , and write deg f = m. We
leave the degree of the zero polynomial undefined. We say that a0 is the
constant term.

It is often useful that the constant term in a polynomial f is f (0).

A polynomial is a non-zero constant if and only if it has degree 0. The
degree of the zero polynomial is not entirely standardized: you might
also see it defined to be−∞, or as−1. For this reason we will phrase some
results, such as Lemma 1.5 below, so that the whole issue is avoided.

Polynomials are added and multiplied in the natural way.

Lemma 1.5 (Division algorithm). Let F be a field, let g(x) ∈ F[x] be a non-
zero polynomial and let f (x) ∈ F[x]. There exist polynomials s(x), r(x) ∈ F[x]
such that

f (x) = s(x)g(x) + r(x)

and either r(x) = 0 or deg r(x) < deg g(x).

We say that s(x) is the quotient and r(x) is the remainder when f (x) is
divided by g(x). Lemma 1.5 will not be proved in lectures. The impor-
tant thing is that you can find the quotient and remainder in practice. In
MATHEMATICA use PolynomialQuotientRemainder.

Exercise 1.6. Let g(x) = x3 + x + 1 ∈ F2[x], let f (x) = x5 + x2 + x ∈
F2[x]. Find the quotient and remainder when f (x) is divided by g(x).

For Shamir’s secret sharing scheme we shall need the following prop-
erties of polynomials.

Lemma 1.7. Let F be a field.

(i) If f ∈ F[x] has a ∈ F as a root, i.e. f (a) = 0, then there is a polynomial
g ∈ F[x] such that f (x) = (x− a)g(x).

(ii) If f ∈ F[x] has degree m ∈N0 then f has at most m distinct roots in F.

(iii) Suppose that f , g ∈ F[x] are non-zero polynomials such that deg f ,
deg g < t. If there exist distinct c1, . . . , ct ∈ F such that f (ci) = g(ci)
for each i ∈ {1, . . . , t} then f = g.

5

Part (iii) is the critical result. It says, for instance, that a linear polyno-
mial is determined by any two of its values: when F is the real numbers R

this should be intuitive—there is a unique line through any two distinct
points. Similarly a quadratic is determined by any three of its values, and
so on.

We also need a result on polynomial interpolation that has a surpris-
ingly quick direct proof.

Lemma 1.8 (Polynomial interpolation). Let F be a field. Let

c1, c2, . . . , ct ∈ F

be distinct and let y1, y2, . . . , yt ∈ F. The unique polynomial f (x) ∈ F[x],
either zero or of degree < t, such that f (ci) = yi for all i is

f (x) =
t

∑
i=1

yi
∏j 6=i(x− cj)

∏j 6=i(ci − cj)
.

2. SHAMIR’S SECRET SHARING SCHEME

Motivation. Some flavour of secret sharing is given by the following in-
formal example.

Example 2.1. Ten people want to know their mean salary. But none is
willing to reveal her salary si to the others, or to a ‘Trusted Third Party’.
Instead Person 1 chooses a large number M. She remembers M, and
whispers M + s1 to Person 2. Then Person 2 whispers M + s1 + s2 to
Person 3, and so on, until finally Person 10 whispers M + s1 + s2 + · · ·+
s10 to Person 1. Person 1 then subtracts N and can tell everyone the mean
(s1 + s2 + · · ·+ s10)/10.

Exercise 2.2. Show that if Person j hears N from Person j− 1 then s1 +
· · ·+ sj−1 can consistently be any number between 0 and N.

Provided M is chosen much larger than any conceivable salary, this ex-
ercise shows that the scheme does not leak any unintended information.

Exercise 2.3. In the two person version of the scheme, Person 1 can de-
duce Person 2’s salary from N + s1 + s2 by subtracting N + s1. Is this a
defect in the scheme?

6

Shamir’s secret sharing scheme. In Shamir’s scheme the secret is an element
of a finite field Fp. It will be shared across n people so that any t of them,
working together, can deduce the secret, but any t− 1 of them can learn
nothing. To set up the scheme requires a Trusted Third Party, who we
will call Trevor.

In a typical application, you are Trevor, and the n people are n un-
trusted cloud computers. The people are labelled from 1 up to n; every-
one knows who has which label.

Definition 2.4. Let p be a prime and let s ∈ Fp. Let n ∈N, t ∈N be such
that t ≤ n < p. Let c1, . . . , cn ∈ Fp be distinct non-zero elements. In the
Shamir scheme with n people and threshold t, Trevor chooses at random
a1, . . . , at−1 ∈ Fp and constructs the polynomial

f (x) = s + a1x + · · ·+ at−1xt−1

with constant term s. Trevor then issues the share f (ci) to Person i.

As often the case in cryptography and coding theory, it is important to
be clear about what is private and what is public information.

In the Shamir scheme the parameters n, t and p are public, as are the
evaluation points c1, . . . , cn. Only Trevor knows f (x), and, at the time it
is issued, the share f (ci) is known only to Person i and Trevor.

Example 2.5. Suppose that n = 5 and t = 3. Take p = 7 and ci = i for
each i ∈ {1, 2, 3, 4, 5}. We suppose that s = 5. Trevor chooses a1, a2 ∈ F7
at random, getting a1 = 4 and a2 = 1. Therefore f (x) = 5 + 6x + x2 and
the share of Person i is f (ci), for each i ∈ {1, 2, 3, 4, 5}, so(

f (1), f (2), f (3), f (4), f (5)
)
= (5, 0, 4, 3, 4).

The following exercise shows the main idea needed to prove Theo-
rem 2.7 below.

Exercise 2.6. Suppose that Person 1, with share f (1) = 5, and Person 2,
with share f (2) = 0, cooperate in an attempt to discover s. Show that for
each z ∈ F7 there exists a unique polynomial fz(x) such that deg f ≤ 2
and f (0) = z, fz(1) = 5 and fz(2) = 0. For example f2(x) = 3x2 + 2
and f3(x) = 2x + 3. Since Trevor chose the coefficients of f at random,
Persons 1 and 2 learn nothing about s.

Theorem 2.7. In a Shamir scheme with n people, threshold t and secret s, any t
people can determine s but any t− 1 people can learn nothing about s.

7

The proof shows that any t people can determine the polynomial f .
So as well as learning s, they can also learn the shares of all the other
participants.

The remainder of this section is non-examinable and included for in-
terest only.

Example 2.8. The root key for DNSSEC, part of web of trust that guar-
antees an IP connection really is to the claimed end-point, and not Mal-
colm doing a Man-in-the-Middle attack, is protected by a secret sharing
scheme with n = 7 and t = 5: search for ‘Schneier DNSSEC’.

The search above will take you to Bruce Schneier’s blog. It is highly
recommended for background on practical cryptography.

Exercise 2.9. Take the Shamir scheme with threshold t and evaluation
points 1, . . . , n ∈ Fp where p > n. Trevor has shared two large numbers
r and s across n cloud computers, using polynomials f and g so that the
shares are

(
f (1), . . . , f (n)

)
and

(
g(1), . . . , g(n)

)
.

(a) How can Trevor secret share r + s mod p?
(b) How can Trevor secret share rs mod p?

Note that all the computation has to be done on the cloud!

Exercise 2.10. Suppose Trevor shares s ∈ Fp across n computers using
the Shamir scheme with threshold t. He chooses t computers and gets
them to reconstruct s. Unfortunately Malcolm has compromised one of
these computers. Show that Malcolm can both learn s and trick Trevor
into thinking his secret is any chosen s′ ∈ Fp.

Remark 2.11. The Reed–Solomon code associated to the parameters p, n,
t and the field elements c1, c2, . . . , cn is the length n code over Fp with
codewords all possible n-tuples

{
(

f (c1), f (c2), . . . , f (cn)
)

: f ∈ Fp[x], deg f ≤ t− 1}.
It will be studied in MT5461. By Theorem 2.7, each codeword is deter-
mined by any t of its positions. Thus two codewords agreeing in n− t+ 1
positions are equal: this shows the Reed–Solomon code has minimum
distance at least n− t + 1.

For simplicity we have worked over a finite field of prime order in
this section. Reed–Solomon codes and the Shamir secret sharing scheme
generalize in the obvious way to arbitrary finite fields. For example,
the Reed–Solomon codes used on compact discs have alphabet the finite
field F28 .

8

3. INTRODUCTION TO BOOLEAN FUNCTIONS

The finite field F2 is the set of bits {0, 1}, with addition and multiplica-
tion defined modulo 2.

Definition 3.1. Let n ∈ N. An n-variable boolean function is a function
Fn

2 → F2.

Most modern ciphers are defined by combining boolean functions in
various ways.

We think of 0 ∈ F2 as false and 1 ∈ F2 as true. For example, with this
convention, logical and is the Boolean function f (x, y) = xy, since xy = 1
if and only if x = 1 and y = 1.

Any boolean function is uniquely determined by its truth table, which
records the pairs

(
x, f (x)

)
for each x ∈ Fn

2 . For example, the truth tables
for and, or (denoted ∨) and not (denoted ¬) are shown below.

x y xy

0 0 0
0 1 0
1 0 0
1 1 1

x y x ∨ y

0 0 0
0 1 1
1 0 1
1 1 1

x ¬x

0 1
0 0

Exercise 3.2. Show that there are 22n
boolean function in n variables.

Exercise 3.3. Which boolean functions have the truth tables below?

x y

0 0 1
0 1 1
1 0 0
1 1 1

x y

0 0 1
0 1 1
1 0 1
1 1 0

Boolean functions can be expressed in many different ways, not always
obviously the same. In this section we look at some normal forms for
Boolean functions.

The following examples will be useful to bear in mind.

Exercise 3.4.
(i) Write the two variable function f (x, y) = x ∨ y as a polynomial in

x and y.
(ii) What logical connective corresponds to (x, y) 7→ x + y?

(iii) Define maj(x1, x2, x3) to be true if at least two of x1, x2, x3 are true,
and otherwise false. Express maj as a polynomial.

9

(iv) Express x1x2 ∨ x2x3 ∨ x3x4 as a polynomial.

Algebraic normal form. In F2 we have 02 = 0 and 12 = 1. Therefore the
Boolean functions f (x) = x2 and f (x) = x are equal. This means we do
not need squares or any higher powers of the variables. Similarly, since
2x1 = 0, the only coefficients we need are the bits 0 and 1.

For instance, (x1 + x1x2
2x3

3) + (x1 + x2) is the same function as x2 +
x1x2x3.

Exercise 3.5. Find a simple form for the product of f (x1, x2, x3) = x1(¬x2)x3
and maj(x1, x2, x3) = x1x2 + x2x3 + x3x1.

We define a boolean monomial to be a product of the form xi1 . . . xir
where i1 < . . . < ir. Given I ⊆ {1, . . . , n}, let

xI = ∏
i∈I

xi.

By definition (or convention if you prefer), x∅ = 1.

For example, x{2,3} = x2x3. It is one of the three monomial summands
of maj(x1, x2, x3).

Lemma 3.6. Let f : Fn
2 → Fn

2 be a Boolean function. Then

f (x1, x2, . . . , xn) = x1g(x2, . . . , xn) + (1 + x1)h(x2, . . . , xn)

where g(x2, . . . , xn) = f (1, x2, . . . , xn) and h(x2, . . . , xn) = f (0, x2, . . . , xn).

Particularly if you have done some programming, it may be helpful to
think of x1g + (1 + x1)h as ‘if x1 is true, then g, else x1 is false, and so h’.

By repeatedly applying Lemma 3.6 one can write an arbitrary boolean
function in n variables as a polynomial in x1, . . . , xn, and so as a sum of
boolean monomials.

Example 3.7. The Toffoli gate is important in quantum computation. It
takes 3 input qubits and returns 3 output qubits. Its classical analogue
is the 3 variable Boolean function defined in words by ‘if x1 and x2 are
both true then negate x3, else return x3’. Using Lemma 3.6, one gets the
polynomial form x1x2 + x3.

Theorem 3.8. Let f : Fn
2 → Fn

2 be an n-variable Boolean function. There exist
unique coefficients cI ∈ {0, 1}, one for each I ⊆ {1, . . . , n}, such that

f (x1, . . . , xn) = ∑
I⊆{1,...,n}

cI xI .

10

This expression for f is called the algebraic normal form of f .

It is possible to give an explicit formula for the coefficients cI in the
algebraic normal form. It can be guessed by looking at some small exam-
ples.

Example 3.9. Let f : F3
2 → F2 be a 3-variable Boolean function

(a) Show that the coefficient c∅ of x∅ = 1 in f is f (0, 0, 0).
(b) Show that the coefficient c{3} of x{3} = x3 in f is f (0, 0, 0) +

f (0, 0, 1).
(c) Show that the coefficient c{1,2} of x{1,2} = x1x2 in f is f (0, 0, 0) +

f (1, 0, 0) + f (0, 1, 0) + f (1, 1, 0).

For example, by (c), if f (x1, x2, x3) = x1x2 + x3 is the Toffoli function
seen in Example 3.7 then f (0, 0, 0) + f (1, 0, 0) + f (0, 1, 0) + f (1, 1, 0) =
0 + 0 + 0 + 1 = 1 is the coefficient of x1x2.

Exercise 3.10. What do you think is the formula for the coefficient c{2,3}?
Does it work for the Toffoli function? How about if f (x1, x2, x3) = x1x2x3?

Proposition 3.11. Let f : Fn
2 → F2 be an n-variable Boolean function and

suppose that f has algebraic normal form

f (x1, . . . , xn) = ∑
I⊆{1,...,n}

cI xI .

Then
cI = ∑ f (z1, . . . , zn)

where the sum is over all z1, . . . , zn ∈ {0, 1} such that {j : zj = 1} ⊆ I.

Disjunctive normal form. For the remaining normal forms it is best to think
of 0 ∈ F2 as false and 1 ∈ F2 as true. Following the usual convention,
we write ∧ for ‘and’ (also called conjunction). Thus x ∧ y = xy is the
conjunction of variables x and y. Recall that ∨ denotes ‘or’ (also called
disjunction) and ¬ negation.

Definition 3.12. Fix n ∈N. Given J ⊆ {1, . . . , n} let

f J(x1, . . . , xn) = z1 ∧ · · · ∧ zn

where

zj =

{
xj if j ∈ J
¬xj if j 6∈ J.

A n-variable Boolean function of the form
∨

J∈B f J , where B is a collection
of subsets of {1, . . . , n}, is said to be in disjunctive normal form.

11

By definition, or convention if you prefer, the empty disjunction is
false; thus f∅ = 0.

For example (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2). is in disjunctive nor-
mal form. The collection B in the definition is

{
{1}, {2}, {1, 2}

}
. What is

this function in words?

Example 3.13.
(a) We saw in Exercise 3.4 that maj(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧

x3) ∨ (x1 ∧ x3). From this it is a short step to the disjunctive nor-
mal form

maj(x1, x2, x3) = (x1 ∧ x2 ∧ ¬x3) ∨ (x1 ∧ ¬x2 ∧ x3)

∨ (¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

= f{1,2} ∨ f{1,3} ∨ f{2,3} ∨ f{1,2,3}

(b) The truth table for the Toffoli function f (x1, x2, x3) = x1x2 + x3 is

x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1

x1 x2 x3 f

1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

So f (x1, x2, x3) is true if and only the set of true variables is one of
{3}, {2, 3}, {1, 3} or {1, 2}. Correspondingly,

f (x1, x2, x3) = (¬x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

∨ (x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2 ∧ ¬x3).

= f{3} ∨ f{2,3} ∨ f{1,3} ∨ f{1,2}.

Theorem 3.14. Let f : Fn
2 → F2 be an n-variable Boolean function. There

exists a unique collection B of subsets of {1, . . . , n} such that

f (x1, . . . , xn) =
∨
J∈B

f J .

Conjunctive normal form. Given a Boolean formula f expressed using ∨
and ∧, one obtains ¬ f by swapping ∨ and ∧ and negating every variable.
For example, x1 ∨ x2 becomes ¬x1 ∧ ¬x2 which equals ¬(x1 ∨ x2).

Conjunctive normal form is obtained from disjunctive normal form by
this duality.

Definition 3.15. Fix n ∈ N. Given J ⊆ {1, . . . , n}, let gJ = z1 ∨ · · · ∨ zn
where, as in Definition 3.12,

zj =

{
xj if j ∈ J
¬xj if j 6∈ J.

.

12

A Boolean function of the form
∨

J∈B gJ , where B is a collection of subsets
of {1, . . . , n}, is said to be in conjunctive normal form.

Given f : Fn
2 → F2 one can write f in conjunctive normal form by

writing ¬ f in disjunctive normal form and then negating it, using that if
J ⊆ {1, . . . , n} then ¬ f J = gJ′ where J′ = {k ∈ {1, . . . , n} : k 6∈ J}.

Example 3.16. The majority vote function maj on 3-variables is false if
and only if at least two of the variables are false. Hence¬maj(x1, x2, x3) =
f∅ ∨ f{1} ∨ f{2} ∨ f{3} in disjunctive normal form and so

maj(x1, x2, x3) = ¬
(

f∅ ∨ f{1} f{2}¬ f{3}
)

= ¬ f∅ ∧ ¬ f{1} ∧ ¬ f{2} ∧ ¬ f{3}
= g{1,2,3} ∧ g{2,3} ∧ g{1,3} ∧ g{1,2}

= (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3)

in conjunctive normal form.

4. BERLEKAMP–MASSEY ALGORITHM

The Berlekamp–Massey Algorithm finds an LFSR of minimal width
generating a given keystream. It is a faster algorithm than the linear al-
gebra method seen in Question 1 of Sheet 5.

Such an LFSR always exists, since given (k0, k1, . . . , kn−1) ∈ F`
2 we can

simply take any LFSR of width n and the entire keystream as the key. But
there may be an LFSR of smaller width that works.

Preliminaries. If F is an LFSR width ` with taps T ⊆ {0, 1, . . . , `− 1} then,
for each position s ∈N,

F(ks, . . . , ks+`−1) = (ks+1, . . . , ks+`−1, ∑
t∈T

ks+t).

Hence (as seen in Question 1 of Sheet 5), ks+` = ∑t∈T ks+t. Setting r =
s + ` this becomes

(†) kr = ∑
t∈T

kr−`+t for r ≥ `.

Recall from page 8 that ¬0 = 1 and ¬1 = 0. (Equivalently, ¬c = c + 1.)

Proposition 4.1. Let n ≥ `. If an LFSR F of width ` generates the keystream
(k0, k1, . . . , kn−1, c) of length n + 1 then any LFSR F′ generating the keystream
(k0, k1, . . . , kn−1,¬c) has width `′ where `′ ≥ n + 1− `.

13

Proof. Suppose, for a contradiction that `′ ≤ n− `. Let T be the set of taps
of F and let T′ be the set of taps of F′. By (†) for F′ we have

(†′) kr = ∑
t′∈T′

kr−`′+t′ for r ≥ `′.

By (†) in the case r = n we have

c = ∑
t∈T

kn−`+t.

Since n− ` ≥ `′, the equation (†′) holds when r ≥ n− `. Substituting for
each kn−`+t using this equation we get

c = ∑
t∈T

∑
t′∈T

kn−`+t−`′+t′ = ∑
t′∈T

∑
t∈T

kn+t′−`′−`+t = ∑
t′∈T

kn+t′−`′ = ¬c

where we swapped the order of summation, then used (†), then (†′).
Hence c = ¬c, a contradiction. �

As a final preliminary, we need the symmetric difference of sets T and U
defined by

T 4U = {v ∈ T ∪U : v 6∈ T ∩U}.
The following lemma shows how symmetric differences arise when we
combine LFSRs.

Lemma 4.2 (corrected). Let F and G be LFSRs of width ` with taps T and U
respectively. The function H defined by

H
(
(x0, . . . , x`−1)

)
= (x1, . . . , x`−1, ∑

t∈T
xt + ∑

u∈U
xu)

is an LFSR with taps T 4U.

Berlekamp–Massey Algorithm. We define T̃ = {`− t : t ∈ T} so, by (†),

(‡) kn = ∑
t̃∈T̃

kn−t̃ for all n ≥ `.

Example 4.3. The keystream of the LFSR F of width 5 with taps {0, 1, 2}
for the key (0, 1, 1, 0, 0) has period 14.

(0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, . . .)
0 1 2 3 4 5 6 7 8 9 10 11 12 13

The set T̃ is {5− 0, 5− 1, 5− 2} = {3, 4, 5} and, as claimed by (‡), kn =
kn−3 + kn−4 + kn−5 for all n ∈N with n ≥ 5.

We use the following notation in the algorithm.
• k0, k1, k2, . . . is the keystream;
• for n ∈ N, `n is the minimal width of an LFSR Fn with taps Tn

generating the first n positions k0, k1, . . . , kn−1 of the keystream;

• T̃n = {`n − t : t ∈ Tn}.

14

Theorem 4.4. Let n ∈N.
(a) If the LFSR Fn generates (k0, k1, . . . , kn−1, kn) then `n+1 = `n and we

may take T̃n+1 = T̃n.
(b) Suppose the LFSR Fn generates (k0, k1, . . . , kn−1,¬kn). If `n = 0 then

let m = 0, else let m be maximal such that `m < `m+1. Let U =
{t̃ + n−m : t̃ ∈ T̃m}. Then setting

T̃n+1 = T̃n 4 (U ∪ {n−m})
defines an LFSR Fn+1 of minimal width `n+1 = max(`n, n + 1− `n)
that generates (k0, k1, . . . , kn−1, kn).

By definition, in (ii), `m < `m+1, so at step m we had to increase the
width of the LFSR to `m+1 to get agreement with the first m+ 1 keystream
bits. There could be more recent changes of the taps that kept the width
constant at `m+1.

Example 4.5. We take the first 12 positions of the keystream generated by
the LFSR in Example 4.3 but change the final 1 to 0.

(0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, . . .)
0 1 2 3 4 5 6 7 8 9 10 11

The table below shows `n and the set T̃n for each n. Where case (ii) ap-
plies, the relevant m is shown. The final row indicates whether the set of
taps is unique. (This is not given by the algorithm, but can be determined
using the linear algebra method.)

n 1 2 3 4 5 6 7 8 9 10 11 12

`n 0 2 2 2 3 3 3 5 5 5 5 7
T̃n ∅ {1} {1} {1, 2} {1, 2, 3} ∅ ∅ {3, 4, 5} {3, 4, 5} {3, 4, 5} {3, 4, 5} {3, 5}

m 0 1 1 4 4 7

unique? X × × X × × X × × X X ×

We illustrate the algorithm by taking n = 1, n = 2 and n = 5.

Init: Set `0 = 0 and T̃0 = ∅. Define `1 = 0 and T̃1 = ∅. The keystream
starts 0, so this defines the unique minimal width LFSR F1.

n = 1: the LFSR F1 generates 00 . . .; since (0, 0) = (k0,¬k1), case (b) ap-
plies. We have m = 0 and U = {t̃ + 1− 0 : t̃ ∈ T̃0} = {t̃ + 1− 0 :
t̃ ∈ ∅} = ∅. We set

T̃2 = T̃1 4 (U ∪ {2− 1}) = ∅4 {1} = {1}
and `2 = max(`1, 1 + 1− `1) = max(0, 2) = 2.

n = 2: the LFSR F2 of width `2 = 2 with T̃2 = {1} generates 0111 . . .;
since (0, 1, 1) = (k0, k1, k2), case (a) applies and `3 = `2, T̃3 = T̃2.

15

n = 3, 4: Exercise: do these steps.

n = 5: the LFSR F5 of width `5 = 3 with T̃5 = {1, 2, 3} generates 0110011
. . .; since (0, 1, 1, 0, 0, 1) = (k0, k1, k2, k3, k4,¬k5), case (b) applies.
We have m = 4 and U = {t̃ + 5− 4 : t̃ ∈ T̃4} = {2, 3}. We set

T̃6 = T̃5 4 (U ∪ {5− 4}) = {1, 2, 3} 4 {2, 3, 1} = ∅

and `6 = max(`5, 5 + 1− `5) = max(3, 3) = 3.

n ≥ 7: Exercise: do some more steps, for example n = 11.

Proof of Theorem 4.4. Set `0 = 0 and T0 = ∅. We work by induction on
n ∈N, proving that:

Claim: Theorem 4.4 holds for all r < n. Moreover, when-
ever r < n and T̃r 6= T̃r+1 or `r+1 6= `r equality holds in
Proposition 4.1, i.e. `r+1 = max(`r, r + 1− `r).

Base case: when n = 1 the claim holds vacuously.

Inductive step: Suppose the claim holds for n ∈ N. We must prove Theo-
rem 4.4, as stated above for n, and the ‘moreover’ part of the claim.

For (a), if Fn generates (k0, k1, . . . , kn−1, kn) then, since no shorter LFSR
generates (k0, . . . , kn−1), Fn is the minimal length LFSR that generates
(k0, k1, . . . , kn−1, kn). The taps and length do not change, so there is noth-
ing more to check.

In (b), we suppose Fn generates (k0, k1, . . . , kn−1,¬kn). Then by (‡)

¬kn = ∑
t̃∈T̃n

kn−t̃, ks = ∑
t̃∈T̃n

ks−t̃ if s < n.

Moreover, by choice of m, and Theorem 4.4 for m, (‡) implies the analo-
gous equations

¬km = ∑
t̃∈T̃m

km−t̃, ks = ∑
t̃∈T̃m

ks−t̃ if s < m.

Since T̃n+1 = T̃n 4 (U ∪ {n−m}), where U = {t̃ + n−m : t̃ ∈ T̃m}, the
lemma implies that

∑
t̃∈T̃n+1

kn−t̃ = ∑
t̃∈T̃n

kn−t̃ + ∑
t̃∈T̃m

kn−(t̃+(n−m)) + kn−(n−m)

= ∑
t̃∈T̃n

kn−t̃ + ∑
t̃∈T̃m

km−t̃ + km

= ¬kn + ¬km + km

= ¬kn + 1

= kn. [Corrected typo kn+1]

16

Similarly if s < n then,

∑
t̃∈T̃n+1

ks−t̃ = ∑
t̃∈T̃n

ks−t̃ + ∑
t̃∈T̃m

ks−(t̃+(n−m)) + ks−(n−m)

= ∑
t̃∈T̃n

ks−t̃ + ∑
t̃∈T̃m

ks−(n−m)−t̃ + ks−(n−m)

= ks + ks−n−m + ks−(n−m)

= ks.

Hence, by (‡), Fn+1 generates (k0, k1, . . . , kn−1, kn).
There are two cases for the width. Since m was the most recent width

change, we have, `m+1 > `m and by induction, `m+1 = max(`m, m + 1−
`m) = m + 1− `m. Hence

`n = m + 1− `m.

(i) If n−m + `m ≤ `n then max U ≤ `n and so max T̃n+1 ≤ max T̃n.
Therefore the width need not change. As in (a), no LFSR of width
< `n generates (k0, k1, . . . , kn, kn+1). Since we want Fn+1 to have
minimal length we must set `n+1 = `n. Now `n+1 = m+ 1− `m =
m + 1 − `n ≤ n + 1 − `n, so max(`n+1, n + 1 − `n) = `n+1, as
required.

(ii) If n−m + `m > `n then max(U) > `n and max T̃n+1 = max U +
n−m = max T̃m + (n−m) ≤ `m + (n−m). Therefore `n+1 > `n
and the least possible choice for `n+1 is `n+1 = (n−m) + `m. By
the displayed equation relating `n and `m above,

`n+1 = (n−m) + (m + 1)− `n = n + 1− `n.

Since `n+1 > `n we have max(n + 1 − `n, `n) = `n+1. More-
over, by Proposition 4.1, no LFSR of width < n + 1− `n generates
(k0, k1, . . . , kn−1, kn).

This proves the claim for n + 1, and completes the inductive step. �

The original paper is Shift-register synthesis and BCH decoding, James
L. Massey, IEEE Transactions on Information Theory, 15 (1969) 122–127.
It deals with LFSRs defined over an arbitrary field and leads to an al-
gorithm for decoding cyclic Reed–Solomon codes (and the more general
BCH codes in the title). We have simplified things slightly by working
over F2.

The Berlekamp–Massey algorithm is implemented in the code online
at https://repl.it/NE32/4. Try

berlekampMassey [0,1,1,0,0,0,0,1,0,0,1,0]

to check Example 4.5; for example, the output line

(4,(4,[1,2]),(3,[1,2,3]))

shows that when the algorithm is applied with n = 4, the new length and
taps are `5 = 3, T̃5 = {1, 2, 3}, and m is now 4, with T̃4 = {1, 2}.

17

5. THE DISCRETE FOURIER TRANSFORM

In this section it will be useful to change the range of Boolean functions
so that they take values in {−1, 1} rather than {0, 1}.

Given x ∈ F2 we define (−1)x by regarding x as an ordinary integer.
Thus (−1)0 = 1 and (−1)1 = −1. Given f : Fn

2 → F2 we define (−1) f :
Fn

2 → {−1, 1} by (−1) f (x) = (−1) f (x).

Definition 5.1. Let f , g : Fn
2 → F be Boolean functions. We define the

correlation between f and g by

corr(f , g) =
1
2n ∑

x∈Fn
2

(−1) f (x)(−1)g(x).

The connection with the correlation statistic used in the main course to
compare sequence of bits (see Definition 6.5 and the following results) is
shown by the exercise below.

Lemma 5.2. Let f , g : Fn
2 → F be Boolean functions. Let

csame =
∣∣{x ∈ Fn

2 : f (x) = g(x)}
∣∣

cdiff =
∣∣{x ∈ Fn

2 : f (x) 6= g(x)}
∣∣.

Then corr(f , g) = (csame − cdiff)/2n.

Thus the correlation takes values between 1 (perfect agreement) and
−1 (always different); as before, 0 can be interpreted as no correlation.

Exercise 5.3. Let X ∈ Fn
2 be a random variable distributed uniformly at

random, so P[X = x] = 1/2n for each x ∈ Fn
2 . Show that

corr(f , g) = P[f (X) = g(X)]− P[f (X) 6= g(X)

and

P[f (X) = g(X)] = 1
2(1 + corr(f , g)),

P[f (X) 6= g(X)] = 1
2(1− corr(f , g)).

For example, corr(f , g) = 1 if and only if f and g are the same function,
corr(f , g) = 1

2 if and only if P[f (X) = g(X)] = 3
4 and corr(f , g) = 0 if

and only if P[f (X) = g(X)] = P[f (X) 6= g(X)] = 1
2 .

We have seen in the main course (see for instance Example 7.1 and 7.2)
that linear functions are often weak cryptographically. So are functions
that are highly correlated with linear functions.

Given T ⊆ {1, . . . , n}, define LT : Fn
2 → F2 by

LT(x) = ∑
t∈T

xt.

18

We think of LT as ‘tapping’ (like an LFSR) the positions in T. For example,
L{i}(x1, . . . , xn) = xi returns the entry in position i and L∅(x) = 0 is the
zero function.

Exercise 5.4. Let f : Fn
2 → F2 be a Boolean function. Show that corr(f , L∅) =

0 if and only if P[f (X) = 0] = P[f (X) = 1] = 1
2 .

Lemma 5.5. The linear functions Fn
2 → F are precisely the LT : Fn

2 → F2 for
T ⊆ {1, . . . , n}. If S, T ⊆ {1, . . . , n} then

corr(LS, LT) =

{
1 if S = T
0 otherwise.

Example 5.6. Let maj : F3
2 → F2 be the majority vote function from Exer-

cise 3.4(ii). Then

corr(maj, LT) =

1
2 if T = {1}, {2}, {3}
− 1

2 if T = {1, 2, 3}
0 otherwise.

Moreover

(−1)maj = 1
2(−1)L{1} + 1

2(−1)L{2} + 1
2(−1)L{3} − 1

2(−1)L{1,2,3} .

To generalize the previous example, we define an inner product on the
vector space of functions Fn

2 → R by

〈θ, φ〉 = 1
2n ∑

x∈2n
θ(x)φ(x).

Exercise: check that, as required for an inner product, 〈θ, θ〉 ≥ 0 and that
〈θ, θ〉 = 0 if and only if θ(x) = 0 for all x ∈ Fn

2 .

Lemma 5.7. Let f , g : Fn
2 → F2 be Boolean functions. Then

〈(−1) f , (−1)g〉 = corr(f , g).

Theorem 5.8 (Discrete Fourier Transform).
(a) The functions (−1)LT for T ⊆ {1, . . . , n} are an orthonormal basis for

the vector space of functions Fn
2 → R.

(b) Let θ : Fn
2 → R. Then

θ = ∑
T⊆{1,...,n}

〈θ, (−1)LT 〉(−1)LT .

(c) Let f : Fn
2 → F2 be a Boolean function. Then

(−1) f = ∑
T⊆{1,...,n}

corr(f , LT)(−1)LT .

19

We call (c) the ‘Discrete Fourier Inversion Theorem’. The function S 7→
corr(f , LS) = 〈(−1) f , (−1)LS〉 is the Discrete Fourier Transform of f .

6. LINEAR CRYPTANALYSIS

In the previous section we considered Boolean functions Fn
2 → F2.

Typically cryptographic functions return multiple bits, not just one. So
we must choose which output bits to tap. In this section we number
positions from 0 up to n− 1.

Recall that ◦ denotes composition of functions: thus if F : Fm
2 → Fn

2
and G : Fn

2 → F
p
2 then G ◦ F : Fm

2 → F
p
2 is the function defined by

(G ◦ F)(x) = G
(

F(x)
)
.

Example 6.1. Let S : F4
2 → F4

2 be the S-box in the Q-block cipher (see
Example 8.4 in the main notes), defined by

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

(a) Suppose we look at position 0 of the output by considering L{0} ◦
S : F4

2 → F2. We have

(L{0} ◦ S)
(
(x0, x1, x2, x3)

)
= x2 = L{2}

(
(x0, x1, x2, x3)

)
.

Hence L{0} ◦ S = L{2}. By Lemma 5.5,

corr(L{0} ◦ S, LT) =

{
1 if T = {2}
0 otherwise.

.

(b) Instead if we look at position 2, the relevant Boolean function is
L{2} ◦ S, for which L{2} ◦ S

(
(x0, x1, x2, x3)

)
= x0 + x1x2. Exercise:

show that

corr(L{2} ◦ S, LT) =

1
2 if T = {0}, {0, 1}, {0, 2}
− 1

2 if T = {0, 1, 2}
0 otherwise

.

(This generalizes the correlations computed in Example 7.2 in the
main course.)

In linear cryptanalysis one uses a high correlation to get information
about certain bits of the key. We shall see this work in an example.

Example 6.2. For k ∈ F12
2 let ek : F8

2 → F8
2 be the Q-block cipher, as

defined in Example 8.4. Then ek
(
(v, w)

)
= (v′, w′) where

v′ = w + S
(
v + S(w + k(1)) + k(2)).

Recall that k(1) = (k0, k1, k2, k3) and k(2) = (k4, k5, k6, k7).
Example 6.1 suggests looking at corr(L{0} ◦ ek, L{2}). (See the optional

question on Problem Sheet 9 for the theoretical justification for this.) We
have (L{0} ◦ ek)

(
(v, w)

)
= L{0}

(
(v′, w′)

)
= v′0 and L{2}

(
(v, w)

)
= v2.

20

Exercise: using that k(1)0 = k0, k(1)1 = k1, k(1)2 = k2 and k(2)2 = k6, check that

v′0 = v2 + (w1 + k1)(w2 + k2) + k0 + k6.

When we compute corr(L{0} ◦ ek, L{2}) by averaging over all (v, w) ∈
F8

2, the values of k1 and k2 are irrelevant. For instance, if both are 0 we
average (−1)w1w2 over all four (w1, w2) ∈ F2

2 to get 1
2 ; if both are 1 we

average (−1)(w1+1)(w2+1), seeing the same summands in a different order,
and still getting 1

2 . Hence

corr(L{0} ◦ ek, L{2}) =
1
28 ∑

(v,w)∈F8
2

(−1)v2+w1w2+k0+k6(−1)v2

=
1
28 ∑

(v,w)∈F8
2

(−1)w1w2+k0+k6

= (−1)k0+k6
1
4 ∑

w1,w2∈{0,1}
(−1)w1w2

= 1
2(−1)k0+k6 .

We can estimate this correlation from a collection of plaintext/ciphertext
pairs (v, w), (v′, w′) by computing (−1)v′0+v2 for each pair. We get

(−1)k0+k6 with probability 3
4

−(−1)k0+k6 with probability 1
4

so the average is the correlation 1
2(−1)k0+k6 which tells us k0 + k6.

Using our collection of plaintext/ciphertext pairs we can also estimate

corr(L{0} ◦ ek, L{2,5}) =
1
2(−1)k0+k6+k1

corr(L{0} ◦ ek, L{2,6}) =
1
2(−1)k0+k6+k2

and so learn k1 and k2 as well as k0 + k6. (You are asked to show this on
Problem Sheet 9.) There are similar high correlations of 1

2 for output bit 1.
Using these one learns k2 and k3 as well as k1 + k7.

Exercise 6.3. Given k0 + k6, k1 + k7, k1, k2, k3, how many possibilities are
there for the key in the Q-block cipher?

This exercise shows that linear cryptanalysis gives a sub-exhaustive
attack on the Q-block cipher. It is more powerful than the differential
attack seen in the main course.

The attack by differential cryptanalysis required chosen plaintexts. The
attack by linear cryptanalysis works with any observed collection of plain-
text/ciphertext pairs. It is therefore more widely applicable, as well as
more powerful.

