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§1 Revision of fields and polynomials

Definition 1.1
A field is a set of elements F with two operations, + (addition)
and × (multiplication), and two special elements 0, 1 ∈ F such
that 0 6= 1 and

(1) a + b = b + a for all a, b ∈ F;

(2) 0 + a = a + 0 = a for all a ∈ F;

(3) for all a ∈ F there exists b ∈ F such that a + b = 0;

(4) a + (b + c) = (a + b) + c for all a, b, c ∈ F;

(5) a× b = b × a for all a, b ∈ F;

(6) 1× a = a× 1 = a for all a ∈ F;

(7) for all non-zero a ∈ F there exists b ∈ F such that a× b = 1;

(8) a× (b × c) = (a× b)× c for all a, b, c ∈ F;

(9) a× (b + c) = a× b + a× c for all a, b, c ∈ F.

If F is finite, then we define its order to be its number of elements.



Exercise: Show, from the field axioms, that if x ∈ F, then x has a
unique additive inverse, and that if x 6= 0 then x has a unique
multiplicative inverse. Show also that if F is a field then a× 0 = 0
for all a ∈ F.

Exercise: Show from the field axioms that if F is a field and a,
b ∈ F are such that ab = 0, then either a = 0 or b = 0.

Theorem 1.2
Let p be a prime. The set Fp = {0, 1, . . . , p− 1} with addition and
multiplication defined modulo p is a finite field of order p.



Example 1.3

The addition and multiplication tables for the finite field
F4 = {0, 1, α, 1 + α} of order 4 are

+ 0 1 α 1 + α

0 0 1 α 1 + α
1 1 0 1 + α α
α α 1 + α 0 1

1 + α 1 + α α 1 0

× 1 α 1 + α

1 1 α 1 + α
α α 1 + α 1

1 + α 1 + α 1 α



Definition 1.4
If f (x) = a0 + a1x + a2 + · · ·+ amx

m where am 6= 0, then we say
that m is the degree of the polynomial f , and write deg f = m. We
leave the degree of the zero polynomial undefined. We say that a0
is the constant term.

Lemma 1.5 (Division algorithm)

Let F be a field, let g(x) ∈ F[x ] be a non-zero polynomial and let
g(x) ∈ F[x ]. There exist polynomials s(x), r(x) ∈ F[x ] such that

f (x) = s(x)g(x) + r(x)

and either r(x) = 0 or deg r(x) < deg g(x).

We say that s(x) is the quotient and r(x) is the remainder when
f (x) is divided by g(x). Lemma 1.5 will not be proved in lectures.
The important thing is that you can compute the quotient and
remainder. In Mathematica: PolynomialQuotientRemainder.



Lemma 1.7
Let F be a field.

(i) If f ∈ F[x ] has a ∈ F as a root, i.e. f (a) = 0, then there is a
polynomial g ∈ F[x ] such that f (x) = (x − a)g(x).

(ii) If f ∈ F[x ] has degree m ∈ N0 then f has at most m distinct
roots in F.

(iii) Suppose that f , g ∈ F[x ] are non-zero polynomials such that
deg f , deg g < t. If there exist distinct c1, . . . , ct ∈ F such
that f (ci ) = g(ci ) for each i ∈ {1, . . . , t} then f = g .

Part (iii) is the critical result. It says, for instance, that a linear
polynomial is determined by any two of its values: when F is the
real numbers R this should be intuitive—there is a unique line
through any two distinct points. Similarly a quadratic is
determined by any three of its values, and so on.
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Lemma 1.8 (Polynomial interpolation)

Let F be a field. Let

c1, c2, . . . , ct ∈ F

be distinct and let y1, y2, . . . , yt ∈ F. The unique polynomial
f (x) ∈ F[x ] of degree < t such that f (ci ) = yi for all i is

f (x) =
t∑

i=1

yi

∏
j 6=i (x − cj)∏
j 6=i (ci − cj)

.



§2 : Shamir’s Secret Sharing Scheme

Example 2.1

Ten people want to know their mean salary. But none is willing to
reveal her salary si to the others, or to a ‘Trusted Third Party’.
Instead Person 1 chooses a large number M. She remembers M,
and whispers M + s1 to Person 2. Then Person 2 whispers
M + s1 + s2 to Person 3, and so on, until finally Person 10 whispers
M + s1 + s2 + · · ·+ s10 to Person 1. Person 1 then subtracts M
and can tell everyone the mean (s1 + s2 + · · ·+ s10)/10.

Exercise 2.3
In the two person version of the scheme, Person 1 can deduce
Person 2’s salary from M + s1 + s2 by subtracting M + s1. Is this a
defect in the scheme? [Typo in notes: N should be M.]



Definition 2.4
Let p be a prime and let s ∈ Fp. Let n ∈ N, t ∈ N be such that
t ≤ n < p. Let c1, . . . , cn ∈ Fp be distinct non-zero elements. In
the Shamir scheme with n people and threshold t, Trevor chooses
at random a1, . . . , at−1 ∈ Fp and constructs the polynomial

f (x) = s + a1x + · · ·+ at−1x
t−1

with constant term s. Trevor then issues the share f (ci ) to
Person i .

Example 2.5

Suppose that n = 5 and t = 3. Take p = 7 and ci = i for each
i ∈ {1, 2, 3, 4, 5}. We suppose that s = 5. Trevor chooses
a1, a2 ∈ F7 at random, getting a1 = 6 [typo in notes] and a2 = 1.
Therefore f (x) = 5 + 6x + x2 and the share of Person i is f (ci ),
for each i ∈ {1, 2, 3, 4, 5}, so(

f (1), f (2), f (3), f (4), f (5)
)

= (5, 0, 4, 3, 4).



Exercise 2.6
Suppose that Person 1, with share f (1) = 5, and Person 2, with
share f (2) = 0, cooperate in an attempt to discover s. Show that
for each z ∈ F7 there exists a unique polynomial fz(x) such that
deg f ≤ 2 and f (0) = z , fz(1) = 5 and fz(2) = 0.

Theorem 2.7
In a Shamir scheme with n people, threshold t and secret s, any t
people can determine s but any t − 1 people can learn nothing
about s.



Lemma 1.7
Let F be a field.
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y1, y2, . . . , yt ∈ F. The unique polynomial f (x) ∈ F[x ] of degree
< t such that f (ci ) = yi for all i is

f (x) =
t∑

i=1

yi

∏
j 6=i (x − cj)∏
j 6=i (ci − cj)

.



Example 2.8

The root key for DNSSEC, part of web of trust that guarantees an
IP connection really is to the claimed end-point, and not Malcolm
doing a Man-in-the-Middle attack, is protected by a secret sharing
scheme with n = 7 and t = 5: search for ‘Schneier DNSSEC’.



Exercise 2.9
Take the Shamir scheme with threshold t and evaluation points
1, . . . , n ∈ Fp where p > n. Trevor has shared two large numbers r
and s across n cloud computers, using polynomials f and g so that
the shares are

(
f (1), . . . , f (n)

)
and

(
g(1), . . . , g(n)

)
.

(a) How can Trevor secret share r + s mod p?

(b) How can Trevor secret share rs mod p?

Note that all the computation has to be done on the cloud!

Exercise 2.10
Suppose Trevor shares s ∈ Fp across n computers using the Shamir
scheme with threshold t. He chooses t computers and gets them
to reconstruct s. Unfortunately Malcolm has compromised one of
these computers. Show that Malcolm can both learn s and trick
Trevor into thinking his secret is any chosen s ′ ∈ Fp.



Remark 2.11
The Reed–Solomon code associated to the parameters p, n, t and
the field elements c1, c2, . . . , cn is the length n code over Fp with
codewords all possible n-tuples

{
(
f (c1), f (c2), . . . , f (cn)

)
: f ∈ Fp[x ], deg f ≤ t − 1}.

It will be studied in MT5461. By Theorem 2.7, each codeword is
determined by any t of its positions. Thus two codewords agreeing
in n − t + 1 positions are equal: this shows the Reed–Solomon
code has minimum distance at least n − t + 1.

For simplicity we have worked over a finite field of prime order in
this section. Reed–Solomon codes and the Shamir secret sharing
scheme generalize in the obvious way to arbitrary finite fields. For
example, the Reed–Solomon codes used on compact discs have
alphabet the finite field F28 .
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§3 Introduction to Boolean Functions

Definition 3.1
Let n ∈ N. An n-variable boolean function is a function Fn

2 → F2.

Any boolean function is uniquely determined by its truth table,
which records the pairs

(
x , f (x)

)
for each x ∈ Fn

2. For example,
the truth tables for and, or (denoted ∨) and not (denoted ¬) are
shown below.

x y xy

0 0 0
0 1 0
1 0 0
1 1 1

x y x ∨ y

0 0 0
0 1 1
1 0 1
1 1 1

x ¬x

0 1
1 0

Exercise 3.2
Show that there are 22

n
boolean function in n variables.



Boolean functions can be expressed in many different ways, not
always obviously the same. In this section we look at some normal
forms for Boolean functions.

Exercise 3.4

(i) Write the two variable function f (x , y) = x ∨ y as a
polynomial in x and y .

(ii) What logical connective corresponds to (x , y) 7→ x + y?

(iii) Define maj(x1, x2, x3) to be true if at least two of x1, x2, x3
are true, and otherwise false. Express maj as a polynomial.

(iv) Express x1x2 ∨ x2x3 ∨ x3x4 as a polynomial.



Algebraic Normal Form

Exercise 3.5
Find a simple form for the product of f (x1, x2, x3) = x1(¬x2)x3 and
maj(x1, x2, x3) = x1x2 + x2x3 + x3x1.

We define a boolean monomial to be a product of the form
xi1 . . . xir where i1 < . . . < ir . Given I ⊆ {1, . . . , n}, let

xI =
∏
i∈I

xi .

By definition (or convention if you prefer), x∅ = 1.

Lemma 3.6
Let f : Fn

2 → Fn
2 be a Boolean function. Then

f (x1, x2, . . . , xn) = x1g(x2, . . . , xn) + (1 + x1)h(x2, . . . , xn)

where

g(x2, . . . , xn) = f (1, x2, . . . , xn)

h(x2, . . . , xn) = f (0, x2, . . . , xn).



Example 3.7

The Toffoli gate is important in quantum computation. It takes 3
input qubits and returns 3 output qubits. Its classical analogue is
the 3 variable Boolean function defined in words by ‘if x1 and x2
are both true then negate x3, else return x3’. Using Lemma 3.6,
one gets the polynomial form x1x2 + x3.

Theorem 3.8
Let f : Fn

2 → Fn
2 be an n-variable Boolean function. There exist

unique coefficients cI ∈ {0, 1}, one for each I ⊆ {1, . . . , n}, such
that

f (x1, . . . , xn) =
∑

I⊆{1,...,n}

xI .

This expression for f is called the algebraic normal form of f .



Example 3.9

Let f : F3
2 → F2 be a 3-variable Boolean function

(a) Show that the coefficient c∅ of x∅ = 1 in f is f (0, 0, 0).

(b) Show that the coefficient c{3} of x{3} = x3 in f is
f (0, 0, 0) + f (0, 0, 1).

(c) Show that the coefficient c{1,2} of x{1,2} = x1x2 in f is
f (0, 0, 0) + f (1, 0, 0) + f (0, 1, 0) + f (1, 1, 0).

For example, by (c), if f (x1, x2, x3) = x1x2 + x3 is the Toffoli
function seen in Example 3.7 then

f (0, 0, 0) + f (1, 0, 0) + f (0, 1, 0) + f (1, 1, 0) = 0 + 0 + 0 + 1 = 1

is the coefficient of x1x2.

Exercise 3.10
What do you think is the formula for the coefficient c{2,3}? Does it
work for the Toffoli function? How about if f (x1, x2, x3) = x1x2x3?



Proposition 3.11

Let f : Fn
2 → F2 [Typo: was Fn

2] be an n-variable Boolean function
and suppose that f has algebraic normal form

f (x1, . . . , xn) =
∑

I⊆{1,...,n}

cI xI .

Then
cI =

∑
f (z1, . . . , zn)

where the sum is over all z1, . . . , zn ∈ {0, 1} with {j : zj = 1} ⊆ I .

We reduced to this claim in the case K = {1, . . . , k}.

Claim
If K ⊆ {1, 2, . . . , n} then

∑
(z1,...,zn)

xK (z1, . . . , zn) =

{
1 if I = K

0 otherwise
,

where the sum is as in the proposition.



Disjunctive Normal Form

Definition 3.12
Fix n ∈ N. Given J ⊆ {1, . . . , n} let

fJ(x1, . . . , xn) = z1 ∧ z2 ∧ · · · ∧ zn

where

zj =

{
xj if j ∈ J

¬xj if j 6∈ J.

A n-variable Boolean function of the form
∨

J∈B fJ , where B is a
collection of subsets of {1, 2, . . . , n}, is said to be in disjunctive
normal form.

By definition, or convention if you prefer, the empty disjunction is
false.



Example 3.13

(a) We saw in Exercise 3.4 that

maj(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x3).

From this it is a short step to the disjunctive normal form

maj(x1, x2, x3) = (x1 ∧ x2 ∧ ¬x3) ∨ (x1 ∧ ¬x2 ∧ x3)

∨ (¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3).

(b) The truth table for f (x1, x2, x3) = x1x2 + x3 is

x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1

x1 x2 x3 f

1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

So f (x1, x2, x3) is true when the set of true variables is {3},
{2, 3}, {1, 3} and {1, 2}. This easily gives the disjunctive
normal form.



Theorem 3.14
Let f : Fn

2 → F2 be an n-variable Boolean function. There exists a
unique collection B of subsets of {1, . . . , n} such that

f (x1, . . . , xn) =
∨
J∈B

fJ .



Definition 3.15
Fix n ∈ N. Given J ⊆ {1, . . . , n}, let gJ = z1 ∨ · · · ∨ zn where, as
in Definition 3.12,

zj =

{
xj if j ∈ J

¬xj if j 6∈ J.
.

A Boolean function of the form
∨

J∈B gJ , where B is a collection of
subsets of {1, . . . , n}, is said to be in conjunctive normal form.

Example 3.16

The majority vote function maj on 3-variables is false if and only if
at least two of the variables are false. Hence
¬maj(x1, x2, x3) = f∅ ∨ f{1} ∨ f{2} ∨ f{3} in disjunctive normal form
and so

maj(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3)

in conjunctive normal form.



§4 Berlekamp–Massey Algorithm

If F is an LFSR width ` with taps T ⊆ {0, 1, . . . , `− 1} then, for
each position s ∈ N,

F (ks , . . . , ks+`−1) = (ks+1, . . . , ks+`−1,
∑
t∈T

ks+t).

Hence (as seen in Question 1 of Sheet 5), ks+` =
∑

t∈T ks+t .
Setting r = s + ` this becomes

kr =
∑
t∈T

kr−`+t for r ≥ `. (†)

Proposition 4.1

Let n ≥ `. If an LFSR F of width ` generates the keystream
(k0, k1, . . . , kn−1, c) of length n + 1 then any LFSR F ′ generating
the keystream (k0, k1, . . . , kn−1,¬c) has width `′ where

`′ ≥ n + 1− `.



As a final preliminary, we need the symmetric difference of sets T
and U defined by

T 4U = {v ∈ T ∪ U : v 6∈ T ∩ U}.

The following lemma shows how symmetric differences arise when
we combine LFSRs.

Lemma 4.2 (corrected)

Let F and G be LFSRs of width ` with taps T and U respectively.
The function H defined by

H
(
(x0, . . . , x`−1)

)
= (x1, . . . , x`−1,

∑
t∈T

xt +
∑
u∈U

xu)

is an LFSR with taps T 4U.



Example 4.3

The keystream of the LFSR F of width 5 with taps {0, 1, 2} for the
key (0, 1, 1, 0, 0) has period 14.

(0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, . . .)
0 1 2 3 4 5 6 7 8 9 10 11 12 13

The set T̃ is {5− 0, 5− 1, 5− 2} = {3, 4, 5} and, as claimed by
(‡), kn = kn−3 + kn−4 + kn−5 for all n ∈ N with n ≥ 5.



We use the following notation in the algorithm.

I k0, k1, k2, . . . is the keystream;

I for n ∈ N, `n is the minimal width of an LFSR Fn with taps
Tn generating the first n positions k0, k1, . . . , kn−1 of the
keystream;

I `0 = 0 and T0 = ∅;

I T̃n = {`n − t : t ∈ Tn} (the set of backwards taps)

By convention, the LFSR of width 0, necessarily with taps ∅,
generates (0, 0, . . .). It is the unique minimal width LFSR
generating this keystream.



Theorem 4.4
Let n ∈ N0.

(a) If the LFSR Fn generates (k0, k1, . . . , kn−1, kn) then `n+1 = `n
and we may take T̃n+1 = T̃n.

(b) Suppose the LFSR Fn generates (k0, k1, . . . , kn−1,¬kn). If
`n = 0 then let m = 0, else let m be maximal such that
`m < `m+1. Let U = {t̃ + n −m : t̃ ∈ T̃m}. Then setting

T̃n+1 = T̃n 4 (U ∪ {n −m})

defines an LFSR Fn+1 of minimal width

`n+1 = max(`n, n + 1− `n)

that generates (k0, k1, . . . , kn−1, kn).



Results Used in Proof

I If k0, k1, . . . , kn−1 is generated by the LFSR with taps T̃ then

kr =
∑
t̃∈T̃

kr−t̃ for r < n. (‡)

I Proposition 4.1
Let n ≥ `. If an LFSR F of width ` generates the keystream
(k0, k1, . . . , kn−1, c) of length n + 1 then any LFSR F ′

generating the keystream (k0, k1, . . . , kn−1,¬c) has width `′

where
`′ ≥ n + 1− `.

I For any sets S̃ and T̃ ,∑
t̃∈S4T

kr−t̃ =
∑
t̃∈S̃

kr−t̃ +
∑
t̃∈T̃

kr−t̃ .



Example 4.1

We take the first 12 positions of the keystream generated by the
LFSR in Example 4.3 but change the final 1 to 0.

(0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, . . .)
0 1 2 3 4 5 6 7 8 9 10 11

The table below shows `n and the set T̃n for each n. Where case
(ii) applies, the relevant m is shown. The final row indicates
whether the set of taps is unique. (This is not given by the
algorithm, but can be determined using the linear algebra method.)

n 1 2 3 4 5 6 7 8 9 10 11 12

`n 0 2 2 2 3 3 3 5 5 5 5 7

T̃n ∅ {1} {1} {1, 2} {1, 2, 3} ∅ ∅ {3, 4, 5} {3, 4, 5} {3, 4, 5} {3, 4, 5} {3, 5}

m 0 1 1 4 4 7

unique? X × × X × × X × × X X ×



Example 4.5 [continued]

n 1 2 3 4 5 6 7 8 9 10 11 12

`n 0 2 2 2 3 3 3 5 5 5 5 7

T̃n ∅ {1} {1} {1, 2} {1, 2, 3} ∅ ∅ {3, 4, 5} {3, 4, 5} {3, 4, 5} {3, 4, 5} {3, 5}

m 0 1 1 4 4 7

unique? X × × X × × X × × X X ×

I Initialization: `0 = 0, T0 = T̃0 = ∅.
I Choose F1: since k0 = 0, the minimal width LFSR generating (k0) is

the unique LFSR of width 0, with taps T1 = T̃1 = ∅.
I Step n = 1: case (b), we got `2 = 2, T̃2 = {1}.
I Step n = 2: case (a), we got `3 = `2 = 2, T̃3 = T̃2 = {1}.
I Step n = 3: since F3 generates (0, 1, 1, 1) which is wrong in position

3, case (b) applies. The length last increased at step 1, so m = 1.
We have

U = {t̃ + 3− 1 : t̃ ∈ T̃1} = ∅
and T̃4 = T̃3 4 (U ∪ {3− 1}) = {1}4 {2} = {1, 2}. We take
`4 = max(`3, 3 + 1− `3) = max(2, 2) = 2.



Example 4.5 [continued]

n 1 2 3 4 5 6 7 8 9 10 11 12

`n 0 2 2 2 3 3 3 5 5 5 5 7

T̃n ∅ {1} {1} {1, 2} {1, 2, 3} ∅ ∅ {3, 4, 5} {3, 4, 5} {3, 4, 5} {3, 4, 5} {3, 5}

m 0 1 1 4 4 7

unique? X × × X × × X × × X X ×

I Step n = 4: since F4 generates (0, 1, 1, 0, 1) which is wrong in
position 4, case (b) applies. Again m = 1. We have

U = {t̃ + 4− 1 : t̃ ∈ T̃1} = ∅

and T̃5 = T̃4 4 (U ∪ {4− 1}) = {1, 2}4 {3} = {1, 2, 3}. We take
`5 = max(`4, 4 + 1− `4) = max(2, 3) = 3.

I Step n = 5: since F5 generates (0, 1, 1, 0, 0, 1), which is wrong in
position 5, case (b) applies. The length increased at step 4, so
m = 4. We have

U = {t̃ + 5− 4 : t̃ ∈ T̃4} = {2, 3}

and T̃5 = T̃4 4 (U ∪ {5− 4}) = {1, 2, 3}4 {2, 3, 1} = ∅. We take
`6 = max(`5, 5 + 1− `5) = max(3, 3) = 3.



§5 Discrete Fourier Transform

Given x ∈ F2 we define (−1)x by regarding x as an ordinary
integer. Thus (−1)0 = 1 and (−1)1 = −1. Given f : Fn

2 → F2 we
define (−1)f : Fn

2 → {−1, 1} by (−1)f (x) = (−1)f (x).

Definition 5.1
Let f , g : Fn

2 → F be Boolean functions. We define the correlation
between f and g by

corr(f , g) =
1

2n

∑
x∈Fn

2

(−1)f (x)(−1)g(x).

Lemma 5.2
Let f , g : Fn

2 → F be Boolean functions. Let

msame =
∣∣{x ∈ Fn

2 : f (x) = g(x)}
∣∣

mdiff =
∣∣{x ∈ Fn

2 : f (x) 6= g(x)}
∣∣.

Then corr(f , g) = (msame −mdiff)/2n.



Exercise 5.3
Let X ∈ Fn

2 be a random variable distributed uniformly at random,
so P[X = x ] = 1/2n for each x ∈ Fn

2. Show that

corr(f , g) = P[f (X ) = g(X )]− P[f (X ) 6= g(X )

and

P[f (X ) = g(X )] = 1
2(1 + corr(f , g)),

P[f (X ) 6= g(X )] = 1
2(1− corr(f , g)).



Given T ⊆ {1, . . . , n}, define LT : Fn
2 → F2 by

LT (x) =
∑
t∈T

xt .

We think of LT as ‘tapping’ (like an LFSR) the positions in T . For
example, L{i}(x1, . . . , xn) = xi returns the entry in position i and
L∅(x) = 0 is the zero function.

Exercise 5.4
Let f : Fn

2 → F2 be a Boolean function. Show that corr(f , L∅) = 0
if and only if P[f (X ) = 0] = P[f (X ) = 1] = 1

2 .

Lemma 5.5
The linear functions Fn

2 → F are precisely the LT : Fn
2 → F2 for

T ⊆ {1, . . . , n}. If S ,T ⊆ {1, . . . , n} then

corr(LS , LT ) =

{
1 if S = T

0 otherwise.



Example 5.6

Let maj : F3
2 → F2 be the majority vote function from

Exercise 3.4(ii). Then

corr(maj, LT ) =


1
2 if T = {1}, {2}, {3}
−1

2 if T = {1, 2, 3}
0 otherwise.

Moreover

(−1)maj = 1
2(−1)L{1} + 1

2(−1)L{2} + 1
2(−1)L{3} − 1

2(−1)L{1,2,3} .



To generalize the previous example, we define an inner product on
the vector space of functions Fn

2 → R by

〈θ, φ〉 =
1

2n

∑
x∈2n

θ(x)φ(x).

Exercise: check that, as required for an inner product, 〈θ, θ〉 ≥ 0
and that 〈θ, θ〉 = 0 if and only if θ(x) = 0 for all x ∈ Fn

2.

Lemma 5.7
Let f , g : Fn

2 → F2 be Boolean functions. Then

〈(−1)f , (−1)g 〉 = corr(f , g).



To generalize the previous example, we define an inner product on
the vector space of functions Fn

2 → R by

〈θ, φ〉 =
1

2n

∑
x∈2n

θ(x)φ(x).

Exercise: check that, as required for an inner product, 〈θ, θ〉 ≥ 0
and that 〈θ, θ〉 = 0 if and only if θ(x) = 0 for all x ∈ Fn

2.

Theorem 5.8 (Discrete Fourier Transform)
(a) The functions (−1)LT for T ⊆ {1, . . . , n} are an orthonormal

basis for the vector space of functions Fn
2 → R.

(b) Let θ : Fn
2 → R. Then

θ =
∑

T⊆{1,...,n}

〈θ, (−1)LT 〉(−1)LT .

(c) Let f : Fn
2 → F2 be a Boolean function. Then

(−1)f =
∑

T⊆{1,...,n}

corr(f , LT )(−1)LT .



§6 Linear Cryptanalysis

Example 6.1

Let S : F4
2 → F4

2 be the S-box in the Q-block cipher (see Example
8.4 in the main notes), defined by

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

(a) Suppose we look at position 0 of the output by considering
L{0} ◦ S : F4

2 → F2. We have

(L{0} ◦ S)
(
(x0, x1, x2, x3)

)
= x2 = L{2}

(
(x0, x1, x2, x3)

)
.

Hence L{0} ◦ S = L{2}. By Lemma 5.5,

corr(L{0} ◦ S , LT ) =

{
1 if T = {2}
0 otherwise.

.



§6 Linear Cryptanalysis

Example 6.1

Let S : F4
2 → F4

2 be the S-box in the Q-block cipher (see Example
8.4 in the main notes), defined by

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

(b) Instead if we look at position 2, the relevant Boolean function
is L{2} ◦ S , for which L{2} ◦ S

(
(x0, x1, x2, x3)

)
= x0 + x1x2.

Exercise: show that

corr(L{2} ◦ S , LT ) =


1
2 if T = {0}, {0, 1}, {0, 2}
−1

2 if T = {0, 1, 2}
0 otherwise

.

(This generalizes the correlations computed in Example 7.2 in
the main course.)



Example 6.2

For k ∈ F12
2 let ek : F8

2 → F8
2 be the Q-block cipher, as defined in

Example 8.4. Then ek
(
(v ,w)

)
= (v ′,w ′) where

v ′ = w + S
(
v + S(w + k(1)) + k(2)).

Recall that k(1) = (k0, k1, k2, k3) and k(2) = (k4, k5, k6, k7).
Example 6.1 suggests looking at corr(L{0} ◦ ek , L{2}). (See the
optional question on Problem Sheet 9 for the theoretical
justification for this.) We have

(L{0} ◦ ek)
(
(v ,w)

)
= L{0}

(
(v ′,w ′)

)
= v ′0

L{2}
(
(v ,w)

)
= v2.

Exercise: using that k
(1)
0 = k0, k

(1)
1 = k1, k

(1)
2 = k2 and k

(2)
2 = k6,

check that

v ′0 = v2 + (w1 + k1)(w2 + k2) + k0 + k6.



Example 6.2 [continued]
When we compute corr(L{0} ◦ ek , L{2}) by averaging over all
(v ,w) ∈ F8

2, the values of k1 and k2 are irrelevant. For instance, if
both are 0 we average (−1)w1w2 over all four (w1,w2) ∈ F2

2 to get
1
2 ; if both are 1 we average (−1)(w1+1)(w2+1), seeing the same
summands in a different order, and still getting 1

2 . Hence

corr(L{0} ◦ ek , L{2}) =
1

28

∑
(v ,w)∈F8

2

(−1)v2+w1w2+k0+k6(−1)v2

=
1

28

∑
(v ,w)∈F8

2

(−1)w1w2+k0+k6

= (−1)k0+k6
1

4

∑
w1,w2∈{0,1}

(−1)w1w2

= 1
2(−1)k0+k6 .

We can estimate this correlation from a collection of
plaintext/ciphertext pairs (v ,w), (v ′,w ′) by computing (−1)v

′
0+v2

for each pair. The average is 1
2(−1)k0+k6 which tells us k0 + k6.



Attack on the Q-block cipher

Using our collection of plaintext/ciphertext pairs we can also
estimate

corr(L{0} ◦ ek , L{2,5}) = 1
2(−1)k0+k6+k1

corr(L{0} ◦ ek , L{2,6}) = 1
2(−1)k0+k6+k2

and so learn k1 and k2 as well as k0 + k6. There are similar high
correlations of 1

2 for output bit 1. Using these one learns k2 and k3
as well as k1 + k7.

Exercise 6.3
Given k0 + k6, k1 + k7, k1, k2, k3, how many possibilities are there
for the key in the Q-block cipher?

The attack by differential cryptanalysis required chosen plaintexts.
The attack by linear cryptanalysis works with any observed
collection of plaintext/ciphertext pairs. It is therefore more widely
applicable, as well as more powerful.
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