
MT5462 Advanced Cipher Systems

Mark Wildon, mark.wildon@rhul.ac.uk

Administration:

I Please take the first installment of the notes.

I All handouts will be put on Moodle marked M.Sc..

I Lectures: Monday 4pm (MFLEC), Friday 11am (MC219),
Friday 4pm (MC219).

I Extra lecture for MT5462: Thursday 1pm (MC336).

I Office hours in McCrea 240: Tuesday 3.30pm, Wednesday
10am, Thursday noon.

mark.wildon@rhul.ac.uk


Course Representatives

‘Course reps are an important link between students and
staff at Royal Holloway. They are elected by students on
a particular course to represent their views, and
ultimately, to help improve the quality of education
provided by the College.’

I Talk to people in their cohort to find out how things are going.

I Meet with academic and departmental staff at least once a
term to discuss their course.

I Communicate any changes or new ideas that your course team
may be planning with everyone.

I Keep in touch with the Students’ Union to keep us informed
of what it is like to be a student here.





§1 Revision of fields and polynomials

Definition 1.1
A field is a set of elements F with two operations, + (addition)
and × (multiplication), and two special elements 0, 1 ∈ F such
that 0 6= 1 and

(1) a + b = b + a for all a, b ∈ F;

(2) 0 + a = a + 0 = a for all a ∈ F;

(3) for all a ∈ F there exists b ∈ F such that a + b = 0;

(4) a + (b + c) = (a + b) + c for all a, b, c ∈ F;

(5) a× b = b × a for all a, b ∈ F;

(6) 1× a = a× 1 = a for all a ∈ F;

(7) for all non-zero a ∈ F there exists b ∈ F such that a× b = 1;

(8) a× (b × c) = (a× b)× c for all a, b, c ∈ F;

(9) a× (b + c) = a× b + a× c for all a, b, c ∈ F.

If F is finite, then we define its order to be its number of elements.



Exercise: Show, from the field axioms, that if x ∈ F, then x has a
unique additive inverse, and that if x 6= 0 then x has a unique
multiplicative inverse. Show also that if F is a field then a× 0 = 0
for all a ∈ F.

Exercise: Show from the field axioms that if F is a field and a,
b ∈ F are such that ab = 0, then either a = 0 or b = 0.

Theorem 1.2
Let p be a prime. The set Fp = {0, 1, . . . , p− 1} with addition and
multiplication defined modulo p is a finite field of order p.



Example 1.3

The addition and multiplication tables for the finite field
F4 = {0, 1, α, 1 + α} of order 4 are

+ 0 1 α 1 + α

0 0 1 α 1 + α
1 1 0 1 + α α
α α 1 + α 0 1

1 + α 1 + α α 1 0

× 1 α 1 + α

1 1 α 1 + α
α α 1 + α 1

1 + α 1 + α 1 α



Definition 1.4
If f (x) = a0 + a1x + a2 + · · ·+ amx

m where am 6= 0, then we say
that m is the degree of the polynomial f , and write deg f = m.
The degree of the zero polynomial is, by convention, −1.

It is often useful that the constant term in a polynomial f is f (0).

Lemma 1.5 (Division algorithm)

Let F be a field, let g(x) ∈ F[x ] be a non-zero polynomial and let
g(x) ∈ F[x ]. There exist polynomials s(x), r(x) ∈ F[x ] such that

f (x) = s(x)g(x) + r(x)

and either r(x) = 0 or deg r(x) < deg g(x).

We say that s(x) is the quotient and r(x) is the remainder when
f (x) is divided by g(x). Lemma 1.5 will not be proved in lectures.
The important thing is that you can compute the quotient and
remainder. In Mathematica: PolynomialQuotientRemainder.



Lemma 1.7
Let F be a field.

(i) If f ∈ F[x ] has a ∈ F as a root, i.e. f (a) = 0, then there is a
polynomial g ∈ F[x ] such that f (x) = (x − a)g(x).

(ii) If f ∈ F[x ] has degree m ∈ N0 then f has at most m distinct
roots in F.

(iii) Suppose that f , g ∈ F[x ] are non-zero polynomials such that
deg f , deg g < t. If there exist distinct c1, . . . , ct ∈ F such
that f (ci ) = g(ci ) for each i ∈ {1, . . . , t} then f = g .

Part (iii) is the critical result. It says, for instance, that a linear
polynomial is determined by any two of its values: when F is the
real numbers R this should be intuitive—there is a unique line
through any two distinct points. Similarly a quadratic is
determined by any three of its values, and so on.



Lemma 1.7
Let F be a field.

(i) If f ∈ F[x ] has a ∈ F as a root, i.e. f (a) = 0, then there is a
polynomial g ∈ F[x ] such that f (x) = (x − a)g(x).

(ii) If f ∈ F[x ] has degree m ∈ N0 then f has at most m distinct
roots in F.

(iii) Suppose that f , g ∈ F[x ] are non-zero polynomials such that
deg f , deg g < t. If there exist distinct c1, . . . , ct ∈ F such
that f (ci ) = g(ci ) for each i ∈ {1, . . . , t} then f = g .

Part (iii) is the critical result. It says, for instance, that a linear
polynomial is determined by any two of its values: when F is the
real numbers R this should be intuitive—there is a unique line
through any two distinct points. Similarly a quadratic is
determined by any three of its values, and so on.



Conversely, given t values, there is a polynomial of degree at most
t taking these values at any t distinct specified points. This has a
nice constructive proof.

Lemma 1.8 (Polynomial interpolation)

Let F be a field. Let

c1, c2, . . . , ct ∈ F

be distinct and let y1, y2, . . . , yt ∈ F. The unique polynomial
f (x) ∈ F[x ] of degree < t such that f (ci ) = yi for all i is

f (x) =
t∑

i=1

yi

∏
j 6=i (x − cj)∏
j 6=i (ci − cj)

.



Polynomials in multiple variables are often useful for describing
cryptographic primitives. For example,
f (x1, x2, x3) = x1x2 + x1x3 + x2x3 is a multivariable polynomial in
the three variables x1,x2,x3 and coefficients in F2.

Exercise 1.9
Let a1, a2, a3 ∈ F2. Show that, as defined above,

f (a1, a2, a3) =

{
0 if at most one of the ai is 1

1 if at least two of the ai are 1.
.



§2: Shamir’s Secret Sharing Scheme

Example 2.1

Ten people want to know their mean salary. But none is willing to
reveal her salary si to the others, or to a ‘Trusted Third Party’.
Instead Person 1 chooses a large number M. She remembers M,
and whispers M + s1 to Person 2. Then Person 2 whispers
M + s1 + s2 to Person 3, and so on, until finally Person 10 whispers
M + s1 + s2 + · · ·+ s10 to Person 1. Person 1 then subtracts M
and can tell everyone the mean (s1 + s2 + · · ·+ s10)/10.

Exercise 2.3
In the two person version of the scheme, Person 1 can deduce
Person 2’s salary from M + s1 + s2 by subtracting M + s1. [Typo in
printed notes: change N to M.] Is this a defect in the scheme?



Definition 2.4
Let p be a prime and let s ∈ Fp. Let n ∈ N, t ∈ N be such that
t ≤ n < p. Let c1, . . . , cn ∈ Fp be distinct non-zero elements. In
the Shamir scheme with n people and threshold t, Trevor chooses
at random a1, . . . , at−1 ∈ Fp and constructs the polynomial

f (x) = s + a1x + · · ·+ at−1x
t−1

with constant term s. Trevor then issues the share f (ci ) to
Person i .

Example 2.5

Suppose that n = 5 and t = 3. Take p = 7 and ci = i for each
i ∈ {1, 2, 3, 4, 5}. We suppose that s = 5. Trevor chooses
a1, a2 ∈ F7 at random, getting a1 = 6 and a2 = 1. Therefore
f (x) = 5 + 6x + x2 and the share of Person i is f (ci ), for each
i ∈ {1, 2, 3, 4, 5}, so(

f (1), f (2), f (3), f (4), f (5)
)

= (5, 0, 4, 3, 4).



Exercise 2.6
Suppose that Person 1, with share f (1) = 5, and Person 2, with
share f (2) = 0, cooperate in an attempt to discover s. Show that
for each z ∈ F7 there exists a unique polynomial fz(x) such that
deg f ≤ 2 and f (0) = z , fz(1) = 5 and fz(2) = 0.

Theorem 2.7
In a Shamir scheme with n people, threshold t and secret s, any t
people can determine s but any t − 1 people can learn nothing
about s.



Lemma 1.7
Let F be a field.

(i) If f ∈ F[x ] has a ∈ F as a root, i.e. f (a) = 0, then there is a
polynomial g ∈ F[x ] such that f (x) = (x − a)g(x).

(ii) If f ∈ F[x ] has degree m ∈ N0 then f has at most m distinct
roots in F.

(iii) Suppose that f , g ∈ F[x ] are non-zero polynomials such that
deg f , deg g < t. If there exist distinct c1, . . . , ct ∈ F such
that f (ci ) = g(ci ) for each i ∈ {1, . . . , t} then f = g .

Lemma 1.8 (Polynomial interpolation)

Let F be a field. Let c1, c2, . . . , ct ∈ F be distinct and let
y1, y2, . . . , yt ∈ F. The unique polynomial f (x) ∈ F[x ] of degree
< t such that f (ci ) = yi for all i is

f (x) =
t∑

i=1

yi

∏
j 6=i (x − cj)∏
j 6=i (ci − cj)

.



Exercise 2.8
Suppose Trevor shares s ∈ Fp across n computers using the Shamir
scheme with threshold t. He chooses the first t computers. They
are instructed to exchange their shares; then each computes s and
sends it to Trevor. Unfortunately Malcolm has compromised
computer 1. Show that Malcolm can both learn s and trick Trevor
into thinking his secret is any chosen s ′ ∈ Fp.



Example 2.9

The root key for DNSSEC, part of web of trust that guarantees an
IP connection really is to the claimed end-point, and not Malcolm
doing a Man-in-the-Middle attack, is protected by a secret sharing
scheme with n = 7 and t = 5: search for ‘Schneier DNSSEC’.

Exercise 2.10
Take the Shamir scheme with threshold t and evaluation points
1, . . . , n ∈ Fp where p > n. Trevor has shared two large numbers r
and s across n cloud computers, using polynomials f and g so that
the shares are

(
f (1), . . . , f (n)

)
and

(
g(1), . . . , g(n)

)
.

(a) How can Trevor secret share r + s mod p?

(b) How can Trevor secret share rs mod p?

Note that all the computation has to be done on the cloud!



Remark 2.11
The Reed–Solomon code associated to the parameters p, n, t and
the field elements c1, c2, . . . , cn is the length n code over Fp with
codewords all possible n-tuples

{
(
f (c1), f (c2), . . . , f (cn)

)
: f ∈ Fp[x ], deg f ≤ t − 1}.

It will be studied in MT5461. By Theorem 2.7, each codeword is
determined by any t of its positions. Thus two codewords agreeing
in n − t + 1 positions are equal: this shows the Reed–Solomon
code has minimum distance at least n − t + 1.

For simplicity we have worked over a finite field of prime order in
this section. Reed–Solomon codes and the Shamir secret sharing
scheme generalize in the obvious way to arbitrary finite fields. For
example, the Reed–Solomon codes used on compact discs have
alphabet the finite field F28 .



Remark 2.11
The Reed–Solomon code associated to the parameters p, n, t and
the field elements c1, c2, . . . , cn is the length n code over Fp with
codewords all possible n-tuples

{
(
f (c1), f (c2), . . . , f (cn)

)
: f ∈ Fp[x ], deg f ≤ t − 1}.

It will be studied in MT5461. By Theorem 2.7, each codeword is
determined by any t of its positions. Thus two codewords agreeing
in n − t + 1 positions are equal: this shows the Reed–Solomon
code has minimum distance at least n − t + 1.

For simplicity we have worked over a finite field of prime order in
this section. Reed–Solomon codes and the Shamir secret sharing
scheme generalize in the obvious way to arbitrary finite fields. For
example, the Reed–Solomon codes used on compact discs have
alphabet the finite field F28 .



§3 Introduction to Boolean Functions

Definition 3.1
Let n ∈ N. An n-variable boolean function is a function Fn

2 → F2.

A boolean function f : Fn
2 → F2 can be defined by its truth table,

which records for each x ∈ Fn
2 its image f (x). For example, the

Boolean functions F2
2 → F2 of addition and multiplication are

defined by the truth tables below.

x y x + y

0 0 0
0 1 1
1 0 1
1 1 0

x y xy

0 0 0
0 1 0
1 0 0
1 1 1



Example 3.2

(1) As usual + : Fn
2 × Fn

2 → Fn
2 denotes vector space addition. For

instance, if n = 8, then 1010 1010 + 0000 1111 = 1010 0101
and 1000 0001 + 1000 0001 = 0000 0000: note each sum can
be computed bit-by-bit from the truth table for addition
above.

Each round of the widely used block cipher AES is of the form
(x , k) 7→ G (x) + k where x ∈ F128

2 is the input to the round
(derived ultimately from the plaintext) and k ∈ F128

2 is derived
from the key; the definition of G : F128

2 → F128
2 will be seen in

Part C. [Error in printed notes: 256 should be 128.]



(2) In the block cipher FEAL, a critical ‘mixing’ function is
modular addition in Z/28Z, denoted �. To define � we
identify F8

2 with Z/28Z by writing numbers in their binary
form, as on the preliminary problem sheet. For instance,

10101010� 00001111 = 10111001

10000001� 10000001 = 00000010

corresponding to 170 + 15 = 185 mod 256 and 129 + 129 = 2
mod 256. Modular addition is a convenient operation because
it is fast on a computer; unfortunately because of the way it is
combined with the other functions in each round, FEAL is now
famous only for the many ways in which it can be attacked.



Exercise 3.3
Motivated by FEAL, define f : F4

2 → F2 by f (x1, x0, y1, y0) = z1

where x1x0 � y1y0 = z1z0 mod 4. For instance, since 3 + 1 = 0
mod 4 we have 11� 01 = 00 and so f (1, 1, 0, 1) = 0.

(a) Is f a Boolean function?

(b) Check that f is also defined by

f (x1, x0, y1, y0) = x1 + y1 + x0x1.

(c) What is the connection with the arithmetic algorithm you
learned at school?



Exercise 3.4
Complete the truth table for logical implication, writing F for 0
(false) and T for 1 (true).

x y x =⇒ y

F F
F T
T F
T T

Exercise 1.9 and Exercise 3.3 show that Boolean functions can be
expressed in many different ways, not always obviously the same.
In the remainder of this section we study ‘normal forms’ for
boolean functions. Applications to cryptography will follow.

Lemma 3.5
There are 22n boolean function in n variables.



Exercise 3.6
Find a simple form for the product of f (x1, x2, x3) = x1x2x3 and
maj(x1, x2, x3) = x1x2 + x2x3 + x3x1. (Here x2 = 1 + x2 is the
bit-flip of x2, as defined on the Preliminary Problem Sheet.)

We define a boolean monomial to be a product of the form
xi1 . . . xir where i1 < . . . < ir . Given I ⊆ {1, . . . , n}, let

xI =
∏
i∈I

xi .

By definition (or convention if you prefer), x∅ = 1.

Example 3.7

The Toffoli gate is important in quantum computation. It takes 3
input qubits and returns 3 output qubits. Its classical analogue
(which only returns one bit) is the 3 variable Boolean function
defined in words by ‘if x1 and x2 are both true then negate x3, else
return x3’. We will find its algebraic normal form, first direct from
this definition, and then from its truth-table.



Theorem 3.8
Let f : Fn

2 → Fn
2 be an n-variable Boolean function. There exist

unique coefficients cI ∈ {0, 1}, one for each I ⊆ {1, . . . , n}, such
that

f =
∑

I⊆{1,...,n}

cI xI .

This expression for f is called the algebraic normal form of f .



It is possible to give an explicit formula for the coefficients cI in
the algebraic normal form.

Example 3.9

Let f : F3
2 → F2 be a 3-variable Boolean function

(a) Show that the coefficient c∅ of x∅ = 1 in f is f (0, 0, 0).

(b) Show that the coefficient c{3} of x{3} = x3 in f is
f (0, 0, 0) + f (0, 0, 1).

(c) Show that the coefficient c{1,2} of x{1,2} = x1x2 in f is
f (0, 0, 0) + f (1, 0, 0) + f (0, 1, 0) + f (1, 1, 0).

For example, let f (x1, x2, x3) = x1x2 + x3 be the Toffoli function
seen in Example 3.7. Then, by (c),

f (0, 0, 0) + f (1, 0, 0) + f (0, 1, 0) + f (1, 1, 0) = 0 + 0 + 0 + 1 = 1

is the coefficient of x1x2.

Exercise 3.10
What do you think is the formula for the coefficient c{2,3}? Does it
work for the Toffoli function? How about if f (x1, x2, x3) = x1x2x3?



Proposition 3.11

Let f : Fn
2 → F2 be an n-variable Boolean function and suppose

that f has algebraic normal form

f =
∑

I⊆{1,...,n}

cI xI .

Then
cI =

∑
f (z1, . . . , zn)

where the sum is over all z1, . . . , zn ∈ {0, 1} such that
{j : zj = 1} ⊆ I .



For the remaining normal forms it is best to think of 0 ∈ F2 as
false and 1 ∈ F2 as true. Then the bitflip x corresponds to logical
negation: 0↔ 1 or T ↔ F .

Following the usual convention, we write ∧ for ‘logical and’ (also
called conjunction) and ∨ for ‘logical or’ (also called disjunction).
In algebraic normal form, x ∧ y = xy and x ∨ y = x + y + xy .
Note that x ∨ y is true if both x and y are true.

Definition 3.12
Fix n ∈ N. Given J ⊆ {1, . . . , n} let

fJ(x1, . . . , xn) = z1 ∧ · · · ∧ zn

where

zj =

{
xj if j ∈ J

xj if j 6∈ J.

A n-variable Boolean function of the form
∨

J∈B fJ , where B is a
collection of subsets of {1, . . . , n}, is said to be in disjunctive
normal form.



Example 3.13

(a) The majority vote function maj(x1, x2, x3) is true if and only if
at two of x1, x2, x3 are true. Therefore

maj(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x3).

This is not in disjunctive normal form, but it is now only a
short step to get

maj(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

= f{1,2} ∨ f{1,3} ∨ f{2,3} ∨ f{1,2,3}.



Example 3.13 [continued]
(b) We saw in Example 3.7 that the truth table for the Toffoli

function f (x1, x2, x3) = x1x2 + x3 is

x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1

x1 x2 x3 f

1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

So f (x1, x2, x3) is true if and only the set of true variables is
one of {3}, {2, 3}, {1, 3} or {1, 2}. Correspondingly, working
down the truth table, as in the proof of Theorem 3.8, we get

f (x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3).

= f{3} ∨ f{2,3} ∨ f{1,3} ∨ f{1,2}.

(c) We will use the same truth table trick to express the constant
Boolean function 1 in disjunctive normal form.



Theorem 3.14
Let f : Fn

2 → F2 be an n-variable Boolean function. There exists a
unique collection B of subsets of {1, . . . , n} such that

f =
∨
J∈B

fJ .



Definition 3.15
Fix n ∈ N. Given J ⊆ {1, . . . , n}, let gJ = z1 ∨ · · · ∨ zn where, as
in Definition 3.12,

zj =

{
xj if j ∈ J

xj if j 6∈ J.
.

A Boolean function of the form
∨

J∈B gJ , where B is a collection of
subsets of {1, . . . , n}, is said to be in conjunctive normal form.

Example 3.16

The majority vote function maj on 3-variables is false if and only if
at least two of the variables are false. Hence
maj(x1, x2, x3) = f∅ ∨ f{1} ∨ f{2} ∨ f{3} in disjunctive normal form
and so

maj(x1, x2, x3) =
(
f∅ ∨ f{1} ∨ f{2} ∨ f{3}

)
= f∅ ∧ f{1} ∧ f{2} ∧ f{3}

= g{1,2,3} ∧ g{2,3} ∧ g{1,3} ∧ g{1,2}

= (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

in conjunctive normal form. In words this says: maj(x1, x2, x3) is
true if and only if at most one of x1, x2, x3 is false.



§4 Berlekamp–Massey Algorithm

The Berlekamp–Massey algorithm creates an LFSR of minimal
width generating a given keystream. To illustrate it, we will play
the following game: at each step, ask ‘What is the minimal width
LFSR generating this keystream’? I will make the first few moves.

I Start with 000.

Backtaps ∅, width 0

I Move to 0001. Backtaps ∅ (or anything else!), width 4

I Move to 00010. Backtaps ∅ (or other choices), width 4

I Move to 000101. Backtaps {2} (or other choices), width 4

I Move to 0001011. Backtaps {2, 3} (or {2,3,4}), width 4

I Move to 00010110. Backtaps {2, 3, 4} (only) width 4

I Move to ? Aim: force the width to go up!

By convention, the LFSR of width 0 (which must have empty taps)
generates the all-zeros keystream 0000 . . ..



§4 Berlekamp–Massey Algorithm

The Berlekamp–Massey algorithm creates an LFSR of minimal
width generating a given keystream. To illustrate it, we will play
the following game: at each step, ask ‘What is the minimal width
LFSR generating this keystream’? I will make the first few moves.

I Start with 000. Backtaps ∅, width 0

I Move to 0001.

Backtaps ∅ (or anything else!), width 4

I Move to 00010. Backtaps ∅ (or other choices), width 4

I Move to 000101. Backtaps {2} (or other choices), width 4

I Move to 0001011. Backtaps {2, 3} (or {2,3,4}), width 4

I Move to 00010110. Backtaps {2, 3, 4} (only) width 4

I Move to ? Aim: force the width to go up!

By convention, the LFSR of width 0 (which must have empty taps)
generates the all-zeros keystream 0000 . . ..



§4 Berlekamp–Massey Algorithm

The Berlekamp–Massey algorithm creates an LFSR of minimal
width generating a given keystream. To illustrate it, we will play
the following game: at each step, ask ‘What is the minimal width
LFSR generating this keystream’? I will make the first few moves.

I Start with 000. Backtaps ∅, width 0

I Move to 0001. Backtaps ∅ (or anything else!), width 4

I Move to 00010. Backtaps ∅ (or other choices), width 4

I Move to 000101. Backtaps {2} (or other choices), width 4

I Move to 0001011. Backtaps {2, 3} (or {2,3,4}), width 4

I Move to 00010110. Backtaps {2, 3, 4} (only) width 4

I Move to ? Aim: force the width to go up!

By convention, the LFSR of width 0 (which must have empty taps)
generates the all-zeros keystream 0000 . . ..



§4 Berlekamp–Massey Algorithm

The Berlekamp–Massey algorithm creates an LFSR of minimal
width generating a given keystream. To illustrate it, we will play
the following game: at each step, ask ‘What is the minimal width
LFSR generating this keystream’? I will make the first few moves.

I Start with 000. Backtaps ∅, width 0

I Move to 0001. Backtaps ∅ (or anything else!), width 4

I Move to 00010.

Backtaps ∅ (or other choices), width 4

I Move to 000101. Backtaps {2} (or other choices), width 4

I Move to 0001011. Backtaps {2, 3} (or {2,3,4}), width 4

I Move to 00010110. Backtaps {2, 3, 4} (only) width 4

I Move to ? Aim: force the width to go up!

By convention, the LFSR of width 0 (which must have empty taps)
generates the all-zeros keystream 0000 . . ..



§4 Berlekamp–Massey Algorithm

The Berlekamp–Massey algorithm creates an LFSR of minimal
width generating a given keystream. To illustrate it, we will play
the following game: at each step, ask ‘What is the minimal width
LFSR generating this keystream’? I will make the first few moves.

I Start with 000. Backtaps ∅, width 0

I Move to 0001. Backtaps ∅ (or anything else!), width 4

I Move to 00010. Backtaps ∅ (or other choices), width 4

I Move to 000101. Backtaps {2} (or other choices), width 4

I Move to 0001011. Backtaps {2, 3} (or {2,3,4}), width 4

I Move to 00010110. Backtaps {2, 3, 4} (only) width 4

I Move to ? Aim: force the width to go up!

By convention, the LFSR of width 0 (which must have empty taps)
generates the all-zeros keystream 0000 . . ..



§4 Berlekamp–Massey Algorithm

The Berlekamp–Massey algorithm creates an LFSR of minimal
width generating a given keystream. To illustrate it, we will play
the following game: at each step, ask ‘What is the minimal width
LFSR generating this keystream’? I will make the first few moves.

I Start with 000. Backtaps ∅, width 0

I Move to 0001. Backtaps ∅ (or anything else!), width 4

I Move to 00010. Backtaps ∅ (or other choices), width 4

I Move to 000101.

Backtaps {2} (or other choices), width 4

I Move to 0001011. Backtaps {2, 3} (or {2,3,4}), width 4

I Move to 00010110. Backtaps {2, 3, 4} (only) width 4

I Move to ? Aim: force the width to go up!

By convention, the LFSR of width 0 (which must have empty taps)
generates the all-zeros keystream 0000 . . ..



§4 Berlekamp–Massey Algorithm

The Berlekamp–Massey algorithm creates an LFSR of minimal
width generating a given keystream. To illustrate it, we will play
the following game: at each step, ask ‘What is the minimal width
LFSR generating this keystream’? I will make the first few moves.

I Start with 000. Backtaps ∅, width 0

I Move to 0001. Backtaps ∅ (or anything else!), width 4

I Move to 00010. Backtaps ∅ (or other choices), width 4

I Move to 000101. Backtaps {2} (or other choices), width 4

I Move to 0001011. Backtaps {2, 3} (or {2,3,4}), width 4

I Move to 00010110. Backtaps {2, 3, 4} (only) width 4

I Move to ? Aim: force the width to go up!

By convention, the LFSR of width 0 (which must have empty taps)
generates the all-zeros keystream 0000 . . ..



§4 Berlekamp–Massey Algorithm

The Berlekamp–Massey algorithm creates an LFSR of minimal
width generating a given keystream. To illustrate it, we will play
the following game: at each step, ask ‘What is the minimal width
LFSR generating this keystream’? I will make the first few moves.

I Start with 000. Backtaps ∅, width 0

I Move to 0001. Backtaps ∅ (or anything else!), width 4

I Move to 00010. Backtaps ∅ (or other choices), width 4

I Move to 000101. Backtaps {2} (or other choices), width 4

I Move to 0001011.

Backtaps {2, 3} (or {2,3,4}), width 4

I Move to 00010110. Backtaps {2, 3, 4} (only) width 4

I Move to ? Aim: force the width to go up!

By convention, the LFSR of width 0 (which must have empty taps)
generates the all-zeros keystream 0000 . . ..



§4 Berlekamp–Massey Algorithm

The Berlekamp–Massey algorithm creates an LFSR of minimal
width generating a given keystream. To illustrate it, we will play
the following game: at each step, ask ‘What is the minimal width
LFSR generating this keystream’? I will make the first few moves.

I Start with 000. Backtaps ∅, width 0

I Move to 0001. Backtaps ∅ (or anything else!), width 4

I Move to 00010. Backtaps ∅ (or other choices), width 4

I Move to 000101. Backtaps {2} (or other choices), width 4

I Move to 0001011. Backtaps {2, 3} (or {2,3,4}), width 4

I Move to 00010110. Backtaps {2, 3, 4} (only) width 4

I Move to ? Aim: force the width to go up!

By convention, the LFSR of width 0 (which must have empty taps)
generates the all-zeros keystream 0000 . . ..



§4 Berlekamp–Massey Algorithm

The Berlekamp–Massey algorithm creates an LFSR of minimal
width generating a given keystream. To illustrate it, we will play
the following game: at each step, ask ‘What is the minimal width
LFSR generating this keystream’? I will make the first few moves.

I Start with 000. Backtaps ∅, width 0

I Move to 0001. Backtaps ∅ (or anything else!), width 4

I Move to 00010. Backtaps ∅ (or other choices), width 4

I Move to 000101. Backtaps {2} (or other choices), width 4

I Move to 0001011. Backtaps {2, 3} (or {2,3,4}), width 4

I Move to 00010110.

Backtaps {2, 3, 4} (only) width 4

I Move to ? Aim: force the width to go up!

By convention, the LFSR of width 0 (which must have empty taps)
generates the all-zeros keystream 0000 . . ..



§4 Berlekamp–Massey Algorithm

The Berlekamp–Massey algorithm creates an LFSR of minimal
width generating a given keystream. To illustrate it, we will play
the following game: at each step, ask ‘What is the minimal width
LFSR generating this keystream’? I will make the first few moves.

I Start with 000. Backtaps ∅, width 0

I Move to 0001. Backtaps ∅ (or anything else!), width 4

I Move to 00010. Backtaps ∅ (or other choices), width 4

I Move to 000101. Backtaps {2} (or other choices), width 4

I Move to 0001011. Backtaps {2, 3} (or {2,3,4}), width 4

I Move to 00010110. Backtaps {2, 3, 4} (only) width 4

I Move to ? Aim: force the width to go up!

By convention, the LFSR of width 0 (which must have empty taps)
generates the all-zeros keystream 0000 . . ..



§4 Berlekamp–Massey Algorithm

The Berlekamp–Massey algorithm creates an LFSR of minimal
width generating a given keystream. To illustrate it, we will play
the following game: at each step, ask ‘What is the minimal width
LFSR generating this keystream’? I will make the first few moves.

I Start with 000. Backtaps ∅, width 0

I Move to 0001. Backtaps ∅ (or anything else!), width 4

I Move to 00010. Backtaps ∅ (or other choices), width 4

I Move to 000101. Backtaps {2} (or other choices), width 4

I Move to 0001011. Backtaps {2, 3} (or {2,3,4}), width 4

I Move to 00010110. Backtaps {2, 3, 4} (only) width 4

I Move to ? Aim: force the width to go up!

By convention, the LFSR of width 0 (which must have empty taps)
generates the all-zeros keystream 0000 . . ..



Recall from Definition 5.1(iii) that the keystream of the LFSR of
width ` with taps T ⊆ {0, . . . , `− 1} generated by the key
(k0, . . . , k`−1) ∈ F`

2 is defined by

ks =
∑
t∈T

ks−`+t for s ≥ `.

In the Berlekamp–Massey algorithm, it is more convenient to use
the backward taps, defined by

T̃ = {`− t : t ∈ T}.

Note that T̃ ⊆ {1, . . . , `}. With this notation,

ks =
∑
t̃∈T̃

ks−t̃ for each s ≥ `. (†)

We also need the symmetric difference of sets X and Y defined by

T 4U = {s ∈ T ∪ U : s 6∈ S ∩ T}.

Thus T 4U is the elements lying in exactly one of T and U.



Recall from Definition 5.1(iii) that the keystream of the LFSR of
width ` with taps T ⊆ {0, . . . , `− 1} generated by the key
(k0, . . . , k`−1) ∈ F`

2 is defined by

ks =
∑
t∈T

ks−`+t for s ≥ `.

In the Berlekamp–Massey algorithm, it is more convenient to use
the backward taps, defined by

T̃ = {`− t : t ∈ T}.

Note that T̃ ⊆ {1, . . . , `}. With this notation,

ks =
∑
t̃∈T̃

ks−t̃ for each s ≥ `. (†)

We also need the symmetric difference of sets X and Y defined by

T 4U = {s ∈ T ∪ U : s 6∈ S ∩ T}.

Thus T 4U is the elements lying in exactly one of T and U.



Lemma 4.1
Let T , U ⊆ N0. Let f and g be the feedback functions for LFSRs
with taps T and U, respectively, each of width at most `. Then

f
(
(x0, x1, . . . , x`−1)

)
+ g

(
(x0, x1, . . . , x`−1)

)
=

∑
s∈T 4U

xs

is the feedback function for an LFSR with taps T 4U and
backtaps T̃ 4 Ũ. [Typo in printed notes: s ∈ T not x ∈ T ]



We fix throughout a sequence of bits k0, k1, k2, . . ..

At step n of the Berlekamp–Massey algorithm we have two LFSRs:

I An LFSR Fm of width `m with taps Tm, generating

k0, k1, . . . km−1, km . . . ;

I An LFSR Fn of width `n with taps Tn, where n > m,
generating

k0, k1, . . . , km−1, km, . . . , kn−1.

The next proposition is used to deal with case (b) in the
Berlekamp–Massey algorithm, when Fn is wrong immediately after
the first n positions.

Proposition 4.2

With the notation above, suppose that the LFSR Fn generates
(k0, k1, . . . , kn−1, kn). Let U = {t̃ + n −m : t̃ ∈ T̃m}. Setting

T̃n+1 = T̃n 4 (U ∪ {n −m})

defines an LFSR Fn+1 generating (k0, k1, . . . , kn−1, kn).



Example 4.3

Take the keystream k0k1 . . . k9 of length 10 shown below:

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0).
0 1 2 3 4 5 6 7 8 9

The LFSR F6 of width 3 and backtaps {1, 3} generates the
keystream

(1, 1, 1, 0, 1, 0, 0, 1, 1, 1).
0 1 2 3 4 5 6 7 8 9

The LFSR F7 of width 4 and backtaps {1, 4} generates the
keystream

(1, 1, 1, 0, 1, 0, 1, 1, 0, 0).
0 1 2 3 4 5 6 7 8 9

Note that F7 is wrong in position 7. Using Proposition 4.2 [Typo:
not 4.6], we take U = {t̃ + 7− 6 : t̃ ∈ T̃6} = {2, 4} and

T̃8 = T̃7 4 (U ∪ {7− 6}) = {1, 4}4 ({2, 4} ∪ {1}) = {2}.

We obtain the LFSR F8 with backtaps {2} generating

(1, 1, 1, 0, 1, 0, 1, 0, 1, 0).
0 1 2 3 4 5 6 7 8 9

Although the only backtap in {2} is 2, we still have to take the
width of F8 to be 4 (or more), to get the first 8 positions correct.



Exercise 4.4
Observe that F8 is correct for the first 8 positions, up to k7 = 0,
then wrong. Apply Proposition 4.2 [Typo: not 4.6] taking n = 8,
m = 6, and F8 and F6 as in Example 4.3. You should get the
LFSR F9 with backtaps {3, 5} generating

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0).
0 1 2 3 4 5 6 7 8 9

Since 5 is a backtap of F9 we have to take its width to be 5 (or
more).



Berlekamp–Massey Algorithm
Let c be least such that kc 6= 0. The algorithm defines LFSRs
Fc ,Fc+1, . . . so that each Fn has width `n and backtaps T̃n and
generates the first n positions of the keystream: k0, . . . , kn−1.

• [Initialization] Set T̃c = ∅, `c = 0, T̃c+1 = ∅ and
`c+1 = c + 1. [Corrected from `c+1 = c.] Set m = c .

• [Step] We have an LFSR Fn with backtaps T̃n of width `n
generating k0, . . . , kn−1 and an LFSR Fm generating
k0, . . . , km−1, km.

(a) If Fn generates k0, . . . , kn−1, kn then set T̃n+1 = T̃n, `n+1 = `n,
and so Fn+1 = Fn. Keep m as it is.

(b) If Fn generates k0, . . . , kn−1, kn, let U = {t̃ + n −m : t̃ ∈ T̃m}
and let T̃n+1 = T̃n 4 (U ∪ {n −m}) as in Proposition 4.2. Set

`n+1 = max(`n, n + 1− `n).

If `n+1 > `n, update m to n, otherwise keep m as it is.

Thus m is updated if and only if the width increases in
step (b). Note that we need max T̃n+1 ≤ `n+1 for the LFSR
Fn+1 to be well-defined: see Lemma 4.7.



Example 4.5

We apply the Berlekamp–Massey algorithm to the keystream
(1, 1, 1, 0, 1, 0, 1, 0, 0, 0) from Example 4.3. After initialization we
have T0 = ∅, `0 = 0, T1 = {1}, `1 = 1. Case (a) applies in each
step n for n ∈ {2, 4, 5, 9}. The table below shows the steps when
case (b) applies.

n T̃n `n m T̃m n −m U T̃n+1 `n+1

1 ∅ 1 0 ∅ 1 ∅ {1} 1
3 {1} 1 0 ∅ 3 ∅ {1, 3} 3
6 {1, 3} 3 3 {1} 3 {4} {1, 4} 4
7 {1, 4} 4 6 {1, 3} 1 {2, 4} {2} 4
8 {2} 4 6 {1, 3} 2 {3, 5} {3, 5} 5

Exercise. Run the algorithm starting with step 1, in which you
should define T̃2 = {1}, and finishing with step 6, in which you
should define T̃7 = {1, 4}. Example 4.3 and Exercise 4.4 then do
steps 7 and 8.



Example′ 4.5

Here is a different example to the lecture notes to show the
initialization step when the keystream begins with some 0s.

Take the sequence (0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0).

We have c = 3 so we set T̃3 = ∅, `3 = 0 and T̃4 = ∅, `4 = 4.
Hence m = 3 in the first step.

The table below now shows the steps when case (b) applies

n T̃n `n m T̃m n −m U T̃n+1 `n+1

4 ∅ 4 3 ∅ 1 ∅ {1} 4
5 {1} 4 3 ∅ 2 ∅ {1, 2} 4
8 {1, 2} 4 3 ∅ 5 ∅ {1, 2, 5} 5

10 {1, 2, 5} 5 8 {1, 2} 2 {3, 4} {1, 3, 4, 5} 6



To prove that the LFSRs defined by running the
Berlekamp–Massey algorithm have minimal possible width we need
the following proposition.

Proposition 4.6

Let n ≥ `. If an LFSR F of width ` generates the keystream
(k0, k1, . . . , kn−1, b) of length n + 1 then any LFSR F ′ generating
the keystream (k0, k1, . . . , kn−1, b) has width `′ where
`′ ≥ n + 1− `.

Recall that step n of the Berlekamp–Massey algorithm returns an
LFSR Fn+1 with backtaps T̃n+1 and width `n+1 generating
k0, . . . , kn−1, kn.

Lemma 4.7
With the notation above, if t̃ ∈ T̃n+1 then t̃ ≤ `n+1, and so Fn+1

is well-defined.

Theorem 4.8
With the notation above, `n+1 is the least width of any LFSR
generating k0 . . . kn−1kn.



§5 Discrete Fourier Transform

Given x ∈ F2 we define (−1)x by regarding x as an ordinary
integer. Thus (−1)0 = 1 and (−1)1 = −1. Given f : Fn

2 → F2 we
define (−1)f : Fn

2 → {−1, 1} by (−1)f (x) = (−1)f (x).

Definition 5.1
Let f , g : Fn

2 → F be Boolean functions. We define the correlation
between f and g by

corr(f , g) =
1

2n

∑
x∈Fn

2

(−1)f (x)(−1)g(x).

Lemma 5.2
Let f , g : Fn

2 → F be Boolean functions. Let

csame =
∣∣{x ∈ Fn

2 : f (x) = g(x)}
∣∣

cdiff =
∣∣{x ∈ Fn

2 : f (x) 6= g(x)}
∣∣.

Then corr(f , g) = (csame − cdiff)/2n.



Exercise 5.3
Let X ∈ Fn

2 be a random variable distributed uniformly at random,
so P[X = x ] = 1/2n for each x ∈ Fn

2. Show that

corr(f , g) = P[f (X ) = g(X )]− P[f (X ) 6= g(X )

and

P[f (X ) = g(X )] = 1
2 (1 + corr(f , g)),

P[f (X ) 6= g(X )] = 1
2 (1− corr(f , g)).



Correction to Problem Sheet 8: Q1(d)

I Let Γ = 0000 0010. [Not 0000 1000]. Let (v ,w) ∈ F8
2 be

chosen uniformly at random. Let (v ′,w ′) and (v ′Γ,w
′
Γ) be the

encryptions of (v ,w) and (v ,w) + Γ, respectively. Show that
no matter what the key is, (v ′,w ′) + (v ′Γ,w

′
Γ) is equally likely

to be each of the four differences
{0010 1000, 0010 1001, 0010 1010, 0010 1011}. [Corrected:
first bit in second block was wrongly 0.]



Given T ⊆ {0, . . . , n − 1}, define LT : Fn
2 → F2 by

LT (x) =
∑
t∈T

xt .

We think of LT as ‘tapping’ (like an LFSR) the positions in T . For
example, L{t}(x0, . . . , xn−1) = xt returns the entry in position t
and L∅(x) = 0 is the zero function.

Exercise 5.4
Let f : Fn

2 → F2 be a Boolean function. Show that corr(f , L∅) = 0
if and only if P[f (X ) = 0] = P[f (X ) = 1] = 1

2 .

Lemma 5.5
The linear functions Fn

2 → F are precisely the LT : Fn
2 → F2 for

T ⊆ {0, . . . , n − 1}. If S ,T ⊆ {0, . . . , n − 1} then

corr(LS , LT ) =

{
1 if S = T

0 otherwise.



Example 5.6

Let maj : F3
2 → F2 be the majority vote function defined by

maj
(
(x0, x1, x2)

)
= 1 if and only if at least two of x0, x1, x2 are

true. Then

corr(maj, LT ) =


1
2 if T = {0}, {1}, {2}
−1

2 if T = {0, 1, 2} [not {1,2,3}]
0 otherwise.

Moreover

(−1)maj = 1
2 (−1)L{0} + 1

2 (−1)L{1} + 1
2 (−1)L{2} − 1

2 (−1)L{0,1,2} .



To generalize the previous example, we define an inner product on
the vector space of functions Fn

2 → R by

〈θ, φ〉 =
1

2n

∑
x∈2n

θ(x)φ(x).

Exercise: check that, as required for an inner product, 〈θ, θ〉 ≥ 0
and that 〈θ, θ〉 = 0 if and only if θ(x) = 0 for all x ∈ Fn

2.

Lemma 5.7
Let f , g : Fn

2 → F2 be Boolean functions. Then

〈(−1)f , (−1)g 〉 = corr(f , g).



To generalize the previous example, we define an inner product on
the vector space of functions Fn

2 → R by

〈θ, φ〉 =
1

2n

∑
x∈2n

θ(x)φ(x).

Exercise: check that, as required for an inner product, 〈θ, θ〉 ≥ 0
and that 〈θ, θ〉 = 0 if and only if θ(x) = 0 for all x ∈ Fn

2.

Theorem 5.8 (Discrete Fourier Transform)
(a) The functions (−1)LT for T ⊆ {0, . . . , n − 1} [Corrected

from {1, . . . , n}] are an orthonormal basis for the vector
space of functions Fn

2 → R.

(b) Let θ : Fn
2 → R. Then

θ =
∑

T⊆{0,...,n−1}

〈θ, (−1)LT 〉(−1)LT .

(c) Let f : Fn
2 → F2 be a Boolean function. Then

(−1)f =
∑

T⊆{0,...,n−1}

corr(f , LT )(−1)LT .



§6 Linear Cryptanalysis

Example 6.1

Let S : F4
2 → F4

2 be the S-box in the Q-block cipher (see Example
8.4 in the main notes), defined by

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

(a) Suppose we look at position 0 of the output by considering
L{0} ◦ S : F4

2 → F2. We have

(L{0} ◦ S)
(
(x0, x1, x2, x3)

)
= x2 = L{2}

(
(x0, x1, x2, x3)

)
.

Hence L{0} ◦ S = L{2}. By Lemma 5.5,

corr(L{0} ◦ S , LT ) =

{
1 if T = {2}
0 otherwise.

.



§6 Linear Cryptanalysis

Example 6.1

Let S : F4
2 → F4

2 be the S-box in the Q-block cipher (see Example
8.4 in the main notes), defined by

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

(b) Instead if we look at position 2, the relevant Boolean function
is L{2} ◦ S , for which L{2} ◦ S

(
(x0, x1, x2, x3)

)
= x0 + x1x2.

Exercise: show that

corr(L{2} ◦ S , LT ) =


1
2 if T = {0}, {0, 1}, {0, 2}
−1

2 if T = {0, 1, 2}
0 otherwise

.

(This generalizes the correlations computed in Example 7.2 in
the main course.)



Example 6.2

For k ∈ F12
2 let ek : F8

2 → F8
2 be the Q-block cipher, as defined in

Example 8.4. Then ek
(
(v ,w)

)
= (v ′,w ′) where

v ′ = w + S
(
v + S(w + k(1)) + k(2)).

Recall that k(1) = (k0, k1, k2, k3) and k(2) = (k4, k5, k6, k7).
Example 6.1 suggests looking at corr(L{0} ◦ ek , L{2}). (See the
optional question on Problem Sheet 9 for the theoretical
justification for this.) We have

(L{0} ◦ ek)
(
(v ,w)

)
= L{0}

(
(v ′,w ′)

)
= v ′0

L{2}
(
(v ,w)

)
= v2.

Exercise: using that k
(1)
0 = k0, k

(1)
1 = k1, k

(1)
2 = k2 and k

(2)
2 = k6,

check that

v ′0 = v2 + (w1 + k1)(w2 + k2) + k0 + k6.



Example 6.2 [continued]
By definition

corr(L{0} ◦ ek , L{2}) =
1

28

∑
(v ,w)∈F8

2

(−1)v2+(w1+k1)(w2+k2)+k0+k6(−1)v2

=
1

28
(−1)k0+k6

∑
(v ,w)∈F8

2

(−1)(w1+k1)(w2+k2)

= (−1)k0+k6
1

22

∑
w1,w2∈F2

(−1)(w1+k1)(w2+k2)

where the third line follows because the summand for (v ,w) is the
same for all 26 pairs with the same w1 and w2. In∑

w1,w2∈F2
(−1)(w1+k1)(w2+k2), the values of k1 and k2 are

irrelevant. For instance, if both are 0 we average (−1)w1w2 over all
four (w1,w2) ∈ F2

2 to get 1
2 ; if both are 1 we average

(−1)(w1+1)(w2+1), seeing the same summands in a different order,
and still getting 1

2 . Hence 1
22

∑
w1,w2∈F2

(−1)(w1+k1)(w2+k2) = 1
2 and

corr(L{0} ◦ ek , L{2}) = 1
2 (−1)k0+k6



Attack on the Q-block cipher

We can estimate this correlation from a collection of
plaintext/ciphertext pairs (v ,w), (v ′,w ′) by computing (−1)v

′
0+v2

for each pair. The mean should be close to 1
2 (−1)k0+k6 , and the

sign then tells us k0 + k6. There are similar high correlations of 1
2

for output bit 1. Using these one learns k2 and k3 as well as
k1 + k7.

Exercise 6.3
Given k0 + k6, k1 + k7, k1, k2, k3, how many possibilities are there
for the key in the Q-block cipher?

The attack by differential cryptanalysis required chosen plaintexts.
The attack by linear cryptanalysis works with any observed
collection of plaintext/ciphertext pairs. It is therefore more widely
applicable, as well as more powerful.



Attack on the Q-block cipher

We can estimate this correlation from a collection of
plaintext/ciphertext pairs (v ,w), (v ′,w ′) by computing (−1)v

′
0+v2

for each pair. The mean should be close to 1
2 (−1)k0+k6 , and the

sign then tells us k0 + k6. There are similar high correlations of 1
2

for output bit 1. Using these one learns k2 and k3 as well as
k1 + k7.

Exercise 6.3
Given k0 + k6, k1 + k7, k1, k2, k3, how many possibilities are there
for the key in the Q-block cipher?

The attack by differential cryptanalysis required chosen plaintexts.
The attack by linear cryptanalysis works with any observed
collection of plaintext/ciphertext pairs. It is therefore more widely
applicable, as well as more powerful.


