
MT362/462/5462 Cipher Systems
Mark Wildon, mark.wildon@rhul.ac.uk

Administration:
I Sign-in sheet. Please return to the lecturer after each

lecture.
I Make sure you get the Part A Notes and preliminary problem

sheet.
I Please take a clicker and use it!
I Please form a four-person ’block’ following instructions on

form. Return one form per block to the lecturer; do not keep
any forms.

I All handouts will be put on Moodle. The first marked problem
sheet will be on Moodle by Wednesday.

I Lectures: Monday 5pm (ALT2), Friday 11am (McCrea 2-01),
Friday 4pm (BLT2).

I Extra lecture for MT5462: Thursday 1pm (MFoxSem).
I Drop-in times in McCrea LGF025: Tuesday 3.30pm,

Wednesday 11am, Thursday 11.30am.



Part A: Introduction: alphabetic ciphers and the language of
cryptography

§1 Introduction: Security and Kerckhoff’s Principle
I Confidentiality: Eve cannot read the message.
I Data integrity: any change made by Malcolm to the

ciphertext is detectable
I Authentication: Alice and/or Bob are who they claim to be
I Non-repudiation: Alice cannot plausibly deny she sent the

message

Quiz. True or false: When you log in to gmail, Google is sent your
password (through an encrypted channel) and their computer
checks it matches their record.

(A) False (B) True

In fact they are sent a ‘hash’ of your password: see Part D of the
course. For instance, the SHA-256 hash of the password used to
encrypt this year’s exam is

10419890632902139458456423619801507446386374951765933585

629283702295140878021.



Part A: Introduction: alphabetic ciphers and the language of
cryptography

§1 Introduction: Security and Kerckhoff’s Principle
I Confidentiality: Eve cannot read the message.
I Data integrity: any change made by Malcolm to the

ciphertext is detectable
I Authentication: Alice and/or Bob are who they claim to be
I Non-repudiation: Alice cannot plausibly deny she sent the

message

Quiz. True or false: When you log in to gmail, Google is sent your
password (through an encrypted channel) and their computer
checks it matches their record.

(A) False (B) True

In fact they are sent a ‘hash’ of your password: see Part D of the
course. For instance, the SHA-256 hash of the password used to
encrypt this year’s exam is

10419890632902139458456423619801507446386374951765933585

629283702295140878021.



Part A: Introduction: alphabetic ciphers and the language of
cryptography

§1 Introduction: Security and Kerckhoff’s Principle
I Confidentiality: Eve cannot read the message.
I Data integrity: any change made by Malcolm to the

ciphertext is detectable
I Authentication: Alice and/or Bob are who they claim to be
I Non-repudiation: Alice cannot plausibly deny she sent the

message

Quiz. True or false: When you log in to gmail, Google is sent your
password (through an encrypted channel) and their computer
checks it matches their record.

(A) False (B) True

In fact they are sent a ‘hash’ of your password: see Part D of the
course. For instance, the SHA-256 hash of the password used to
encrypt this year’s exam is

10419890632902139458456423619801507446386374951765933585

629283702295140878021.



Cryptography Matters!

What do the following have in common?

I Mary, Queen of Scots (1542 – 1587)

I The Equifax share price in September 2017

I Satoshi Nakamoto

I Edward Snowden?



Administration

I Sign-in sheet. Please return to the lecturer after each
lecture.

I Please take pages 9 to 14 of the printed notes.

I Please take Problem Sheet 1. It is due in next Friday: you
should be able to do the compulsory questions after today’s
lecture.

I There are eight problem sheets, each worth 1.25% of your
exam mark.

I If you did not do so on Monday, please form a four person
block. Fill out the small form. One form per block.

I You must be in a block to do the problem sheets.

I Spare copies of Monday’s handouts at the front.



§2 Alphabetic Ciphers

Example 2.1

The Caesar cipher with key s ∈ {0, 1, . . . , 25} encrypts a word by
shifting each letter s positions forward in the alphabet, wrapping
round at the end. For example if the key is 3 then ’hello’ becomes
KHOOR and ’zany’ becomes CDQB. The table in the printed notes
shows all 26 possible shifts.



Quiz on Caesar Cipher
Assume the plaintext is a common English word.

Exercise 2.2

(a) Mark (the mole) knows that the plaintext ’apple’ was
encrypted as CRRNG. What is the key?

(A) 0 (B) 1 (C) 2 (D) 3

(b) Eve (the eavesdropper) has observed the ciphertext ACCB.
What is the key?

(A) 11 (B) 12 (C) 13 (D) 14

What is the plaintext?

(c) Suppose instead Eve observes GVTJPO. What can she deduce
about k?

(A) k = 1 (B) k = 25 (C) k = 21 (D) k ∈ {1, 21}
Suppose Eve later observes BUPN. Assuming the same key k is
used, what does she conclude about k?

(A) k = 1 (B) k = 25 (C) k = 21 (D) k ∈ {1, 21}
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Substitution Ciphers

Example 2.3

Let π : {a, . . . , z} → {A, . . . ,Z} be a bijection. The substitution
cipher eπ applies π to each letter of a plaintext in turn. For
example, if

π(a) = Z, π(b) = Y, . . . , π(z) = A

then eπ(hello there) = SVOOL GSVIV. (In practice spaces were
deleted before encryption, but we will keep them to simplify the
cryptanalysis.) The Caesar cipher with key s is the special case
where π shifts each letter forward s times.

Exercise 2.4
How many substitution ciphers are there?

(A) 26 (B) 262 (C) 26! (D) 2626

Is it feasible to find the key by trying all possibilities?

26! = 403291461126605635584000000 ≈ 4.032× 1026 ≈ 288.38

(A) No (B) Yes
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Frequency Analysis

Example′ 2.5

(Here ′ means this is similar, but not the same, as the example in
the printed notes.) Eve intercepts the ciphertext

IFJAJ DAJ BNXKBWM UADLIKLDE AJDMBTM PBA MIWOCKTQ

LACUIBQADUFC IFJ MWNRJLI KM DEMB PWEE BP HDIFJHDIKLDE

KTIJAJMI IFJAJ DAJ LBTTJLIKBTM IB EKTJDA DEQJNAD TWHNJA

IFJBAC MIDIKMIKLM DTO UABNDNKEKIC IFJBAC DM GJEE DM

IFJBAJIKLDE LBHUWIJA MLKJTLJ

We will decrypt this using the Mathematica notebook
AlphabeticCiphers on Moodle to do the donkey work.
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Frequency distribution of English, probability as percentages.

e t a o i n s h r d

12.7 9.1 8.2 7.5 7.0 6.7 6.3 6.1 6.0 4.3
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Frequencies of ciphertext letters as percentages.

J I D A M B K L E T F W N

11.2 10.7 9.2 8.8 7.3 7.3 6.8 5.8 5.3 4.9 3.9 3.0 3.0

C U H Q P O X R G Z Y V S

3.0 2.4 2.0 1.5 1.5 1.0 0.5 0.5 0.5 0 0 0 0



This morning we used frequency analysis to find that the plaintext
in Example 2.5′, shown with ciphertext below, is
there are obvious practical reasons for studying cryptography

IFJAJ DAJ BNXKBWM UADLIKLDE AJDMBTM PBA MIWOCKTQ LACUIBQADUFC

the subject is also full of mathematical interest there are

IFJ MWNRJLI KM DEMB PWEE BP HDIFJHDIKLDE KTIJAJMI IFJAJ DAJ

connections to linear algebra number theory statistics and

LBTTJLIKBTM IB EKTJDA DEQJNAD TWHNJA IFJBAC MIDIKMIKLM DTO

probability theory as well as theoretical computer science

UABNDNKEKIC IFJBAC DM GJEE DM IFJBAJIKLDE LBHUWIJA MLKJTLJ

Exercise′ 2.6

(a) After deciphering, we know that π(a) = D, π(b) = N, . . . ,
π(e) = J, . . . and so on. Do we know the key π?

(A) No (B) Yes

J I D A M B K L E T F W N

11.2 10.7 9.2 8.8 7.3 7.3 6.8 5.8 5.3 4.9 3.9 3.0 3.0

C U H Q P O X R G Z Y V S

3.0 2.4 2.0 1.5 1.5 1.0 0.5 0.5 0.5 0 0 0 0

(b) Will we have any difficulty in decrypting further messages
encrypted using the same substitution cipher?

(A) No (B) Yes

(c) Suppose Mark can encrypt a plaintext of his choice using eπ.
What is the simplest way for him to learn π?



This morning we used frequency analysis to find that the plaintext
in Example 2.5′, shown with ciphertext below, is
there are obvious practical reasons for studying cryptography

IFJAJ DAJ BNXKBWM UADLIKLDE AJDMBTM PBA MIWOCKTQ LACUIBQADUFC

the subject is also full of mathematical interest there are

IFJ MWNRJLI KM DEMB PWEE BP HDIFJHDIKLDE KTIJAJMI IFJAJ DAJ

connections to linear algebra number theory statistics and

LBTTJLIKBTM IB EKTJDA DEQJNAD TWHNJA IFJBAC MIDIKMIKLM DTO

probability theory as well as theoretical computer science

UABNDNKEKIC IFJBAC DM GJEE DM IFJBAJIKLDE LBHUWIJA MLKJTLJ

Exercise′ 2.6

(a) After deciphering, we know that π(a) = D, π(b) = N, . . . ,
π(e) = J, . . . and so on. Do we know the key π?

(A) No (B) Yes

J I D A M B K L E T F W N

11.2 10.7 9.2 8.8 7.3 7.3 6.8 5.8 5.3 4.9 3.9 3.0 3.0

C U H Q P O X R G Z Y V S

3.0 2.4 2.0 1.5 1.5 1.0 0.5 0.5 0.5 0 0 0 0

(b) Will we have any difficulty in decrypting further messages
encrypted using the same substitution cipher?

(A) No (B) Yes

(c) Suppose Mark can encrypt a plaintext of his choice using eπ.
What is the simplest way for him to learn π?



This morning we used frequency analysis to find that the plaintext
in Example 2.5′, shown with ciphertext below, is
there are obvious practical reasons for studying cryptography

IFJAJ DAJ BNXKBWM UADLIKLDE AJDMBTM PBA MIWOCKTQ LACUIBQADUFC

the subject is also full of mathematical interest there are

IFJ MWNRJLI KM DEMB PWEE BP HDIFJHDIKLDE KTIJAJMI IFJAJ DAJ

connections to linear algebra number theory statistics and

LBTTJLIKBTM IB EKTJDA DEQJNAD TWHNJA IFJBAC MIDIKMIKLM DTO

probability theory as well as theoretical computer science

UABNDNKEKIC IFJBAC DM GJEE DM IFJBAJIKLDE LBHUWIJA MLKJTLJ

Exercise′ 2.6

(a) After deciphering, we know that π(a) = D, π(b) = N, . . . ,
π(e) = J, . . . and so on. Do we know the key π?

(A) No (B) Yes

(b) Will we have any difficulty in decrypting further messages
encrypted using the same substitution cipher?

(A) No (B) Yes

(c) Suppose Mark can encrypt a plaintext of his choice using eπ.
What is the simplest way for him to learn π?



This morning we used frequency analysis to find that the plaintext
in Example 2.5′, shown with ciphertext below, is
there are obvious practical reasons for studying cryptography

IFJAJ DAJ BNXKBWM UADLIKLDE AJDMBTM PBA MIWOCKTQ LACUIBQADUFC

the subject is also full of mathematical interest there are

IFJ MWNRJLI KM DEMB PWEE BP HDIFJHDIKLDE KTIJAJMI IFJAJ DAJ

connections to linear algebra number theory statistics and

LBTTJLIKBTM IB EKTJDA DEQJNAD TWHNJA IFJBAC MIDIKMIKLM DTO

probability theory as well as theoretical computer science

UABNDNKEKIC IFJBAC DM GJEE DM IFJBAJIKLDE LBHUWIJA MLKJTLJ

Exercise′ 2.6

(a) After deciphering, we know that π(a) = D, π(b) = N, . . . ,
π(e) = J, . . . and so on. Do we know the key π?

(A) No (B) Yes

(b) Will we have any difficulty in decrypting further messages
encrypted using the same substitution cipher?

(A) No (B) Yes

(c) Suppose Mark can encrypt a plaintext of his choice using eπ.
What is the simplest way for him to learn π?



In Praise of Programming

You can get Mathematica for free from the College: see the top
hit for Google on ‘RHUL Mathematica’.

This is a chance to develop some useful transferable programming
skills!

“What I mean is that if you really want to understand something,

the best way is to try and explain it to someone else. That forces

you to sort it out in your own mind. And the more slow and

dim-witted your pupil, the more you have to break things down

into more and more simple ideas. And that’s really the essence

of programming. By the time you’ve sorted out a complicated

idea into little steps that even a stupid machine can deal with,

you’ve certainly learned something about it yourself.”
Douglas Adams, Dirk Gently’s Holistic Detective Agency (1987)



Colossus at Bletchley Park and Cyber Attacks Now



The Guardian
4th October 2018



Hill Climbing

We saw that the substitution cipher is weak because it is possible
to start with a guess for the key, say τ , that is partially correct,
and then improve it step-by-step by looking at the decrypt e−1

τ (y)
implied by this key.

Example′ 2.7

To automate this process we need a way to measure the
‘Englishy-ness’ of a decrypt . . . [see printed notes for details]

Exercise 2.8
The strategy in Example 2.7 is called ‘hill-climbing’. Why this
name?



Vigenère Cipher
Define a bijection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b ←→ 1, . . . , z ←→ 25.

Using this bijection we identify a word of length ` with an element
of {0, 1, . . . , 25}`. For example,

‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s
becomes the function x 7→ x + s mod 26.
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Define a bijection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b ←→ 1, . . . , z ←→ 25.

Using this bijection we identify a word of length ` with an element
of {0, 1, . . . , 25}`. For example,

‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s
becomes the function x 7→ x + s mod 26.

Quiz. In this course it is most convenient to number positions in
tuples from 0, so a 3-tuple x is (x0, x1, x2).

One of these statement is false. Which one?

(A) {1, 2, 2} = {2, 1, 1} is a set of size 2,
(B) (0, 1, 1, 0, 0, 1) ∈ {0, 1}6 is a binary form of 16 + 8 + 1 = 25,
(C) (1, 2, 2) = (2, 1, 1),
(D) If u = (0, 1, 2, . . . , 25) then ui = i for i ∈ {0, 1, . . . , 25}.

(A) (B) (C) (D)
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Vigenère Cipher
Define a bijection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b ←→ 1, . . . , z ←→ 25.

Using this bijection we identify a word of length ` with an element
of {0, 1, . . . , 25}`. For example,

‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s
becomes the function x 7→ x + s mod 26.

Definition 2.9
The key k for the Vigenère cipher is a string. Suppose that k has
length `. Given a plaintext x with its spaces deleted, we define its
encryption by

ek(x) = (x0 + k0, x1 + k1, . . . , x`−1 + k`−1, x` + k0, . . .)

where xi + ki is computed by converting xi and ki to numbers and
adding them mod 26.



Vigenère Example

Example 2.10

Take k = emu, so k has length 3. Under the bijection between
letters and numbers, emu←→ (4, 12, 20). The table below shows
that

eemu(meetatmidnightnear) = QQYXMNQUXRUALFHIML.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

xi
m e e t a t m i d n i g h t n e a r

12 4 4 19 0 19 12 8 3 13 8 6 7 19 13 4 0 17

ki
e m u e m u e m u e m u e m u e m u

4 12 20 4 12 20 4 12 20 4 12 20 4 12 20 4 12 20

xi + ki
16 16 24 23 12 13 16 20 23 17 20 0 11 5 7 8 12 11
Q Q Y X M N Q U X R U A L F H I M L



A Weakness in the Vigenère Cipher

Exercise 2.11

(i) If you had to guess, which sample below would you say was
more likely to be the ciphertext from a substitution cipher?

(A) KDDLVFUDLNELUHLYJAWLWGLWUJDULF

(B) KYBDRDDFCLVCVEDFLDUVYDKKLZCNPO

(C) KYEYAXBICDMBRFXDLCDPKFXLCILLMO

(A) (B) (C)

Each sample has 30 characters. The ten most frequent letters,
with frequencies, and the total frequency of the rest are:

L U D W J F Y V N K the rest
7 4 4 3 2 2 1 1 1 1 3

D V L K C Y F Z U R the rest
6 3 3 3 3 2 2 1 1 1 5

L X D C Y M K I F B the rest
4 3 3 3 2 2 2 2 2 2 5
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A Weakness in the Vigenère Cipher

Exercise 2.11

(i) If you had to guess, which sample below would you say was
more likely to be the ciphertext from a substitution cipher?

(A) KDDLVFUDLNELUHLYJAWLWGLWUJDULF

(B) KYBDRDDFCLVCVEDFLDUVYDKKLZCNPO

(C) KYEYAXBICDMBRFXDLCDPKFXLCILLMO

(A) (B) (C)

(ii) The samples are obtained by taking every 9th, every 3rd and
every position in an English plaintext encrypted using a
Vigenère cipher.

Why should we expect the split ciphertext from a Vigènere
cipher to have the most ‘spiky’ frequency distribution at the
length of the keyword?

Hint: last Friday you saw the averaged relative frequencies for
one, two and three Caesar shifts.



Averaged relative frequencies for one, two and three Caesar
shifts applied to a long English text
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Index of Coincidence or ‘The Measure of Spikiness’

Definition 2.12
The Index of Coincidence of a ciphertext y , denoted I (y), is the
probability that two entries of y , chosen at random from different
positions, are equal.

Exercise 2.13
Explain why I (QXNURA) = I (QNRFLX) = 0 and check that
I (QMUUFM) = 2

15 . What is I (AAABBC)?

(A) 1
5 (B) 4

15 (C) 3
10 (D) 11

30

There is a simple formula for I (y). (An examinable proof.)

Lemma 2.14
If the ciphertext y of length n has exactly fi letters corresponding
to i , for each i ∈ {0, 1, . . . , 25} then

I (y) =
25∑

i=0

fi (fi − 1)

n(n − 1)
.
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Attack on the Vigenère Cipher
We now have a strategy for decrypting a Vigenère ciphertext.

Attack 2.15
Given a Vigenère ciphertext y , take every k-th letter for all
small k . For instance when k = 3 the sample is y0y3y6y9 . . . and
when k = 4 the sample is y0y4y8 . . .. The Index of Coincidence will
be greatest (for long samples) when we split at the key length, `.

I Now y0y`y2` . . . have all been encrypted by shifting by k0:
assuming that the most common letter is the shift of ‘e’
determines the shift.

I Repeat with y1y`+1y2`+1 . . . to determine k1

I . . . and so on, up to k`−1.

Example 2.16

The following ciphertext is the output of a Vigènre cipher:
KYEYAXBICDMBRFXDLCDPKFXLCILLMOVRMCE ...

(The full ciphertext is in the printed notes and the Mathematica
notebook VigenereAustenExample.nb on Moodle.)



Index of Coincidence versus Persuasion extract
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Taking every ninth letter of the ciphertext, starting at the zeroth:

y0y9y18 . . . = ‘KDDLVFUDLNELUHLYJA . . .′

This is the first sample in the quiz at the start of the lecture. The
frequency table (as in Example 2.5) begins

W L S K

11.0 10.6 7.4 7.1

Assuming ‘W‘←→ 22 is the encryption of ‘e‘←→ 4, the shift in the
Caesar cipher is 18←→ ‘s‘, so we guess the first letter of the key
is ‘s’. The Mathematica notebooks shows this finds all the key.



Index of Coincidence versus Persuasion extract
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Exercise 2.17
Explain why there are smaller peaks at 3, 6, 12 and 15 in the plot
of Indices of Coincidence above.

The next slides have the graphs drawn in lectures for the similar
case when the key has length 4 and a quiz on the Vigenère Cipher.



Vigenère Cipher with Key ‘bead’ of Length 4
To simplify the graphs, we imagine that English has common
letters ‘a’ ‘e’ ‘t’ and all other letters are rare. On the far right:
I Black: full ciphertext: see all 4 shifts
I Red: split ciphertext taking every other position: see 2 shifts

Suppose we split the ciphertext taking every third position. What
will the frequency graph look more like?

(A) black (B) red
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Quiz on Vigenère Splits
Suppose that the key has length 12 with 12 different letters. Recall
that yi = xi + ki mod 12 for each i . For instance

y0 = x0 + k0, y1 = x1 + k1, . . . , y12 = x12 + k0, y13 = x13 + k1.

(a) How many different shifts are seen when the ciphertext is split
taking every 6th position?

(A) 1 (B) 2 (C) 3 (D) 4

(b) How many different shifts are seen when the ciphertext is split
taking every 4th position?

(A) 1 (B) 2 (C) 3 (D) 4

(c) How many different shifts are seen when the ciphertext is split
taking every 8th position?

(A) 1 (B) 2 (C) 3 (D) 4
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Problem Sheet 1
I If you have no message to attack in Question 3 (c), email me

at mark.wildon@rhul.ac.uk and I will send you a ciphertext
encrypted using the key of the lazy pair in your block.
I If you wish, you can then submit your answer to Q3 on

Monday for full credit.
I If you have problems with AlphabeticCiphers.nb, or any

other notebook in the course, please:
I Quit Mathematica
I Download a fresh copy of the notebook from Moodle.

Rename AlphabeticCiphers.nb.txt to AlphabeticCiphers.nb if necessary.

This is a Moodle bug affecting Safari on Mac OS X and maybe other browsers.

I Restart Mathematica
I Load the fresh copy of AlphabeticCiphers.nb
I Select ‘Evaluate Notebook’ in the ‘Evaluation’ menu. (As

it says at the top of the notebook.)

Then remember that it’s always shift-return to evaluate. If
you ever press return, you are probably doing things wrong.

I Following the steps above may help with Question 5 about the
Vigenère Cipher. If you are confused on (e) see Exercise 2.17
and the quiz just before this slide. Slides are on Moodle.



§3 Cryptosystems and Perfect Secrecy

The three different encryption functions for the Caesar cipher on
the ‘alphabet’ {0, 1, 2} are shown in the diagram below.
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Definition of Cryptosystems

Definition 3.1
Let K,P, C be finite sets. A cryptosystem is a family of encryption
functions ek : P → C and decryption functions dk : C → P, one for
each k ∈ K, such that for each k ∈ K ,

dk
(
ek(x)

)
= x (?)

for all x ∈ P. We call K the keyspace, P the set of plaintexts, and
C the set of ciphertexts.



Exercise 3.2
Each diagram (i)–(vi) below each show two functions. Which
illustrate the encryption functions in a cryptosystem with two keys
(one black, one red)? In each case P is on the left-hand side and
C = {0, 1, 2} is on the right-hand side.
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Cryptosystems

Recall that a function f : P → C is injective if, for all x , x ′ ∈ P,
f (x) = f (x ′) implies x = x ′ and surjective if for all y ∈ C there
exists x ∈ P such that f (x) = y .

Exercise 3.3
(i) Show that ek is injective for each k ∈ K.

(ii) An undergraduate writes ‘For each x ∈ P there is a unique
y ∈ C’. Does this mean that ek is injective?

(iii) Show that if |P| = |C| then the encryption functions are
bijections and dk = e−1

k for each k ∈ K.

(iv) Is there a cryptosystem with |C| < |P|?



Cryptosystems

Recall that a function f : P → C is injective if, for all x , x ′ ∈ P,
f (x) = f (x ′) implies x = x ′ and surjective if for all y ∈ C there
exists x ∈ P such that f (x) = y .

Quiz: True or false? In any cryptosystem . . .

I the encryption functions determine the decryption functions.

(A) False (B) True

I the decryption functions are surjective

(A) False (B) True

I if k ∈ K and x , x ′ are distinct plaintexts then ek(x) 6= ek(x ′).

(A) False (B) True

I if x ∈ P and k , k ′ are distinct keys then ek(x) 6= ek ′(x).

(A) False (B) True

Finally, true or false: a cryptosystem may have keys k , k ′ ∈ K such
that ek(x) = ek ′(x ′) for distinct x , x ′ ∈ P.

(A) False (B) True
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Numeric one-time pad

Example 3.4 (Numeric one-time pad)

Fix n ∈ N. The numeric one-time pad on {0, 1, . . . , n − 1} has
P = C = K = Zn = {0, 1, . . . , n − 1}. The encryption functions
are ek(x) = (x + k) mod n. As expected from Exercise 3.3(iii),
each ek is a bijection, and the decryption functions are dk = e−1

k .
Explicitly, dk(y) = (y − k) mod n.

In Example 1.2 and Sheet 1 Question 2, Alice and Bob use the
numeric one-time pad with n = 100.

I In the first lecture, Eve observed the ciphertext 80.

I The plaintext is x if and only if the key is (80− x) mod 100.

I If each key is equally likely then it seems reasonable to say
that Eve learns nothing about the plaintext.
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Probability model

Fix a cryptosystem in our usual notation. We make K × P × C a
probability space by assuming that the plaintext x ∈ P is chosen
independently of the key k ∈ K; the ciphertext is then ek(x). Thus
if px is the probability the plaintext is x ∈ P and rk is the
probability the key is k then the probability measure is defined by

p(k,x ,y) =

{
rkpx if y = ek(x)

0 otherwise.

Let K ,X ,Y be the random variables standing for the plaintext,
ciphertext and key, respectively.

Exercise 3.5
Is the assumption that the key and plaintext are independent
reasonable?



Conditional Probability

We will need the formula for conditional probability:

P[A|B] =
P[A and B]

P[B]
.

Quiz. Is this formula intuitive to you?

(A) Yes (B) No

Quiz. Let Ω = {HH,HT,TH,TT} be the probability space for two
flips of a fair coin. What is the probability of two heads, given that
at least one flip was a head?

(A) 2/3 (B) 1/3 (C) 1/2 (D) 1/6

We can prove this by restricting the probability space to
B = {HH,HT,TH} and then finding the probability, in the
restricted probability space, of A = {HH}.
This agrees with the definition of conditional probability.
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Probability Model: Example 3.6

Consider the cryptosystem below.
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Let P[K = black] = rblack, P[K = red] = rred, P[K = blue] = rblue.

(1) What is P[Y = 1|X = 2]?
(A) rred (B) rblue (C) rred + rblue (D) rblack + rred

(2) Suppose that the three keys are used with equal probability 1
3 ,

and that p1 = 1− q, p2 = q so p0 = 0.

What is P[X = 2|Y = 1]?

(A)
2

3
(B)

2

3
q (C)

2q

1 + q
(D)

q

1 + q
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1 + q



Probability Model: Example 3.6

Consider the cryptosystem below.
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Let P[K = black] = rblack, P[K = red] = rred, P[K = blue] = rblue.
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(2) Suppose that the three keys are used with equal probability 1
3 ,

and that p1 = 1− q, p2 = q so p0 = 0.

What is P[X = 2|Y = 1]?

(A)
2

3
(B)

2

3
q (C)

2q

1 + q
(D)

q

1 + q



Feedback on Sheet 1

I Surname A–L: green folder

I Surname M–Y: pink folder

I The sheet was marked out of 16. There is also a 0 or 1 mark
(in the box) for making a reasonable attempt: a 1 contributes
1.25% of your final exam mark.

I You can check your marks so far by emailing me
mark.wildon@rhul.ac.uk.

I Answers and feedback on Sheet 1 are available on Moodle.
You may find the ‘common errors’ or ‘rarer errors’ instructive
even if you did not make them yourself.

I We will go through the hard bit of Question 5 in this lecture.
The slides below will be left permanently at the end of §2.



Example 3.7

Consider the numeric one-time pad in Example 3.4, Assume that
keys are chosen with equal probability 1

n . Suppose that Eve
observes the ciphertext y .

(a) By Question 1 on Problem Sheet 2, P[X = x |Y = y ] = px for
all x , y ∈ Zn. This is a precise statement that Eve learns
nothing about the plaintext from observing y . (In the sense of
Definition 3.8, the one-time pad has perfect secrecy.)

(b) Since P[K = k|Y = y ] = P[X = y − k|Y = y ], (a) implies
that

P[K = k |Y = y ] = py−k .

Thus the probability distribution P[K = k |Y = y ] for k
varying is a shift of the probability distribution P[X = x ] on
plaintexts. Unavoidably, Eve learns something about the key.
If however each plaintext is equally likely, then Eve learns
nothing.



Perfect Secrecy

Definition 3.8
Fix a cryptosystem with the usual notation and a probability
distribution on the keys.

(i) Let px for x ∈ X be a probability distribution on the
plaintexts. The cryptosystem has perfect secrecy for the
distribution px if

P[X = x |Y = y ] = px

for all x ∈ P and all y ∈ C such that P[Y = y ] > 0.

(ii) The cryptosystem has perfect secrecy if it has perfect secrecy
for every probability distribution on the plaintexts.

By Example 3.7 the one-time pad on Zn has perfect secrecy when
keys are used with equal probability.



Shannon’s Theorem: Preliminaries

We say a cryptosystem and probability distribution on keys is
practical if P[K = k] > 0 for all k ∈ K and for all y ∈ C there
exists x ∈ P and k ∈ K such that ek(x) = y .

Exercise 3.9
Why are these reasonable assumptions to make?

Quiz: let P(k , x , y) be a mathematical statement depending on
quantities k, x and y . Which are logically equivalent?

(Q) ∀y∃x∃k P(k , x , y)

(R) ∀y∀x∃k P(k , x , y)

(S) ∀x∀y∃k P(k , x , y)

(A) Q and R (B) R and S (C) Q and S (D) none
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Shannon’s Theorem

Recall that a cryptosystem and probability distribution on keys is
practical if P[K = k] > 0 for all k ∈ K and for all y ∈ C there
exists x ∈ P and k ∈ K such that ek(x) = y .

Theorem 3.10 (Shannon 1949)

If a practical cryptosytem has perfect secrecy then

(a) For all x ∈ P and y ∈ C the events X = x and Y = y are
independent and P[Y = y |X = x ] = P[Y = y ] > 0.

(b) For all x ∈ P and all y ∈ C there exists a key k such that
ek(x) = y .

(c) |K| ≥ |C|.
(d) Suppose |P| = |C| = |K|. For all x ∈ P and all y ∈ C there

exists a unique key k ∈ K such that ek(x) = y . Moreover
each key is used with equal probability.



Proof of Theorem 3.10

Theorem 3.10 (Shannon 1949)

If a practical cryptosytem has perfect secrecy then

(a) For all x ∈ P and y ∈ C the events X = x and Y = y are
independent and P[Y = y |X = x ] = P[Y = y ] > 0.

Proof.
I By hypothesis the cryptosystem has perfect secrecy.
I So we can choose any probability distribution px on the

plaintexts and writing out what perfect secrecy means, get

P[X = x |Y = y ] = px

for all x ∈ P and y ∈ C with P[Y = y ] > 0.
I The condition P[Y = y ] > 0 is annoying. Is there a

hypothesis we could use to remove it?

I Okay, so now we know that P[X = x |Y = y ] = px = P[X = x ]
for all x and y . Is this close to independence?
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for all x and y . Is this close to independence?



Theorem 3.10 (Shannon 1949)

If a practical cryptosytem has perfect secrecy then

(b) For all x ∈ P and all y ∈ C there exists a key k such that
ek(x) = y .

So far we know that for all x ∈ P and y ∈ C the events X = x and
Y = y are independent and both have positive probability.
I In Example 3.6 we saw probabilities such as P[Y = y |X = x ].

Here is a reminder of the first quiz question:
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Let P[K = black] = rblack, P[K = red] = rred, P[K = blue] = rblue.

(1) What is P[Y = 1|X = 2]?

(A) rred (B) rblue (C) rred + rblue (D) rblack + rred

I So P[Y = y |X = x ] is the probability that we choose a key
such that ek(x) = y . Use this to prove (b).



Theorem 3.10 (Shannon 1949)

If a practical cryptosytem has perfect secrecy then

(c) |K| ≥ |C|.

So far we know that for all x ∈ P and y ∈ C the events X = x and
Y = y are independent and both have positive probability and
there exists a key k such that ek(x) = y .

I Hint: fix x? ∈ P. Can the same key encrypt x? to two
different ciphertexts? So how many different keys are needed?

I Prove (c).

(d) Suppose |P| = |C| = |K|. For all x ∈ P and all y ∈ C there
exists a unique key k ∈ K such that ek(x) = y . Moreover
each key is used with equal probability.

I Prove the uniqueness. Hint: encrypt a fixed x? ∈ P.
I Fix y? ∈ C. For each x ∈ P, let k?x be the unique key such

that ek?
x

(x) = y?. Are the k?x distinct?
I What can you say about P[K = k?x ]? (Use the quiz idea:

express it as a conditional probability.) Does this show (d)?
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Latin Squares
Consider a cryptosystem with perfect secrecy in which
P = |C| = |K| = {0, 1, . . . , n − 1}. By (c) in Theorem 3.10, for
each x , y ∈ {0, 1, . . . , n − 1}, there exists a unique
k ∈ {0, 1, . . . , n − 1} such that ek(x) = y . Therefore the
cryptosystem is determined by the n × n matrix M where

Mxy = k ⇐⇒ ek(x) = y .
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key 3

has matrix 


0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0
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Final Quiz on §3
Consider the cryptosystem below in which the keys have
probabilities 1

2 (black), 1
3 (red), 1

8 (orange), 1
24 (blue)
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As usual let X be the random plaintext, Y the random ciphertext
and K the random key.

(a) What is P[eK (1) = 2]?

(A) 8
24 (B) 11

24 (C) 12
24 (D) 13

24

(b) What is P[X = 1 and Y = 2]?

(A) 11
24 (B) 11

24p1 (C) 13
24p1 (D) can’t say

(c) What is P[Y = 2|X = 1]?

(A) 11
24 (B) 11

24p1 (C) 13
24p1 (D) can’t say
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§4 Attack Models

Eve observes a ciphertext. What is more useful for her: to learn
the plaintext or to learn the key?

(A) Plaintext (B) Key

Example 4.2 (Affine cipher)

Let p be prime. The affine cipher on Zp has P = C = Zp and

K = {(a, c) : a ∈ Zp, c ∈ Zp, a 6= 0}.

The encryption functions are defined by e(a,c)(x) = ax + c mod p.
The decryption functions are defined by d(a,c)(x) = b(x − c) mod
p, where b ∈ Zp is the unique element such that ab = 1 mod p.
With these definitions, the affine cipher is a cryptosystem.

For example, in the affine cipher on Z11, e(7,2)(5) = 4 since
7× 5 + 2 ≡ 4 mod 11 and, as expected, d(7,2)(4) = 5 since
8× (4− 2) ≡ 5 mod 11.



§4 Attack Models

Eve observes a ciphertext. What is more useful for her: to learn
the plaintext or to learn the key?

(A) Plaintext (B) Key

Example 4.2 (Affine cipher)

Let p be prime. The affine cipher on Zp has P = C = Zp and

K = {(a, c) : a ∈ Zp, c ∈ Zp, a 6= 0}.

The encryption functions are defined by e(a,c)(x) = ax + c mod p.
The decryption functions are defined by d(a,c)(x) = b(x − c) mod
p, where b ∈ Zp is the unique element such that ab = 1 mod p.
With these definitions, the affine cipher is a cryptosystem.

For example, in the affine cipher on Z11, e(7,2)(5) = 4 since
7× 5 + 2 ≡ 4 mod 11 and, as expected, d(7,2)(4) = 5 since
8× (4− 2) ≡ 5 mod 11.



Affine Cipher

Exercise 4.3
The diagrams below show three encryption functions from the
affine cipher when p = 5. Find the keys.
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Quiz: the blue key is

(A) (0, 1) (B) (2, 1) (C) (3, 1) (D) (2,−4)

In Question 1 on Problem Sheet 3 you are asked to show that the
affine cipher has perfect secrecy.
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Quiz: the blue key is

(A) (0, 1) (B) (2, 1) (C) (3, 1) (D) (2,−4)

In Question 1 on Problem Sheet 3 you are asked to show that the
affine cipher has perfect secrecy.



Attacks on the Affine Cipher

Exercise 4.4
Consider the affine cipher on Z5 = {0, 1, 2, 3, 4}.

(i) Suppose that Eve observes the ciphertext 2. Does she learn
anything about the key?

(A) No (B) Yes

(ii) Suppose that Mark knows that e(a,c)(1) = 2. How many
possible keys are there?

(A) 3 (B) 4 (C) 5 (D) 20

(iii) Mark later learns that e(a,c)(2) = m ∈ Z5. What is the key?

(A) (2, 0)

(B) (m − 4,−m + 4)

(C) (m − 4 mod 5,−m + 4 mod 5)

(D) (m − 2 mod 5,−m + 4 mod 5)

(A) (B) (C) (D)
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Attack Models

In each of the attack models below, we suppose that Alice sends
ciphertexts to Bob encrypted using the key k ∈ K. The aim of the
adversary (Eve or Mark) is to determine all or part of k .

I Known ciphertext. Eve knows ek(x) ∈ C.

I Known plaintext and ciphertext. Mark knows x ∈ P and
ek(x) ∈ C.

I Chosen plaintext. Mark may choose any x ∈ P and is given
the encryption ek(x).

I Chosen ciphertext. Mark may choose any y ∈ C and is given
the decryption dk(y).

Each attack model has a generalization where the adversary
observes or chooses multiple plaintexts and/or ciphertexts.



Attack Models: Remarks

Remark 4.5

(1) In Example 2.5 we saw that (almost all) of the key in a
substitution cipher can be deduced from a sufficiently long
ciphertext. So the substitution cipher is broken by a known
ciphertext attack.

(2) All the cryptosystems so far are broken by a chosen plaintext
attack. By the general version of Example 4.4, the affine
cipher requires two choices of plaintext, and by Question 4 on
Sheet 1, the substitution cipher and the Vigenère cipher just
one. Exercise: How many does the numeric one-time pad
require?

(3) Later in the course we will see modern stream and block
ciphers where it is believed to be computationally hard to find
the key even allowing unlimited choices of plaintexts in a
chosen plaintext attack.



One-time Pad

Fix n ∈ N. The one-time pad is a cryptosystem with plaintexts,
ciphertexts and keyspace An. You can think of An as all strings of
length n. The encryption functions are defined by

ek(x) = (x1 + k1, x2 + k2, . . . , xn + kn)

where, as in the Vigenère cipher (see Example 2.10), xi + ki is
computed by converting xi and ki to numbers and adding modulo
26. Thus the one-time pad is the Vigenère cipher when the key has
the same length as the plaintext. Each key is used with the same
probability.

Example 4.6

Suppose that n = 8. Of the 268 keys, suppose (by a 1/268 chance)
zyxwvuts is chosen. Then

ezyxwvuts(goodwork) = fmlzrikc.



Example 4.6

Suppose that n = 8. Of the 268 keys, suppose (by a 1/268 chance)
zyxwvuts is chosen. Then

ezyxwvuts(goodwork) = fmlzrikc.

i 1 2 3 4 5 6 7 8

xi
g o o d w o r k
6 14 14 3 22 14 17 10

ki
z y x v w u t s

25 24 23 22 21 20 19 18

xi + ki
5 12 11 25 17 8 10 2
f m l z r i k c



Attacks on the One-time Pad

Example 4.7

The spy-master Alice and her agent Bob have agreed to use the
one-time pad, with a randomly chosen key, for emergency
messages. Following Kerckhoff’s Principle, all this is known to Eve.
Eve does not know that their key is k = atcldqezyomuua.

I Alice sends ek(leaveinstantly) = lxcghyrrroznfy to Bob.

Bob calculates

lxcghyrrroznfy− atcldqezyomuua = leaveinstantly.

Eve cannot guess the plaintext x : for example

x = gototheairport ⇐⇒ k = y − gototheairport

= fjjsornrjxkzof

x = meetmeonbridge ⇐⇒ k = y − meetmeonbridge

= ztynvudeqxrkzu

For each guessed plaintext there is a unique possible key. Since
keys are equiprobable, this proves that a single known ciphertext
attack reveals no information about the plaintext.



Reuse of One-time Pad Considered Harmful

Bob now makes a fatal mistake, and re-uses the key k in his reply.

I Bob sends ek(goingeasttrain) = ghkyjuerrhducn to Alice.

Eve now has ciphertexts

k + leaveinstantly = lxcghyrrroznfy

k + goingeasttrain = ghkyjuerrhducn.

She subtracts them to obtain ∆ = fqsiyenaahwtdl. Note that ∆
does not depend on k .

The string ∆ has the unusual property that there is an English
message x ′ (Bob’s reply) such that ∆ + x ′ is another English
message (Alice’s message). This property is so rare that Eve and
her computer can fairly easily deduce x ′ and ∆ + x ′, and, from
either of these, the key k .



Venona decrypts
The Venona project collected Soviet messages encrypted using
one-time pads. Between 1942 and 1945 many pads were produced
using duplicated keys. This re-use was detected by NSA
cryptographers.

Venona decrypts were important evidence (although not usable in
court) against Klaus Fuchs and Ethel and Julius Rosenberg.



Exercises on One-time Pad

The previous example shows that the one-time pad is broken by a
known ciphertext attack with two known ciphertexts.

Exercise 4.8
Show that the one-time pad is easily broken by a chosen plaintext
attack.

Exercise 4.9
Does the one-time pad have perfect secrecy? (Hint: compare with
Example 3.7.)



§5 Key Uncertainty and Entropy

Suppose Bob picks x ∈ {0, 1, . . . , 15}. How many yes/no questions
does Alice need to guess x? Question 2 on the Preliminary
Problem Sheet gives one simple strategy: ask Bob to write x in
binary as x3x2x1x0; then Alice asks about each bit in turn: ‘Is
x0 = 1?’, ‘Is x1 = 1?’, ‘Is x2 = 1?’, ‘Is x3 = 1?’.

Exercise 5.1
Explain why no questioning strategy can guarantee to use fewer
than four questions.



4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Q1
Is x0 = 1?

YES



4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Q1
Is x0 = 1?

YES

Q2
Is x1 = 1?

YES



4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Q1
Is x0 = 1?

YES

Q2
Is x1 = 1?

YES

Q3
Is x2 = 1?

NO



4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Q1
Is x0 = 1?

YES

Q2
Is x1 = 1?

YES

Q3
Is x2 = 1?

NO

Q4
Is x3 = 1?

NO



4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111

NO
0

YES
1

YES

YES

NO

NO



Guessing games

Example 5.2

We consider the simpler game where Bob’s number is in
{0, 1, 2, 3}. Let px be the probability that Bob chooses x . (Alice
knows Bob very well, so she knows these probabilities.) For each
case below, how many questions does Alice need on average, if she
chooses the best possible strategy?

(a) p0 = p1 = p2 = p3 = 1
4 .

(b) p0 = 1
2 , p1 = 1

4 , p2 = 1
4 , p3 = 0.

(c) p0 = 1
2 , p1 = 1

4 , p2 = 1
8 , p3 = 1

8 .

(d) p0 = 1, p1 = p2 = p3 = 0.
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Administration

I Please take Problem Sheet 3.

I Please take final installment of Part A printed notes.

I M.Sc. students: please take a corrected copy of pages 11/12
of the M.Sc. printed notes. My apologies for the many
off-by-one errors. The notes are updated on Moodle.

I Please hand in answers to Problem Sheet 2 end of next
lecture.



Definition of Entropy

Definition 5.3
Let X be a finite set.

(i) The entropy of a probability distribution px on X is

H(p) = −
∑

x∈X
px log2 px .

(ii) The entropy of a random variable X taking values in X is the
entropy of the probability distribution px = P[X = x ].

Note that log2 means logarithm to the base 2, so
log2

1
2 = −1, log2 1 = 0, log2 2 = 1, log2 4 = 2, and generally,

log2 2n = n for each n ∈ Z. If px = 0 then −0 log2 0 should be
interpreted as limp→0−p log2 p = 0.



Claude Shannon (1916 — 2001)

Communication theory of secrecy systems, Bell System Technical
Journal (1949) 28, 656–715.



Entropy and Guessing Games

Exercise 5.4

(i) Show that H(p) =
∑

x∈X px log2
1
px

, where if px = 0 then

0 log2
1
0 is interpreted as 0.

(ii) Show that if p is the probability distribution in Exercise 5.2(b)
then

H(p) = 1
2 log2 2 + 1

4 log2 4 + 1
4 log2 4 + 0 = 3

2 .

Show that in all three cases, H(p) is the average number of
questions, using the strategy found in this exercise.

(a) p0 = p1 = p2 = p3 = 1
4

(b) p0 = 1
2 , p1 = 1

4 , p2 = 1
4 , p3 = 0

(c) p0 = 1
2 , p1 = 1

4 , p2 = 1
8 , p3 = 1

8

(d) p0 = 1, p1 = p2 = p3 = 0



Example 5.5
(1) Suppose the random variable X takes two different values,

with probabilities p and 1− p. Then
H(X ) = p log2

1
p + (1− p) log2

1
1−p , as shown in the graph

below.

p

p log2
1
p + (1− p) log2

1
1−p

0

1
2

1
2

1

1

Thus the entropy of a single ‘yes/no’ random variable takes
values between 0 and 1, with a maximum at 1 when the
outcomes are equally probable.



Example 5.5 [continued]

(2) Suppose a cryptographic key K is equally likely to be any
element of the keyspace K. If |K| = n then
H(K ) = 1

n log2 n + · · ·+ 1
n log2 n = log2 n. This is often

useful.

(3) Consider the cryptosystem in Exercise 3.2(iii). Suppose that
P[X = 0] = p, and so P[X = 1] = 1− p, and that
P[K = red] = r , and so P[K = black] = 1− r . As in (1) we
have

H(X ) = p log2
1

p
+ (1− p) log2

1

1− p
.

Exercise: show that P[Y = 1] = pr + (1− p)(1− r) and
hence find H(Y ) when r = 0, 1

4 ,
1
2 . Is it surprising that usually

H(Y ) > H(X )?



Entropy Quiz
(a) Bob chooses a random number K in {0, 1, 2, 3, 4}. If

P[K = k] = 1/5 for each k , what is H(K )?
(A) 2 (B) log2 5 ≈ 2.322 (C) 3 (D) 4

(b) Now Bob chooses X in the same set, but with probabilities
1
2 ,

1
8 ,

1
8 ,

1
8 ,

1
8 . What is H(X )?
(A) 2 (B) log2 5 ≈ 2.322 (C) 3 (D) 4

How many questions on average do you need to guess X?
(A) 2 (B) log2 5 ≈ 2.322 (C) 3 (D) 4

Would your answer change if Bob’s probabilities change to
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
2 ?

(A) No (B) Yes

No, since the entropy of a random variable depends only on
the probability it takes each of its values, not the values
themselves.

A random variable has entropy h if and only if you can learn
its value by asking about h well-chosen yes/no questions.
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Definition 5.6
Let K and Y be random variables taking values in finite sets K
and C, respectively.The joint entropy of K and Y is defined by

H(K ,Y ) = −
∑

k∈K

∑

y∈C
P[K = k and Y = y ] log2P[K = k and Y = y ].

The conditional entropy of K given that Y = y is defined by

H(K |Y = y) = −
∑

k∈K
P[K = k |Y = y ] log2P[X = k |Y = y ].

The conditional entropy of K given Y is defined by

H(K |Y ) =
∑

y∈C
P[Y = y ]H(K |Y = y).

Example 5.7

Consider the Caesar cryptosystem in which all 26 keys are equally
likely and the plaintext is a random English word. By Example 5.5,
H(K ) = log2 26 ≈ 4.7. True or false: H(K |Y = ACCB) = 0?

(A) False (B) True

What is H(K |Y = NCYP)?

(A) 0 (B) 1 (C) log2 3 (D) can’t say
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Lemma 5.8 (Chaining Rule)

Let K and Y be random variables taking values in sets K and C,
respectively. Then

H(K ,Y ) = H(K |Y ) + H(Y ).



Shannon’s Theorem on Key Uncertainty

Lemma 5.9
Let K and X be random variables. If K and X are independent
then H(K ,X ) = H(K ) + H(X ).

Lemma 5.10
Let Z be a random variable taking values in a set Z. Let
f : Z → W be a function. If f is injective then H

(
f (Z )

)
= H(Z ).

Theorem 5.11 (Shannon, 1949)

Take a cryptosystem in our usual notation. Then

H(K |Y ) = H(K ) + H(X )− H(Y ).



Feedback on Sheet 2
Q1. The cryptosystem shown below uses three keys from the
affine cipher on Z3, each with probability 1

3 . Suppose that
plaintext 1 is sent with probability p and plaintext 2 is sent with
probability 1− p, so plaintext 0 is never sent.

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

(a) Recall that e(a,c)(x) = ax + c . [Sorry, this should be
e(a,c)(x) = ax + c mod 3.] Which keys (a, c) are used in this
cryptosystem?

(b) Find P[Y = 1|X = 1]. Express P[Y = 1], P[X = 1|Y = 1] in
terms of p.

(c) When does the cryptosystem have perfect secrecy with
respect to the probability distribution p0 = 0, p1 = p,
p2 = 1− p on plaintexts?



Q2. Alice and Bob communicate using the numeric one-time pad
cryptosystem from Example 3.4, in which
K = P = C = {0, 1, . . . , n − 1} and the encryption functions are
defined by ek(x) = (x + k) mod n. Each key k ∈ K is chosen with
equal probability. Let px be the probability that x ∈ P is Alice’s
message.

(a) Show that if x ∈ P and px > 0 then P[Yn = y |Xn = x ] = 1
n

for all y ∈ C.

(b) Find P[Yn = y ] for each y ∈ C.

(c) Hence show that P[Xn = x |Yn = y ] = px for all x ∈ P with
px > 0.

(d) What is P[Xn = x |Yn = y ] if px = 0? Deduce from this and
(c) that the numeric one-time pad has perfect secrecy.



Cheat Sheet for Cryptosystem Probability Calculations

(a) P[Y = y |X = x ]: this is the probability that the key encrypts
x to y . It depends only on the keys. Do not use Bayes’ Law.

(b) P[Y = y ] =
∑

x∈P P[Y = y |X = x ]px , find using (a).

(c) P[X = x |Y = y ] =
P[Y = y |X = x ]px

P[Y = y ]
, use (a) and (b).



Per-Character Information/Redundancy of English

Let A = {a, b, . . . , z} be the alphabet. We take P = C = An: you
can think of this as the set of all strings of length n. To indicate
that plaintexts and ciphertexts have length n, we write Xn and Yn

rather than X and Y .

We suppose only those strings that make good sense in English
have non-zero probability. So if n = 8 then
‘abcdefgh′, ‘goodwork′ ∈ P but

P[X8 = ‘abcdefgh′] = 0

whereas
P[X8 = ‘goodwork′] > 0.

Shannon estimated that the per-character redundancy of English
plaintexts, with spaces, is about 3.200. We shall suppose his
estimate is also good for plaintexts in An.



The One-Time Pad

Example 5.12 (One-time pad)

Suppose that all keys in An are equally likely. Then
H(K ) = (log2 26)n by Example 5.5(2) By Exercise 4.9 all
ciphertexts are equally likely, so

H(Yn) = (log2 26)n.

We saw above that H(Xn) ≈ (log2 26− R)n. Therefore by
Shannon’s formula,

H(K |Yn) = H(K ) + H(Xn)− H(Yn) = (log2 26− R)n = H(Xn).

Thus if Eve knows something about the probability distribution of
plaintexts then she learns something about the key. In fact, her
uncertainty about the key is precisely her uncertainty about the
plaintext.



One-Time-Pad Quiz

Let R = 3.2 be the per character redundancy of English.

In the one-time pad of length n, H(K |(Xn,Yn)), H(Xn|Yn) are

(A) 0 (B) 1 (C) n(log2 26− R) (D) n log2 26

(A) 0 (B) 1 (C) n(log2 26− R) (D) n log2 26
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Unicity Distance

In Example 5.12 we proved that for the one-time-pad
H(K |Yn) = (log2 26− R)n and that H(K ) = (log2 26)n. Therefore

H(K |Yn) = H(K )− Rn. (??)

In the non-examinable extras for this part we give Shannon’s
argument that (??) should be a good approximation for H(K |Yn)
in any cryptosystem where P = C = An, and the messages are
English texts. It works best when K is large and n is small.

Exercise 5.13
What is the largest length of ciphertext n for which (??) could
hold with equality?



Expected behaviour of H(K |Yn)

The graph below shows the expected behaviour of H(K |Yn).

en
tr

op
y

H(K |Y )

H(K )− nR

n

Definition 5.14
The quantity H(K )/R is the unicity distance of the cryptosystem.



Unicity Distance for Substitution Cipher

Exercise 5.15
In the substitution cipher attack in Example 2.5 we saw that the
ciphertext y of length 280 determined the key π except for π(k),
π(q), π(z). By Exercise 2.6(a) π(k), π(q), π(z) are the three
letters, namely A, E, N, which never appear in the ciphertext.
Assuming equally likely keys, what is H(K |Y280 = y)?

(A) 0 (B) log2 3 (C) log2 6 (D) 6

What is H(K )?

(A) log2 26 (B) log2 26! (C) 26 log2 26 (D) depends on the key
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Example 5.16

The first 28 characters of the ciphertext in Example 2.5 are KQX

WJZRUHXZKUY GTOXSKPIX GW. A computer search using a
dictionary of about 70000 words gives 6 possible decryptions of the
first 24 letters. These include ‘imo purgatorial hedonics’,
‘iwo purgatorial hedonism’ and ‘the fundamental

objectiv’. Taking 25 letters,

‘the fundamental objective’

is the only decryption consistent with the dictionary. This is in
excellent agreement with Shannon’s argument.

Since 10 characters do not appear in the first 28 letters of
ciphertext, the argument in Exercise 5.15 shows that
H(K |Y = y28) = log2 10! = 21.791. Nothing new about the key is
learned after letter 25, so this is the value of the final 4 points in
the graph of H(K |Yn) for 1 ≤ n ≤ 28.
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Ciphertexts with High g(y) are More Likely: Intuition
Quiz: Suppose I ask everyone here how many siblings you have
(not counting yourself). If the mean is s, then 1 + s is a good
estimate for the average number of children in a family.

(A) False (B) True

Sampling the school, the observed probabilities are 0 (no children),
1/4 (3 green only children), 1/2 (6 red children), 1/4 (3 black
children). So we observe the 1 + Bin( 1

2 , 2) distribution.
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Part B: Stream ciphers

§6 Linear Feedback Shift Registers

Computers are deterministic: given the same inputs, you always
get the same answer. In this part we will see how to get sequences
that ‘look random’ out of deterministic algorithms.

Recall that F2 is the finite field of size 2 with elements the bits
(short for binary digits) 0, 1. Addition and multiplication are
defined modulo 2, so

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

By definition, Fn
2 is the set of n-tuples (x0, x1, . . . , xn−1) where

each xi is a bit 0 or 1. For brevity we may write this tuple as
x0x1 . . . xn−1. As seen here, we number positions from 0 up to
n − 1. It is usual to refer to elements of Fn

2 as binary words of
length n.



Definition of LFSRs

Exercise 6.1
Write down 15 bits in a circle so that, reading the cycle clockwise,
every non-zero binary word of length 4 appears exactly once. How
many 0s do you use? How many 1s do you use?

Definition 6.2

(i) Let ` ∈ N. A linear feedback shift register of width ` with taps
T ⊆ {1, 2, . . . , `} is a function F : F`

2 → F`
2 of the form

F
(
(x0, x1, . . . , x`−2, x`−1)

)
= (x1, . . . , x`−1,

∑

t∈T
x`−t).

(ii) The function f : F`
2 → F2 defined by f (x) =

∑
t∈T x`−t is

called the feedback function.

(iii) The keystream for k ∈ F`
2 is the sequence

k0, k1, . . . , k`−1, k`, k`+1, . . . , where for each s ≥ ` we define

ks =
∑

t∈T
ks−t
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The Very Useful Property

Equivalently, ks = f
(
(ks−`, ks−`+1, . . . , ks−1)

)
and so

F
(
(ks−`, ks−`+1, . . . , ks−1)

)
= (ks−`+1, . . . , ks−1, ks).

Thus the LFSR function F shifts the bits in the first `− 1 positions
left (forgetting the very first), and puts a new bit, defined by its
feedback function, into the rightmost position. Taking all these
rightmost positions gives the keystream. We call this the Very
Useful Property:

F s
(
(k0, k1, . . . , k`−1)

)
= (ks , ks+1, . . . , ks+`−1). (VUP)

Here F s is the function defined by applying F a total of s times.



Example 6.3

The LFSR F of width 4 with taps {3, 4} is defined by

F
(
(x0, x1, x2, x3)

)
= (x1, x2, x3, x0 + x1).

(i) Solving the equation F
(
(x0, x1, x2, x3)

)
= (y0, y1, y2, y3) shows

that F has inverse

F−1
(
(y0, y1, y2, y3)

)
= (y0 + y3, y0, y1, y2).

(ii) The keystream for the key k = 0111 is

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

repeating from position 15 onwards: ks = ks+15 for all s ∈ N0.

(iii) Exercise: observe that k ′ = 0011 appears in positions 4, 5, 6,
7 of the keystream above. Find the keystream for k ′.

(iv) Starting with k = 0111, the sequence k, F (k), F 2(k),
F 3(k), . . ., F 14(k), F 15(k) is 0111, 1111, 1110, . . . , 1011,
0111, with F 15(k) = k.

(v) Quiz. Every keystream generated by F is obtained by reading
the circle of 15 bits we used to solve Exercise 6.1.

(A) False (B) True
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Circuit Diagrams

In the cryptographic literature it is conventional to represent
LFSRs by circuit diagrams, such as the one below showing F . By
convention

⊕
denotes addition modulo 2, implemented in

electronics by the XOR gate.

tap 4 3 2 1

⊕

The word ‘register’ in LFSR refers to the boxed memory units
storing the bits.



Circuit Diagrams and the Very Useful Property

Very Useful Property

F s
(
(k0, k1 . . . , k`−1)

)
= (ks , ks+1, . . . , ks+`−1).

The keystream for the LFSR F in Example 6.3 with key 0111 is
below

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

True or false?

(1) F 2(0111) = 1110 (A) False (B) True

(2) F 3(0111) = 1100 (A) False (B) True

(3) F 11(0111) = 1101 (A) False (B) True

(4) F 2(1110) = 1100 (A) False (B) True
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Cryptosystem defined by an LFSR

Definition 6.4
Let F be an LFSR of width ` and let n ∈ N. The cryptosystem
defined by F has P = C = Fn

2 and keyspace K = F`
2. The

encryption functions are defined by

ek(x) = (k0, k1, . . . , kn−1) + (x0, x1, . . . , xn−1)

for each k ∈ K and x ∈ P.

Thus, like the one-time pad, the ciphertext is obtained by addition
to the plaintext. But unlike the one-time pad, the key is usually
much shorter than the plaintext.

Exercise 6.5
Define the decryption function dk : Fn

2 → Fn
2.

Problem Sheet 5 shows how to encrypt an English message of
length n by using the ASCII encoding to convert it to a word
in F8n

2 .
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Thus, like the one-time pad, the ciphertext is obtained by addition
to the plaintext. But unlike the one-time pad, the key is usually
much shorter than the plaintext.

Quiz. Alice sends Bob (a hardworking student) his exam mark
using the LFSR F in Example 5.2, by writing the mark in binary
using 8 bits and encrypting using their key k0k1k2k3.

Eve observes the ciphertext 00100110. Writing ? for an unknown
bit, she can guess that k0k1k2k3 is

(A) 00 ? ? (B) 01 ? ? (C) 10 ? ? (D) 11 ? ?
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Invertible LFSRs and periods: motivation

Exercise 6.6
Let H be the LFSR of width 3 with taps {1, 2}. Show that H is
not invertible and check that 111011011011011 . . . is a keystream
of H, ending in the cycle 011011 . . ..

This exercise and Example 6.3(i) suggest the general result: an
LFSR is invertible if and only if ` is one of the taps.

Exercise 6.7
Let G be the LFSR of width 4 with taps {1, 2, 4}.
(a) Find the keystreams for the keys 0001 and 0010.

(b) Which words of length 4 do not appear in either keystream?

(c) Find all keystreams generated by this LFSR.

Where is the first position in which the keystream for key 0110
repeats? (This is the period of the keystream.)

(A) 3 (B) 7 (C) 14 (D) 15

True or false: G 7 = id, the identity function.
(A) False (B) True
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Invertible LFSRs and Periods

For example, the LFSR F with taps {2, 3} has a keystream with
period 15: ks = ks+15 for all s.

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Fix a non-zero key k ∈ F`
2 and consider the binary words F s(k) for

s ∈ N0. Mini-exercise: why are they all non-zero? As in
Example 6.3(iv), we make a chain

k 7→ F (k) 7→ F 2(k) 7→ . . . 7→ F s(k) 7→ . . . 7→ F s′(k) 7→ . . . .

Since there are 2` − 1 non-zero binary words of length `, and

k ,F (k), . . . ,F 2`−1(k)

has 2` words, there exist r , r ′ with 0 ≤ r < r ′ < 2` such that
F r (k) = F r ′(k). Now applying F−r we get k = F r ′−r (k). Hence,
by (VUP),

k0k1 . . . k`−1 = kr ′−rkr ′−r+1 . . . kr ′−r+`−1

and the keystream repeats after at most r ′ − r < 2` positions.



Definition 6.8
Let F be an invertible LFSR.

(i) We define the period of a keystream k0, k1, . . . generated by F
to be the least p such that ks+p = ks for all s ∈ N0.

(ii) We define the period of F to be the least P such that
FP = id, the identity function.

For example, the LFSRs F and G in Example 6.3 and Exercise 6.7
have non-zero keystreams of periods 15 (the maximum possible)
and 7, 7, 1, 1 [Correction!] respectively. Their periods are 15 and
7, respectively. We just saw that the period of a keystream of an
LFSR of width ` is at most 2` − 1.



Definition 6.8
Let F be an invertible LFSR.

(i) We define the period of a keystream k0, k1, . . . generated by F
to be the least p such that ks+p = ks for all s ∈ N0.

(ii) We define the period of F to be the least P such that
FP = id, the identity function.

Quiz. The minimum period an LFSR with keystreams of lengths 4
and 30 could have is

(A) 30 (B) 60 (C) 120 (D) 360

The LFSR H of width 4 with taps {2, 4} has the keystreams
I 0 0 0 . . .
I 011 011 011 . . .
I 000101 000101 000101 . . .
I 001111 001111 001111 . . .

What is the period of H?
(A) 3 (B) 6 (C) 15 (D) 18
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In general, (VUP) implies that the period of an LFSR is the lowest
common multiple of the periods of its keystreams.



Periods, Polynomials and Power Series

An LFSR of width ` and maximum possible period 2` − 1 has a
unique non-zero keystream, up to cyclic shifts. (This was seen in
Example 6.3 in a case for ` = 4.)

To find such LFSRs, it will be helpful to represent infinite
keystreams by power series. We use z as an indeterminate. For
instance, using the LFSR of width 3 with taps {2, 3},

00101110010111 . . .←→ z2+z4+z5+z6+z9+z11+z12+z13+· · · .

Let K (z) be the power series on the right. Since the keystream has
period 7, when we multiply by 1 + z7 the infinite power series
becomes a polynomial:

K (z)(1 + z7) = z2 + z4 + z5 + z6.

For example, the coefficient of z9 is zero since k2 = k7 = 1 and
1 + 1 = 0.



Annihilating Power Series
The LFSR of width 3 with taps {2, 3} has keystream

00101110010111 . . .←→ z2+z4+z5+z6+z9+z11+z12+z13+· · · .
Let K (z) be the power series on the right.

Exercise 6.9

(i) Recall that the degree of a polynomial is its highest power of
z . Which polynomial p(z) of degree 3 is such that K (z)p(z)
is a polynomial?

(A) 1 + z (B) 1 + z2 (C) 1 + z2 + z3 (D) 1 + z + z3

(ii) Which key gives the keystream corresponding to the power
series 1/(1 + z2 + z3)? [Correction: not 1/(1 + z + z3).]
[Hint: think of it as 1/(1 + t), and expand as a geometric
series. Be bold! Remember + is − in F2.]

(A) 000 (B) 100 (C) 101 (D) 111
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[Hint: think of it as 1/(1 + t), and expand as a geometric
series. Be bold! Remember + is − in F2.]

(A) 000 (B) 100 (C) 101 (D) 111



Annihilating Power Series
The LFSR of width 3 with taps {2, 3} has keystream

00101110010111 . . .←→ z2+z4+z5+z6+z9+z11+z12+z13+· · · .
Let K (z) be the power series on the right.

Motivated by this exercise, we define the feedback polynomial of a
LFSR with taps T to be

gT (z) = 1 +
∑

t∈T
z t .

Definition 6.10
Let K (z) be an infinite power series with coefficients in F2. Let
p(z) be a polynomial. We say that p(z) annihilates K (z) if
K (z)p(z) is a polynomial.

For example, we have seen that if

K (z) = z2 + z4 + z5 + z6 + z7 + z9 + x12 + z13 + · · ·
then K (z) is annihilated by 1 + z7 (period!) and also by
1 + z2 + z3 (taps!).



Annihilating Keystreams

Definition 6.10
Let K (z) be an infinite power series with coefficients in F2. Let
p(z) be a polynomial. We say that p(z) annihilates K (z) if
K (z)p(z) is a polynomial.

For example, we have seen that if

K (z) = z2 + z4 + z5 + z6 + z7 + z9 + x12 + z13 + · · ·

then K (z) is annihilated by 1 + z7 (period!) and also by
1 + z2 + z3 (taps!).

Lemma 6.11
Let F be an LFSR with taps T .

(a) Let K (z) be the infinite power series corresponding to a
keystream of F . Then gT (z) annihilates K (z).

(b) There is a keystream of F corresponding to the power series
1/gT (z). It is annihilated only by the multiples of gT (z).



I If you have problems with LFSRs.nb, or any other notebook
in the course, please:
I Quit Mathematica
I Download a fresh copy of the notebook from Moodle.

Rename AlphabeticCiphers.nb.txt to AlphabeticCiphers.nb if necessary.

This is a Moodle bug affecting Safari on Mac OS X and maybe other browsers.

I Restart Mathematica
I Load the fresh copy of AlphabeticCiphers.nb
I Select ‘Evaluate Notebook’ in the ‘Evaluation’ menu. (As

it says at the top of the notebook.)

Then remember that it’s always shift-return to evaluate. If
you ever press return, you are probably doing things wrong.

I You can use the notebook for Questions 2 and 3 on Sheet 5.
It will also help with Question 4: there is a hint in the
notebook on how to do it using annihilators.



Annhilators Determine Period of LFSR

Corollary 6.12

Let F be an invertible LFSR with taps T . Let m ∈ N be least such
that gT (z) divides 1 + zm. The period of F is m.

Lemma 6.13
If a polynomial g(z) divides zd + 1 and ze + 1 then it divides
zhcf(d ,e) + 1.

Example 6.14

The number 213 − 1 = 8191 is a prime. The Mathematica
command Factor[z^8191 + 1, Modulus -> 2] returns

(1 + z)(1 + z + z3 + z4 + z13)(1 + z + z2 + z5 + z13) . . . .

The taps of the LFSR of width 13 with minimal polynomial
1 + z + z3 + z4 + z13 are {9, 10, 12, 13}. By Corollary 6.12, its
period is the least m such that 1 + z + z3 + z4 + z13 divides
zm + 1. Will use this to show period is 8191.
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§7 Pseudo-random Number Generation

We saw before Definition 6.8 that the maximum possible period of
a keystream of an LFSR of width ` is 2` − 1. Such an LFSR has
period 2` − 1. Given any non-zero k ∈ F`

2, the first 2` − 1 positions
of the keystream for k are the generating cycle for k. (The term
‘m-sequence’ is also used.)



Generating Cycles of Maximum Period LFSRs

Exercise 7.1
Let F be the LFSR of width 4 with taps {0, 1} and period
15 = 24 − 1 seen in Example 5.1. It has the maximum possible
period for its width. The keystream for k = (1, 1, 0, 0) is

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0 . . .).

Correspondingly, by the Very Useful Property,

F (1, 1, 0, 0) = (1, 0, 0, 0), . . .F 14(1, 1, 0, 0) = (1, 1, 1, 0)

and F 15(1, 1, 0, 0) = (1, 1, 0, 0). By taking the first 15 positions
we get the generating cycle

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14



Exercise 7.1 [continued]

By taking the first 15 positions we get the generating cycle

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14

(a) Find all the positions t such that

(kt , kt+1, kt+2, kt+3) = (0, 1, 1, 1).

(b) What is the only element of F4
2 not appearing in the

keystream for (1, 1, 0, 0)?

(c) Why is the generating cycle for (0, 1, 1, 1) a cyclic shift of the
generating cycle for (1, 1, 0, 0)?

(d) Find all the positions t such that (kt , kt+1, kt+2) = (0, 1, 1).
How many are there?

(e) Repeat (d) changing (0, 1, 1) to (0, 0, 1), (0, 0, 0), (0, 1),
(1, 1), (1, 0) and (0, 0). What is the pattern?



Quiz
The keystream for the LFSR with taps {0, 2, 3, 4} and width 5 for
the key 00001 has period 31. The first 31 positions are

(0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14k15k16k17k18k19k20k21k22k23k24k25k26k27k28k29k30

I How many times does 11110 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times does 1111 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times does 111 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times does 010 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times does 100 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times does 000 appear?
(A) 1 (B) 2 (C) 3 (D) 4
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Generalizing Example 7.1

Proposition 7.2

Let F be an invertible LFSR of width ` and period 2` − 1. Let
k ∈ F`

2 be non-zero and let (k0, k1, . . . , k2`−2) be its generating
cycle. We consider positions s within this cycle, so 0 ≤ s < 2`− 1.

(a) For each non-zero x ∈ F`
2 there exists a unique s such that

(ks , . . . , ks+`−1) = x .

(b) Given any non-zero y ∈ Fm
2 where m ≤ `, there are precisely

2`−m positions s such that (ks , . . . , ks+m−1) = y .

(c) There are precisely 2`−m − 1 positions s such that
(ks , . . . , ks+m−1) = (0, 0, . . . , 0) ∈ Fm

2 .



Testing for Randomness

Exercise 7.3
Write down a sequence of 33 bits, fairly quickly, but trying to make
it seem random. Count the number of zeros and the number of
ones. (Do not wrap around.) Now count the number of adjacent
pairs 00, 01, 10, 11. Does your sequence still seem random?

Exercise 7.4
Let M0 be the number of zeros and let M1 be the number of ones
in a binary sequence B0,B1, . . . ,Bn−1 of length n.

(a) Explain why if the bits are random we would expect that M0

and M1 both have the Bin(n, 1
2 ) distribution.

(b) Show that the χ2 statistic with (a) as null hypothesis is
(M0 −M1)2/n.

(c) A sequence with n = 100 has 60 zeros. Does this suggest it is
not truly random? [Hint: if Z ∼ N(0, 1) then
P[Z 2 ≥ 3.841] ≈ 0.05 and P[Z 2 ≥ 6.635] ≈ 0.01.]



The Hypothesis Testing Framework

In Exercise 7.4 our hypothesis was

I M0 and M1 are distributed binomially as Bin(n, 1
2 ).

We tested this using the statistic (M0 −M1)2/n.

If the hypothesis is true, this statistic is distributed as the χ2

distribution, with 1 degree of freedom. (This is the square of an
N(0, 1) random variable: mean 0, variance 1.)

(c) A sequence with n = 100 has 60 zeros. Does this suggest it is
not truly random? [Hint: if Z ∼ N(0, 1) then
P[Z 2 ≥ 3.841] ≈ 0.05 and P[Z 2 ≥ 6.635] ≈ 0.01.]

The statistic is 202/100 = 4. If the hypothesis is true,

I we observed a random variable Z ∼ N(0, 1) and found that
Z 2 ≈ 4;

I this event has probability between 0.01 and 0.05;

I we therefore decide the hypothesis is false.

The ‘p-value’ is 0.05 or 5 %.
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Quiz on Hypothesis Testing
We test a hypothesis using a statistic Z . If the hypothesis is true,
Z has a known distribution. Examples: ‘this medical intervention is
no better than a placebo’, ‘this keystream is equally likely to be 0
as 1’, with a χ2 distribution.

(a) A p-value of 0.01 means there is only a 1% chance the
hypothesis is true.

(A) False (B) True

(b) The p-value is the probability of seeing the exact value of Z .
(A) False (B) True

(c) The p-value is the probability, if the hypothesis is true, of
seeing this value of Z , or something more extreme.

(A) False (B) True

(d) If the hypothesis is true then the p-value is uniformly
distributed on [0, 1].

(A) False (B) True
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If the hypothesis is true and the statistic is z then the reported
p-value is 10% if and only if Z is in the most extreme 10% of its
range. Clearly this has probability 10%.
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hypotheses, then there is 2

3 chance one will be rejected.
(A) False (B) True
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Quiz on Hypothesis Testing
We test a hypothesis using a statistic Z . If the hypothesis is true,
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The p-value for the CERN Higgs Boson test is 3× 10−7,
corresponding to 5 standard deviation off the mean in a normal
distribution.



Correlation

Definition 7.5
Given (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1) ∈ Fn

2 define

csame =
∣∣{i : xi = yi}

∣∣
cdiff =

∣∣{i : xi 6= yi}
∣∣.

The correlation between x and y is (csame − cdiff)/n.

Exercise 7.6
Find the correlation between a generating cycle for the LFSR of
width 3 with taps {2, 3} and each cyclic shift of itself. Would your
answer change if a different key was used in the generating cycle?

More generally we shall prove the following proposition.

Proposition 7.7

Let (k0, k1, . . . , k2`−2) be a generating cycle of a maximal period
LFSR of width `. The correlation between (k0, k1, . . . , k2`−2) and
any proper cyclic shift of (k0, k1, . . . , k2`−2) is −1/(2` − 1).

Again this shows that the keystream of a full-period LFSR has a
strong randomness property.



§8 Non-Linear Stream Ciphers

A general stream cipher takes a key k ∈ F`
2, for some fixed `, and

outputs a sequence u0, u1, u2, . . . of bits. For each n ∈ N there is a
corresponding cryptosystem where, as in Definition 6.4, the
encryption functions ek : Fn

2 → Fn
2 are defined by

ek(x) = (u0, u1, . . . , un−1) + (x0, x1, . . . , xn−1).

Exercise 8.1
In the LFSR cryptosystem of Definition 6.4, the keystream
u0u1u2 . . . is simply k0k1k2, . . .. Show how to find the key
(k0, . . . , k`−1) using a chosen plaintext attack.



Sum of LFSRs

Example 8.2
I Let F be the LFSR of width 4 with taps {3, 4} of period 15.

The first 20 bits in the keystreams for F with keys k = (0, 0, 0, 1)
and k ′ = (1, 1, 1, 1) sum to the sequence (u0, u1, . . . , u19) below:

ki 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0
k?i 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0

ui 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Unfortunately, u0u1u2 . . . is also generated by F : it is the
keystream for (1, 0, 0, 1). Exercise:

(a) Explain why this should have been expected. [Hint: the same
linearity was used to prove Proposition 7.7.]

(b) Exercise: can the keys k and k? be recovered from
(u0, u1, . . . , u19)?

(A) No (B) Yes



Sum of LFSRs
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(A) No (A) Yes
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Example 8.2 [continued]
I Let F ′ be the LFSR of width 3 with taps {2, 3} of period 7.

The first 20 bits in the keystreams for F and F ′ with keys
k = (0, 0, 0, 1) and k ′ = (0, 0, 1) and their sum u0u1 . . . u19 are:

ki 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0
k ′i 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1

ui 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Quiz: what is the period of u0u1u2 . . .?
(A) 7 (B) 15 (C) 105 (D) need more info

This is encouraging: combining the LFSRs creates a keystream
with a much longer period than either individually.

The bad news is that the keystream (u0, u1, u2, . . .) is generated by
the LFSR of width 7 with taps {2, 4, 5, 7}. This is shown in
Question 4(c) on Sheet 5.
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Geffe Generator

Example 8.3

A Geffe generator is constructed using three LFSRs F , F ′ and G of
widths `, `′ and m, all with maximum possible period. Following
Kerckhoff’s Principle, the widths and taps of these LFSRs are
public knowledge.

I Let k0k1k2 . . . and k ′0k
′
1k
′
2 . . . be keystreams for F and F ′

I Let g0g1g2 . . . be a keystream for G .

The Geffe keystream (u0, u1, u2, . . .) is defined by

ui =

{
ki if gi = 0

k ′i if gi = 1.



Example 7.3 [continued]
For example, if F and F ′ and their keystreams are as in
Example 8.2 (so F has width 4, taps {3, 4}, F ′ has width 3, taps
{2, 3}), and G is the LFSR of width 4 with taps {1, 4} and
(g0, g1, g2, g3) = (0, 0, 0, 1) then, using colours to indicate which
bit is used:

ki 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0
k ′i 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1

gi 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1

ui 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Quiz: the period of u0u1u2 . . . is
(A) 15 (B) 35 (C) 105 (D) 1575

Quiz: What (up to a very small error) is P[ki = ui ]?
(A) 1/4 (B) 1/2 (C) 3/4 (D) 1

Quiz: For n large, what is the expected correlation between
(k0, . . . , kn−1) and (u0, . . . , un−1)?

(A) 0 (B) 1/4 (C) 1/2 (D) 3/4
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Example 7.3 [continued]
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What is the correlation in this case between k ′0k1 . . . k
′
19 and

u0u1 . . . u19?
(A) 3

10 (B) 1
2 (C) 3

5 (D) 7
10
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So when we guess correctly, we see a correlation of 7
10 . The sample

is small, and by chance this is more than the predicted 1
2 .



Example 7.3 [continued]
For example, if F and F ′ and their keystreams are as in
Example 8.2 (so F has width 4, taps {3, 4}, F ′ has width 3, taps
{2, 3}), and G is the LFSR of width 4 with taps {1, 4} and
(g0, g1, g2, g3) = (0, 0, 0, 1) then, using colours to indicate which
bit is used:
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ui 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Suppose we guess (wrongly) that

(k0, k1, k2) = (1, 1, 0).

The correlation between the implied keystream (v0, v1, v2, . . . , v19)
and (u0, u1, . . . , u19) is (7− 13)/20 = − 3

10 .

vi 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0
ui 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1



Correlation Attack on Geffe Generator

Attack 8.4
Suppose that n bits of the Geffe keystream are known. The
attacker computes, for each candidate key (v0, v1, . . . , v`−1) ∈ F`

2,
the correlation between (v0, v1, . . . , vn−1) and (u0, u1, . . . , un−1). If
the correlation is not nearly 1

2 then the candidate key is rejected.
Otherwise it is likely that (k0, . . . , k`−1) = (v0, . . . , v`−1).

Quiz: suppose that ` < `′. Is it better to guess the key for F or the
key for F ′?

(A) Guess F (B) Guess F ′

One can repeat Attack 8.4 to learn (k ′0, k
′
1, . . . , k

′
`′−1). Overall this

requires at most 2` + 2`
′

guesses. This is a huge improvement on
the 2`+`′ guesses required by trying every possible pair of keys.
(See Question 1(b) on Sheet 6 for a faster finish.)

An attack such as Attack 8.4 is said to be sub-exhaustive because
it finds the key using fewer guesses than brute-force exhaustive
search through the keyspace.
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Quadratic Stream Cipher

Example 8.5

Let F be the LFSR of width 5 with taps {3, 5} and let F ′ be the
LFSR of width 6 with taps {2, 3, 5, 6}. These have the maximum
possible periods for their widths, namely 25 − 1 = 31 and
26 − 1 = 63. Fix m ∈ N and for each i ≥ m, define

us = ksk
′
s + ks−1k

′
s−1 + · · ·+ ks−(m−1)k

′
s−(m−1).

Note that there are m products in the sum. Define us = 0 if
0 ≤ s < m − 1. The m-quadratic stream cipher is the
cryptosystem defined using the keystream u0, u1,. . . , u1023.

Taking m = 1 gives a cipher like the Geffe generator: since
us = ksk

′
s we have P[us = ks ] = 3

4 , giving a correlation of 1
2 .

Attack 8.4 is effective.



Quadratic Stream Cipher

For general m, the expected correlation between keystream of the
m-quadratic stream cipher u0u1u2 . . . u1023 and the keystream
k0k1k2 . . . k1023 of the LFSR of width 5 is about 1

2m . (M.Sc.
students saw this on Thursday for the cases m = 1 and m = 2;
the general case is proved using the Piling-Up Lemma.)

Taking m = 5, this makes the correlation attack ineffective
because the difference between 0 correlation and the correlation of
± 1

25 from a correct key guess cannot be detected with 210 samples.

The 5-quadratic stream cipher is therefore somewhat resistant to
the chosen plaintext attack in Exercise 8.1.

Exercise 8.6
Unfortunately the m-quadratic cipher is still vulnerable because
taking the sum of two adjacent bits ui and ui−1 in the keystream
cancels out many of the quadratic terms. Use this to find a
subexhaustive attack.



Trivium

Example 8.7 (Trivium)

The building blocks are three LFSRs of widths 93, 84 and 111,
with taps {66, 93}, {69, 84} and {66, 111}. Let x ∈ F93

2 , y ∈ F84
2 ,

z ∈ F111
2 be the internal states. The registers are updated using

the functions f , g and h, respectively, where

f (x , y , z) = z0 + z111−66 + z1z2 + x24

g(x , y , z) = x0 + x93−66 + x1x2 + y6

h(x , y , z) = y0 + y84−69 + y1y2 + z24

For instance the x-register is updated using f , so in each step

(x0, . . . , x92) 7→
(
x1, . . . , x92, f (x , y , z)

)
.

The keystream bit from each step is

x0 + x93−66 + y0 + y84−69 + z0 + z111−66.



Example 8.7 [continued]: Trivium Key

Rather than use a 288-bit key, Trivium uses a (secret) 80-bit key
put in the x-register, and a (non-secret) 80-bit initialization vector
put in the y -register. The remaining positions in the internal state
start as 0, except for z0, z1, z2 which start as 1. (Exercise: why do
this?) The first 1152 bits of the keystream are unusually biased,
and so are discarded. This can be seen, for the earlier bits, using
the implementation of Trivium in the Mathematica notebook
on Moodle.



Example 8.7 [continued]: Trivium Circuit Diagram



Part C: Block ciphers

§9 Feistel Networks and DES

In a block cipher of block size n and key length `, P = C = Fn
2,

and K = F`
2. Since P = C, by Exercise 3.3(ii), each encryption

function ek for k ∈ K is bijective, and the cryptoscheme is
determined by the encryption functions.

In a typical modern block cipher, n = 128 and ` = 128. Since most
messages have more than n bits, they have to be split into multiple
blocks, each of n bits, before encryption.

Example 9.1

The binary one-time pad of length n is the block cipher of block
size n and key length n in which ek(x) = x + k for all k ∈ Fn

2.

Modern block ciphers aim to be secure even against a chosen
plaintext attack allowing arbitrarily many plaintexts. That is, even
given all pairs (x , ek(x)) for x ∈ Fn

2, there should be no faster way
to find the key k then exhausting over all possible keys in F`

2.
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Finding a Key in a Haystack: Example 9.2

Take n = 3 so P = C = F3
2. The toy block cipher has K = F8

2.
The encryption functions are 256 of the permutations F3

2 → F3
2,

chosen according to a fairly arbitrary rule (details omitted). For
example, the red edge in diagram 252 shows that
e11111100(010) = 100, or in decimal, e252(2) = 4

The other 240 permutations are posted on Moodle and will be
available in the lecture. [Please take a fresh sheet.]



Example 8.2 [continued]

Suppose Alice and Bob used the toy block cipher with their shared
secret key k .

(i) By a chosen plaintext attack Mark learns that ek(000) = 011
and ek(100) = 000. One possible key is 254, or 11111110 in
binary. There are twelve others: find at least one of them.

(ii) By choosing two further plaintexts Mark learns that
ek(001) = 101 and ek(110) = 111. Determine k .

(A) 6 (B) 122 (C) 170 (D) 254

(iii) Later Mark’s boss Eve observes the ciphertext 100. What is
dk(100)?

(A) 1 (B) 3 (C) 5 (D) 7

In this case since |F3
2| = 8, there are 8! = 40320 permutations of

F3
2, of which 256 were used.
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I Correction: in the example of storing a permutation, I said
AES had block size 64. I meant DES. (AES has block size
128.)

I Please see updated answers and feedback for Problem Sheet 5
on Moodle. Often more explanation was needed for full marks.

(3) (a) Let k0k1k2k3k4k5k6k7 be the keystream of an LFSR of width 4.
(The taps could be anything.) Show that the the matrix
equation




k0 k1 k2 k3

k1 k2 k3 k4

k2 k3 k4 k5

k3 k4 k5 k6







b4

b3

b2

b1


 =




k4

k5

k6

k7




has a solution b4, b3, b2, b1. [Hint: remember that if T is the
taps then ks =

∑
t∈T ks−t for each s ≥ `. Relate this to the

four equations from the matrix.]
(b) Is the converse to (a) true? Justify your answer.
(c) Which of the bit sequences 00100110, 00100111, 11100001

and 0110111 is a keystream of an LFSR of width 4? (In the
last you are only given k0k1 . . . k6.) Justify your answers. Do
they change if the LFSR is required to be invertible?



Problem Sheet 5 Question 5

Let B0,B1, . . . ,Bn−1 be a sequence of bits, each 0 or 1
independently with probability 1

2 . For b, b′ ∈ {0, 1}, let Mbb′ be
the number of i ∈ {0, . . . , n − 2} such that (Bi ,Bi+1) = (b, b′).

(a) Show that the expected value of M00 is E[M00] = (n − 1)/4
and find E[M01],E[M10],E[M11].

(b) Does the sequence below pass the monobit test in Exercise
7.4?

0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0,1,1,0

What is n and what are the statistics M00, M10, M01, M11 for
this sequence?

(c) Perform a χ2-test on M00,M01,M10,M11 to test the sequence
in (b) for randomness on pairs of bits. [Hint: use
M00 + M01 + M10 + M11 = n to determine the degrees of
freedom.]



Feistel Networks

Definition 9.3
Let m ∈ N and let f : Fm

2 → Fm
2 be a function. Given v , w ∈ Fm

2 ,
let (v ,w) denote (v0, . . . , vm−1,w0, . . . ,wm−1) ∈ F2m

2 . The Feistel
function for f is the function F : F2m

2 → F2m
2 defined by

F
(
(v ,w)

)
= (w , v + f (w)).

This can be compared with an LFSR: we shift left by m bits to
move w to the first position. The feedback function is
(v ,w) 7→ v + f (w). It is linear in v , like an LFSR, but typically
non-linear in w .

Exercise 9.4
Show that, for any function f : Fm

2 → Fm
2 , the Feistel function F

for f is invertible. Give a formula for its inverse in terms of f .



Example 9.5 (Q-Block Cipher)

Take m = 4 and let

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

We define a block cipher with block size 8 and key length 12
composed of three Feistel functions. If the key is k ∈ F16

2 then

k(1) = (k0, k1, k2, k3), k(2) = (k4, k5, k6, k7), k(3) = (k8, k9, k10, k11).

The Feistel function in round i is x 7→ S(x + k(i)). Since in each
round the contents of the right register shift to the left, we can
consistently denote the output of round i by (v (i), v (i+1)). Thus
the plaintext (v ,w) ∈ F16

2 is encrypted to the cipher text
ek
(
(v ,w)

)
= (v (3), v (4)) in three rounds:

(v ,w) = (v (0), v (1)) 7→
(
v (1), v (0) + S(v (1) + k(1))

)
= (v (1), v (2))

7→
(
v (2), v (1) + S(v (2) + k(2))

)
= (v (2), v (3))

7→
(
v (3), v (2) + S(v (3) + k(3))

)
= (v (3), v (4)).



Q-Block Cipher: Recall (v ,w) 7→
(
w , v + S(w + kround)

)

Exercise 9.6
(a) Suppose that k = 0001 0011 0111, shown split into the three

round keys. Show that ek(0000 0000) = 1110 0010 and
(v (1), v (2)) = (0000 0100). Find (v (2), v (3)).

(A) (0100 1110) (B) (1110 0100)

(C) (0100 1010) (D) (1010 0100)

(A) (B) (C) (D)

(b) Let k ′ = 0001 0011 0000. When (1110, 0010) is decrypted,
what is (v (2), v (3))?

(A) (1011 1110) (B) (1001 1110)

(C) (0100 1110) (D) (1110 1011)

(A) (B) (C) (D)

(c) Suppose Eve observes the ciphertext (v (3), v (4)) from the
Q-block cipher with key k. What does she need to know to
learn v (2)?

(A) k (B) k0k1k2k3 (C) k4k5k6k7 (D) k8k9k10k11
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Exercise 9.6(a): (v ,w) 7→
(
w + v + S(w + kround)

)

v w

w v + S(w + kround)

w

w + kround

S(w + kround)

v + S(w + kround)

S

kround

;



Exercise 9.6(a): (v ,w) 7→
(
w + v + S(w + kround)

)

v = v (0) = 0000 w = v (1) = 0000

v (1) = 0000 v (2) = 0100

0000

0001

0100

0100

S

0001



Exercise 9.6(a): (v ,w) 7→
(
w + v + S(w + kround)

)

v = v (0) = 0000 w = v (1) = 0000

v (1) = 0000 v (2) = 0100

0000

0001

0100

0100

S

0001

v (1) = 0000 v (2) = 0100

v (2) = 0100 v (3) = 1110

0100

0111

1110

1110

S

0011



Exercise 9.6(a): (v ,w) 7→
(
w + v + S(w + kround)

)

v = v (0) = 0000 w = v (1) = 0000

v (1) = 0000 v (2) = 0100

0000

0001

0100

0100

S

0001

v (1) = 0000 v (2) = 0100

v (2) = 0100 v (3) = 1110

0100

0111

1110

1110

S

0011

v (2) = 0100 v (3) = 1110

v ′ = v (3) = 1110 w ′ = v (4) = 0010

1110

1001

0110

0010

S

0111



Exercise 9.6(b): (v ′,w ′) 7→
(
w ′ + S(v ′ + kround), v ′

)

v = v (0) = 1100 w = v (1) = 1100

v (1) = 1100 v (2) = 1011

1100

1101

0111

1011

S

0001

v (1) = 1100 v (2) = 1011

v (2) = 1011 v (3) = 1110

1011

1000

0010

1110

S

0011

? ?

v ′ = v (3) = 1110 w ′ = v (4) = 0010

?

?

?

?

S

0000



Exercise 9.6(b): (v ′,w ′) 7→
(
w ′ + S(v ′ + kround), v ′

)

v = v (0) = 1100 w = v (1) = 1100

v (1) = 1100 v (2) = 1011

1100

1101

0111

1011

S

0001

v (1) = 1100 v (2) = 1011

v (2) = 1011 v (3) = 1110

1011

1000

0010

1110

S

0011

v (2) = 1011 v (3) = 1110

v ′ = v (3) = 1110 w ′ = v (4) = 0010

1110

1110

1001

0010

S

0000



Exercise 9.6(b): (v ′,w ′) 7→
(
w ′ + S(v ′ + kround), v ′

)

v = v (0) = 1100 w = v (1) = 1100

v (1) = 1100 v (2) = 1011

1100

1101

0111

1011

S

0001

v (1) = 1100 v (2) = 1011

v (2) = 1011 v (3) = 1110

1011

1000

0010

1110

S

0011

v (2) = 1011 v (3) = 1110

v ′ = v (3) = 1110 w ′ = v (4) = 0010

1110

1110

1001

0010

S

0000



Exercise 9.6(b) flip: (w ′, v ′) 7→
(
v ′,w ′ + S(v ′ + kround)

)

w ′ v ′

v ′ w ′+S(v ′+kround)

v ′

v ′+kround

S(v ′+kround)

w ′+S(v ′+kround)

S

kround

;



Exercise 9.6(b) flip: (w ′, v ′) 7→
(
v ′,w ′ + S(v ′ + kround)

)

w ′ = v (4) = 0010 v ′ = v (3) = 1110

v (3) = 1110 v (2) = 1011

1110

1110

1001

1011

S

0000



Exercise 9.6(b) flip: (w ′, v ′) 7→
(
v ′,w ′ + S(v ′ + kround)

)

w ′ = v (4) = 0010 v ′ = v (3) = 1110

v (3) = 1110 v (2) = 1011

1110

1110

1001

1011

S

0000

v (3) = 1110 v (2) = 1011

v (2) = 1011 v (1) = 1100

1011

1000

0010

1100

S

0011



Exercise 9.6(b) flip: (w ′, v ′) 7→
(
v ′,w ′ + S(v ′ + kround)

)

w ′ = v (4) = 0010 v ′ = v (3) = 1110

v (3) = 1110 v (2) = 1011

1110

1110

1001

1011

S

0000

v (3) = 1110 v (2) = 1011

v (2) = 1011 v (1) = 1100

1011

1000

0010

1100

S

0011

v (2) = 1011 v (1) = 1100

w = v (1) = 1100 v = v (0) = 1100

1100

1101

0111

1100

S

0001



DES (Data Encryption Standard 1975)
DES is a Feistel block cipher of block size 64. The key length is
56, so the keyspace is F56

2 . Each round key is in F48
2 . There are 16

rounds. (Details of how the 16 round keys are derived from the key
are omitted.)

Each Feistel Network is defined using a function F32
2 → F32

2 :

(a) Expand w ∈ F32
2 by a linear function (details omitted) to

w ′ ∈ F48
2 .

(b) Add the 48-bit round key to get w ′ + k(i).

(c) Let w ′ + k(i) = (y (1), . . . , y (8)) where y (i) ∈ F6
2. Let

z =
(
S1(y (1)), . . . ,S8(y (8))

)
∈ F32

2 . Confusion: obscure
relationship between plaintext and ciphertext on nearby bits.

(d) Apply a permutation (details omitted) of the positions of z .
Diffusion: turn short range confusion into long range
confusion.

Note that (a) and (d) are linear, and (b) is a conventional key
addition in F48

2 . So the S-boxes in (c) are the only source of
non-linearity.



DES S-boxes



DES attacks
The small keyspace F56

2 makes DES insecure.
I 1997: 140 days, distributed search on internet
I 1998: 9 days ‘DES cracker’ (special purpose) $250000
I 2017: 6 days ‘COPACOBANA’ (35 FPGA’s) $10000

Roughly how many keys does COPACOBANA test in each second?

(A) 232 (B) 236 (C) 237 (D) 240

Hint: log2(6× 24× 60× 60) ≈ 19.

Exercise 9.7
Suppose we apply DES twice, first with key k ∈ F56

2 then with
k ′ ∈ F56

2 . So the keyspace is F56
2 × F56

2 and for (k, k ′) ∈ F56
2 × F56

2 ,

e(k,k ′)(x) = e ′k
(
ek(x)

)
∈ F64

2 .

(a) Roughly how long would a brute force exhaustive search over
F56

2 × F56
2 take? (Assume you own a COPACOBANA.)

(A) 12 days (B) 36 days (C) 106 years (D) 1015 years

(b) Does this mean 2DES is secure?
(A) False (B) True
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Meet-in-the-Middle Attack on 2DES
In a chosen plaintext attack on 2DES we may choose any plaintext
x ∈ F64

2 and get its encryption z = ek ′
(
ek(x)

)
∈ F64

2 , by unknown

(k , k ′) ∈ F56
2 × F56

2 .

We defined

E = {
(
k?, ek?(x)

)
: k? ∈ F56

2 }
D = {

(
k ′?, dk ′

?
(z)
)

: k ′? ∈ F56
2 }.

Assume that k and k ′ are chosen independently. Given a random
y ∈ F64

2 , what, approximately, is the probability that (k?, y) ∈ E ,
for some key k??

(A) 1
256 (B) 1

128 (C) 1
8 (D) 1

What approximately is the probability that (k?, y) ∈ E , for some
key k? and (k ′?, y) ∈ D for some key k ′??

(A) 1
232 (B) 1

216 (C) 1
28 (D) 1

24

How many DES encryptions / decryptions in total to find key?
[Hint: check the possible keys by encrypting another plaintext.]

(A) 257 (B) 257 + 248 (C) 257 + 249 (D) 2112
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Modes of Operation
A block cipher with block size n encrypts plaintexts x ∈ Fn

2. If x is
longer it has to be split into blocks x (1), . . . , x (m) ∈ Fn

2:

x = (x (1), . . . , x (m)).

Fix a key k ∈ K: this is only key used.
I Electronic Codebook Mode:

x (1) 7→ ek(x (1))

x (2) 7→ ek(x (2))
...

x (m) 7→ ek(x (m))

I Cipher Block Chaining:

x (1) 7→ ek(x (1)) = y (1)

x (2) 7→ ek(y (1) + x (2)) = y (2)

...

x (m) 7→ ek(y (m−1) + x (m)) = y (m)



Same In Implies Same Out

If x (i) = x (j) then, in Electronic Codebook Mode, the ciphertext
blocks ek(x (i) and ek(x (j)) are equal. This is a weakness of the
mode of operation, not of the underlying block cipher.

Cipher Block Chaining (and the many other modes of operation
you are not expected to know about) avoid this problem.



§10 Differential Cryptanalysis and AES

Differential cryptanalysis was known to the designers of DES in
1974 and was considered when designing the DES S-boxes. They
kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time
pad in Question 2 on Problem Sheet 3. We have unknown
plaintexts x , x ′ ∈ Fn

2, an unknown key kotp ∈ Fn
2, and known

ciphertexts x + kotp and x ′ + kotp. Adding the known ciphertexts
gives x + x ′, independent of kotp.

Thus if x and x ′ differ by ∆ then so do their encryptions x + kotp

and x ′ + kotp. In symbols:

x + x ′ = ∆ =⇒ (x + kotp) + (x ′ + kotp) = ∆.

This shows the one-time-pad is weak to differences.

Quiz: If this is a difference attack, where are all the minus signs?
It should be x − x ′ = ∆ and (x + kotp)− (x ′ + kotp) = ∆
It’s the same: we’re working in F2



§10 Differential Cryptanalysis and AES

Differential cryptanalysis was known to the designers of DES in
1974 and was considered when designing the DES S-boxes. They
kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time
pad in Question 2 on Problem Sheet 3. We have unknown
plaintexts x , x ′ ∈ Fn

2, an unknown key kotp ∈ Fn
2, and known

ciphertexts x + kotp and x ′ + kotp. Adding the known ciphertexts
gives x + x ′, independent of kotp.

Thus if x and x ′ differ by ∆ then so do their encryptions x + kotp

and x ′ + kotp. In symbols:

x + x ′ = ∆ =⇒ (x + kotp) + (x ′ + kotp) = ∆.

This shows the one-time-pad is weak to differences.

Quiz: If this is a difference attack, where are all the minus signs?
It should be x − x ′ = ∆ and (x + kotp)− (x ′ + kotp) = ∆
It’s the same: we’re working in F2



§10 Differential Cryptanalysis and AES

Differential cryptanalysis was known to the designers of DES in
1974 and was considered when designing the DES S-boxes. They
kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time
pad in Question 2 on Problem Sheet 3. We have unknown
plaintexts x , x ′ ∈ Fn

2, an unknown key kotp ∈ Fn
2, and known

ciphertexts x + kotp and x ′ + kotp. Adding the known ciphertexts
gives x + x ′, independent of kotp.

Thus if x and x ′ differ by ∆ then so do their encryptions x + kotp

and x ′ + kotp. In symbols:

x + x ′ = ∆ =⇒ (x + kotp) + (x ′ + kotp) = ∆.

This shows the one-time-pad is weak to differences.

Quiz: If this is a difference attack, where are all the minus signs?

It should be x − x ′ = ∆ and (x + kotp)− (x ′ + kotp) = ∆
It’s the same: we’re working in F2



§10 Differential Cryptanalysis and AES
Differential cryptanalysis was known to the designers of DES in
1974 and was considered when designing the DES S-boxes. They
kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time
pad in Question 2 on Problem Sheet 3. We have unknown
plaintexts x , x ′ ∈ Fn

2, an unknown key kotp ∈ Fn
2, and known

ciphertexts x + kotp and x ′ + kotp. Adding the known ciphertexts
gives x + x ′, independent of kotp.

Thus if x and x ′ differ by ∆ then so do their encryptions x + kotp

and x ′ + kotp. In symbols:

x + x ′ = ∆ =⇒ (x + kotp) + (x ′ + kotp) = ∆.

This shows the one-time-pad is weak to differences.

Quiz: If this is a difference attack, where are all the minus signs?
(A) It should be x − x ′ = ∆ and (x + kotp)− (x ′ + kotp) = ∆
(B) It’s the same: we’re working in F2



§10 Differential Cryptanalysis and AES
Differential cryptanalysis was known to the designers of DES in
1974 and was considered when designing the DES S-boxes. They
kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time
pad in Question 2 on Problem Sheet 3. We have unknown
plaintexts x , x ′ ∈ Fn

2, an unknown key kotp ∈ Fn
2, and known

ciphertexts x + kotp and x ′ + kotp. Adding the known ciphertexts
gives x + x ′, independent of kotp.

Thus if x and x ′ differ by ∆ then so do their encryptions x + kotp

and x ′ + kotp. In symbols:

x + x ′ = ∆ =⇒ (x + kotp) + (x ′ + kotp) = ∆.

This shows the one-time-pad is weak to differences.

Quiz: If this is a difference attack, where are all the minus signs?
(A) It should be x − x ′ = ∆ and (x + kotp)− (x ′ + kotp) = ∆
(B) It’s the same: we’re working in F2



Difference Attack on the Q-Block Cipher
Recall that we may write elements as F8

2 as pairs (v ,w) where
v ∈ F4

2 and w ∈ F4
2. In round 1 of the Q-block cipher (see

Example 9.5), the Feistel network sends (v ,w) to(
w , v + S(w + k(1))

)
where

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

Lemma 10.1

(i) For any w ∈ F4
2 we have S(w + 1000) = S(w) + 0010.

(ii) For any (v ,w) ∈ F8
2 and any round key k(1) ∈ F4

2 round 1 of
the Q-block cipher is [Correction.]

(
v+0000,w+1000

)
7→
(
w , v+S(w+k(1))

)
++(1000, 0010).

Thus the first round of the Q-block cipher encrypts plaintexts
differing by 0000 1000 to intermediate ciphertexts differing by
1000 0010. This ‘deterministic’ behaviour is just like the one-time
pad. This makes the Q-block cipher vulnerable to a difference
attack using chosen plaintexts and ciphertexts.
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Corrections

I At the end of the proof of Lemma 10.1, I wrote

(
w + 1000, S(v + k(1))

)
+ (1000, 0010)

putting in the difference twice. This should have been

(
w ,S(v + k(1))

)
+ (1000, 0010).

I M.Sc. Question 5 on Sheet 7: the taps are {1, 4} not {0, 3}.
(Last year’s convention, sorry.)

Lemma 10.1

(i) For any w ∈ F4
2 we have S(w + 1000) = S(w) + 0010.

(ii) For any (v ,w) ∈ F8
2 and any round key k(1) ∈ F4

2 round 1 of
the Q-block cipher is

(
v+0000,w+1000

)
7→
(
w , v+S(w+k(1))

)
+(1000, 0010).





Attack on the Q-Block Cipher [continued]

Let x ∈ F8
2 and let ∆ = 0000 1000 ∈ F8

2. The diagram below
shows the encryption of x and x∆ = x + ∆ over the three rounds
of the Q-block cipher using the key k = (k(1), k(2), k(3)), split into
three round keys:

x
k(1)

−−−−−−−−−−−−−→ y
k(2), k(3)

−−−−−−−−−−−−−−−−−→ z

∆ = 0000 1000 ∆′ = 1000 0010 Γ

x∆
k(1)

−−−−−−−−−−−−−→ y∆
k(2), k(3)

−−−−−−−−−−−−−−−−→ z∆

The middle differences are ∆ = x + x∆ and ∆′ = y + y∆. We
know ∆′ by Lemma 10.1(ii).

We attack by guessing k
(2)
guess and k

(3)
guess. We use these guesses to

decrypt the ciphertexts z and z∆ over two rounds, obtaining the
intermediate ciphertexts w and w∆. On a correct guess
k

(2)
guess = k(2) and k

(3)
guess = k(3) and then w = y and w∆ = y∆ and

w + w∆ = ∆′.
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Attack on the Q-Block Cipher [continued]

To see this in practice, take k = 0001 0011 0111 and
x = 0000 0000. (For this example, we have chosen k, but from the
attacker’s perspective, it is unknown.) By Exercise 5.6(i),
z = 1110 0010; a similar calculation gives z∆ = 1101 1100.

(1) If we guess that k(2) = 0011, k(3) = 0000 then
w = 1100 1011, as can be read from (v (1), v (2)) in
Example 5.6(ii), and w∆ = 1111 1011. Hence
∆? = 0011 0000 and we know this guess is wrong.

(2) If we guess that k(2) = 0011, k(3) = 1111 then w = 1011 0110
and w∆ = 0011 0100. Hence ∆? = 1000 0010 and we do not
know (yet) that the guess is wrong.

Exercise 10.2
Assume that the difference attack shows the key is one of 16

possible (k
(2)
guess, k

(3)
guess). Show that it is subexhaustive: that is, it

requires less computing than trying all 212 = 4096 keys.
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Building Blocks of AES: Affine Transformations

Example 10.4

The affine block cipher of block size n has keyspace all pairs
(A, b), where A is an invertible n × n matrix with entries in F2 and
b ∈ Fn

2. The encryption functions e(A,b) : Fn
2 → Fn

2 are the affine
transformations defined by

e(A,b)(x) = xA + b.

We will define the decryption functions in lectures. By Question 4
on Problem Sheet 8, the key in the affine block cipher can be
deduced by a known plaintext attack using n + 1 chosen plaintexts.



Building Blocks of AES: Pseudo-inversion

Definition 10.5
Let z be an indeterminate, as used for polynomials and power
series in Part B. Define

F28 = {x0 + x1z + · · ·+ x7z
7 : x0, x1, . . . , x7 ∈ F2}.

Elements of F8
2 are added and multiplied like polynomials in z , but

whenever you see a power zd where d ≥ 8, eliminate it using the
rule [correction] z8 = 1 + z + z3 + z4.

Definition 10.6
Define p : F28 → F28 by

p(β) =

{
β−1 if β 6= 0

0 if β = 0.
.

Let P : F8
2 → F8

2 be the corresponding function defined by
identifying F8

2 with F28

(x0, x1, . . . , x7)←→ x0 + x1z + x2z
2 + · · ·+ x7z

7.



Working with Pseudo-inversion: z8 = 1 + z + z3 + z4

Example 10.7

Writing elements of F8
2 as words of length 8 (with a small space for

readability):

(1) 1000 0000←→ 1 ∈ F28 and 1−1 = 1, so p(1) = 1 and
P(1000 0000) = 10000000;

(2) 0100 0000←→ z ∈ F28 and z−1 = 1 + z2 + z3 + z7 was seen
above, so p(z) = 1 + z2 + z3 + z7 and

P(0100 0000) = 10110001.

(3) Exercise: Find p(z2) and hence show

P(0010 0000) = 1101 0011.



Advanced Encryption Standard (AES)
There are 10 rounds in AES. In each round, the input x ∈ F128

2 is
split into 128/8 = 16 subblocks each in F8

2.

I The round key in F128
2 is added (AddRoundKey).

I The pseudo inverse function P : F8
2 → F8

2 is applied to each
subblock followed by an affine transformation F8

2 → F8
2, of the

type in Example 10.4. This gives confusion and diffusion
within each subblock. (SubBytes.)

I Diffusion across all 128 bits comes from a row permutation of
the 16 subblocks, organized into a 4× 4 grid

q(0) q(4) q(8) q(12)
q(1) q(5) q(9) q(13)
q(2) q(6) q(10) q(14)
q(3) q(7) q(11) q(15)

−→
q(0) q(4) q(8) q(12)
q(13) q(1) q(5) q(9)
q(10) q(14) q(2) q(6)
q(7) q(11) q(15) q(3)

and a further mixing of each column by the affine block cipher
(ShiftRows and MixColumns)

There are no known sub-exhaustive attacks on AES. It is the most
commonly used block cipher.



Differences through Pseudo-inverse

Lemma 10.8
Let γ ∈ F8

2 be non-zero. Then

{
β ∈ F28 : p(β) + p(β + 1) = γ

}

has size 0 or 2, except when γ = 1, when it is {0, 1, ζ, 1 + ζ}
where ζ = z2 + z3 + z4 + z5 + z7.

The analogous result holds for P : F8
2 → F8

2.

0000 0000

1000 0000

1000 0000

0011 1101

1000 0000

1011 1101

0100 0000

1000 0000

1100 0000

. . .

0000 0000

1000 0000

1000 0000

1011 1101

1000 0000

0011 1101

1011 0001

Γ=1101 1110

0110 1111

. . .
y 7→P(y)−−−−−→



AES Resists the Difference Attacks

Let ∆ = 1000 0000, corresponding to 1 ∈ F28 . The left diagram
shows F8

2 partitioned into pairs {x , x∆} with x + x∆ = ∆. The
output difference P(x) + P(x∆) can be any of 127 elements
Γ ∈ F8

2. Unless Γ = 1000 0000, the pair {x , x∆} for output
difference Γ is unique (as in the bottom-right of the diagram).
Exceptionally, when Γ = 1000 0000, there are two possible pairs
(shown in the top-left of the diagram).

Exercise 10.9
Explain why the output difference cannot be 0000 0000.

Suppose we encrypt two plaintexts x , x∆ ∈ F128
2 differing by ∆

using one round of AES. In the first step of the first round, an
unknown round key kround is added, to give x + kround and
x∆ + kround. The difference is still ∆. But by Lemma 10.8, there
are 127 (almost) equally likely output differences Γ. The difference
attack is ineffective.



Grace Murray Hopper, American Cryptanalyst
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Part D: Public Key Cryptography and Digital Signatures

§11 Introduction to Public Key Cryptography
We begin with a way that Alice and Bob can establish a shared
secret key, communicating only over the insecure channel on
page 4.

Everything in red is private. Everything not in red is known to the
whole world— this includes the eavesdropper Eve.

Example 11.1

Alice and Bob need a 128-bit key for use in AES. They agree a
prime p such that p > 2128. Then

(1) Alice chooses a secret a ∈ N with 1 ≤ a < p. Bob chooses a
secret b ∈ N with 1 ≤ b < p.

(2) Alice sends Bob 2a mod p. Bob sends Alice 2b mod p.

(3) Alice computes (2b)a mod p and Bob computes (2a)b mod p.

(4) Now Alice and Bob both know 2ab mod p. They each write
2ab mod p in binary and take the final 128 bits to get an AES
key.



Example 10.1 [continued]

After (2), the eavesdropper Eve knows p, 2a mod p and 2b mod p.
It is believed that it is hard for her to use this information to find
2ab mod p. The difficulty can be seen even in small examples.

Exercise 11.2
Let p = 11. As Eve you know that Alice has sent Bob 6. Do you
have any better way to find a such that 2a = 6 than trying each
possibility?

m 0 1 2 3 4 5 6 7 8 9

2m mod 11 1 2

m 10 11 12 13 14 15 16 17 18 19

2m mod 11

After (4) Alice and Bob can communicate using the AES
cryptosystems, which has no known sub-exhaustive attacks.
So remarkably, Alice and Bob can communicate securely without
exchanging any private key material.
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Let p = 11. As Eve you know that Alice has sent Bob 6. Do you
have any better way to find a such that 2a = 6 than trying each
possibility?

m 0 1 2 3 4 5 6 7 8 9

2m mod 11 1 2 4 8 5 10 9 7 3 6

m 10 11 12 13 14 15 16 17 18 19

2m mod 11 1 2 4 8 5 10 9 7 3 6

After (4) Alice and Bob can communicate using the AES
cryptosystems, which has no known sub-exhaustive attacks.
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Integers Modulo a Prime

I By Fermat’s Little Theorem, cp−1 ≡ 1 mod c for any c not
divisible by p.

I If cm 6≡ 1 mod p for m < p − 1 then c is said to be a
primitive root modulo p and, working modulo p,

{1, c , c2, . . . , cp−2} = {1, 2, . . . , p − 1}

Primitive roots always exist: often one can take 2.

I Equivalently: Z×p is cyclic of order p − 1.

I For instance 2 is a primitive root modulo 11 but 5 is not,
because 5 ≡ 24 mod 11, so 55 ≡ 210 ≡ 1 mod 11.



Diffie–Hellman Key Exchange
This is nothing more than Example 10.1, modified to avoid some
potential weaknesses, and implemented efficiently.

I The prime p is chosen so that p − 1 has at least one large
prime factor. (This is true of most primes. There are fast
ways to decide if a number is prime.)

I Rather than use 2, Alice and Bob use a primitive root modulo
p, so every element of {1, . . . , p − 1} is congruent to a power
of g . (The base is public.)

I Alice and Bob compute ga mod p and gb mod p by repeated
squaring. See Question 3 on Sheet 8 for the idea. For
example 221 mod 177 is computed as follows:
I 22 ≡ 4 mod 199
I 24 ≡ 42 = 16 mod 199
I 28 ≡ 162 = 256 ≡ 57 mod 199
I 216 ≡ 572 = 3249 ≡ 65 mod 199

Now use 221 = 216+4+1 ≡ 65× 16× 2 = 2080 ≡ 90 mod 199.

I The shared key is now gab mod p.



Exponentiation as a one-way function
A primitive root modulo 131 is g = 2.

m 0 1 2 3 4 5 6 7 8 9 . . .

2m mod 131 1 2 4 8 16 32 64 128 125 119 . . .

If 2m = y mod 131 where 0 ≤ m ≤ 129 then we say that m is the
discrete log of y (with respect to 2), working modulo 131. For
example 246 ≡ 5 mod 131 so the discrete log of 5 is 46.

(a) What is the discrete log of 16?
(A) 1 (B) 2 (C) 4 (D) 130

(b) What is the discrete log of 125?
(A) 8 (B) 48 (C) 92 (D) 138

(c) What is the discrete log of 80?
(A) 46 (B) 50 (C) 54 (D) 184

(d) What is the discrete log of 130? [Hint: 1302 ≡ (−1)2 ≡ 1.]
(A) 1 (B) 65 (C) 66 (D) 130

(e) The discrete log of 49 is 62. So the discrete log of 7 is 31?

(A) False (B) True
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Exponentiation as a one-way function
A primitive root modulo 131 is g = 2.

m 0 1 2 3 4 5 6 7 8 9 . . .

2m mod 131 1 2 4 8 16 32 64 128 125 119 . . .

If 2m = y mod 131 where 0 ≤ m ≤ 129 then we say that m is the
discrete log of y (with respect to 2), working modulo 131. For
example 246 ≡ 5 mod 131 so the discrete log of 5 is 46.

(e) The discrete log of 49 is 62. So the discrete log of 7 is 31?

(A) False (B) True

Explanation: there are two square roots of 49, namely 7 and
−7 ≡ 124 mod 131. Calculating shows that 231 ≡ 124 ≡ −7 mod
131. To get 7 we use (d), that 265 ≡ 1 mod 131: so adding
discrete logs,

dlog 7 = dlog(−7×−1) = dlog(−7) + dlog(−1) = 31 + 65 = 96.



One-way Functions

A one-way function is a bijective function that is fast to compute,
but whose inverse is hard to compute. It is beyond the scope of
this course to make this more precise.

It is not known whether one-way functions exist. Their existence
implies P 6= NP: very roughly, if P = NP then any problem whose
solution is quick to check, such as Sudoku, is also quick to solve.

Diffie–Hellman key exchange is secure only if, given g and g x it is
hard to find x . (This is called the Discrete Log Problem.)
Equivalently, the function

f : {0, . . . , p − 2} → {1, . . . , p − 1}

defined by f (x) = g x mod p, is one-way.



ElGamal Cryptosystem and Further Comments

Diffie–Hellman can be turned into the ElGamal cryptosystem: see
Question 2 on Sheet 9.

I ElGamal avoids the drawback of Diffie–Hellman that either
Alice and Bob both have to be online at the same time, or
one must wait for the other to respond before they can
exchange messages.

I It is faster to use Diffie–Hellmann to agree a secret key, and
then switch to a a block cipher such as DES or AES using this
key.

I Diffie–Hellman is secure only if the Discrete Log Problem is
hard. This is widely believed to be true. But it is more likely
that the Discrete Log Problem is easy than that AES has a
sub-exhaustive attack.

For these reasons block ciphers and stream ciphers are still widely
used.



Inverting exponentiation mod p

In the RSA cryptosystem, we use modular exponentiation as the
encryption map. We therefore need to know when it is invertible.

Lemma 11.3
If p is prime and hcf(a, p − 1) = 1 then the inverse of x 7→ xa mod
p is y 7→ y r mod p, where ar ≡ 1 mod p − 1.

For example, if p = 29 then x 7→ x7 is not invertible, and x 7→ x3

is invertible, with inverse y 7→ y19. This works, since after doing
both maps, in either order, we send x to x57; by Fermat’s Little
Theorem, x57 = x28×2+1 = (x28)2x ≡ x mod 29.

Given p and a, one can use Euclid’s algorithm to find s, t ∈ Z such
that as + (p − 1)t = 1. Then as = 1− pt so as ≡ 1 mod p − 1,
and we take r ≡ s mod p − 1.

This proves Lemma 11.3, and shows that it is fast to find r . Thus
we cannot use x 7→ xa mod p as a secure encryption function.



Inverting exponentiation mod n

Fact 11.4
Let p and q be distinct primes. Let n = pq. If

hcf
(
a, (p − 1)(q − 1)

)
= 1

then x 7→ xa mod n is invertible with inverse y 7→ y r mod n, where
ar ≡ 1 mod (p − 1)(q − 1).

Example 11.5

Let p = 11, q = 17, so n = pq = 187 and (p − 1)(q − 1) = 160.
Let a = 9. Adapting the proof for Lemma 11.3, we use Euclid’s
Algorithm to solve 9s + 160t = 1, getting s = −71 and t = 4.
Since −71 ≡ 89 mod 160, the inverse of x 7→ x9 mod 187 is
y 7→ y89 mod 187.

Thus given a, p and q it is easy to find r as in Fact 11.4. But it is
believed to be hard to find r given only a and n. This makes
x 7→ xa mod n suitable for use in a cryptosystem.



Equality and Diversity Survey
The Mathematics and ISG Equality and Diversity Committee wants
to hear from you!

All students in the Mathematics Department and ISG are warmly
encouraged to complete this survey. Go to:
I https://rhul.onlinesurveys.ac.uk/athena-swan-student-survey-

mathematics-2019
I tinyurl.com/vof7lso
I use QR code below, or read your email for the link

The survey is linked to the Athena SWAN scheme. Its purpose is
to promote gender equality in higher education for staff and
students. Your responses will inform our Athena SWAN actions.



RSA Cryptosystem
Let n = pq be the product of distinct primes p and q. In the RSA
Cryptosystem, with RSA modulus n,

P = C = {0, 1, . . . , n − 1}
and

K =
{

(p, q, a) : a ∈ {1, . . . , n − 1},hcf
(
a, (p − 1)(q − 1)

)
= 1

}
.

The public key corresponding to (p, q, a) is (n, a) and the private
key corresponding to (p, q, a) is (n, r), where ar ≡ 1 mod
(p − 1)(q − 1). (Note that a is part of the public key, so unlike
Diffie–Hellman, it is public.) The encryption function for (p, q, a) is

x 7→ xa mod n

and the decryption function is

y 7→ y r mod n.

Note that anyone knowing the public key can encrypt, but only
someone knowing the private key, or the entire key (p, q, a), [typo
in printed notes: c should be a] can decrypt.



Quiz on RSA
True or false?

I Alice’s encryption exponent c is public knowledge.
(A) False (B) True

I Alice’s decryption exponent r is public knowledge.
(A) False (B) True

I If Malcolm can learn r then he decrypt.
(A) False (B) True

I If Malcolm can learn r then he can factor n.
(A) False (B) True

Suppose Alice’s RSA modulus n is 13× 17 = 221 and her
encryption exponent is 8.

I If Bob’s plaintext is 2, what number will he send to Alice?
(A) 2 (B) 35 (C) 223 (D) 256

I Suppose Bob mistakenly uses the (invalid) plaintext 223.
What will Alice decode his ciphertext 2238 mod 221 as?

(A) 2 (B) 35 (C) 223 (D) 256
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The Key Distribution Problem

One problem with RSA is that Bob somehow has to learn Alice’s
public key. If Alice has no better way to email her public key to
Bob, there is a man-in-the-middle attack, in which Malcolm tricks
Bob into encrypting with his public key instead.

No-one has found a mathematical attack on RSA other than
factorizing n. The best known algorithm (the Number Field Sieve)
was used to factorize a 768 bit n in 2010. This took about 1500
computer years, in 2010 technology.

NIST (the US standard body) now recommend that n should have
2048 bits.



RSA in Practice

Example 11.6
(1) For a small example, take p and q as in Example 11.5. If

Alice’s public key is (187, 9) then her private key is (187, 89).
If Bob’s message is 10 then he sends 109 to Alice, since
109 ≡ 109 mod 187. Alice decrypts to 10 by computing 10989

mod 187.

(2) The Mathematica notebook PKC.nb available from Moodle
can be used when p and q are large. It has some ‘helper
functions’ for encrypting and decrypting strings.

Please use it for Question 3 on Sheet 9. (If your block has
broken down, you can instead email the lecturer your public
key and get a message to decrypt.)

(3) RSA is much slower than block ciphers such as AES. In
practice RSA is often used to encrypt a key for AES or
another block cipher. This is how HTTPS (padlock in your
address bar) and Pretty Good Privacy work.



Let p and q be primes of size about 21024. Let n = pq.

(a) Given g and a it is fast to compute ga mod p.
(A) False (B) True

(b) Given g and ga mod p, with a known to be in {1, . . . , p − 2},
it is fast to compute a.

(A) False (B) True
(c) The function {1, . . . , p − 1} → {1, . . . , p − 1} defined by

x 7→ x2 is invertible.
(A) False (B) True

(d) If hcf(a, p − 1) = 1 then the function
{1, . . . , p − 1} → {1, . . . , p − 1} defined by x 7→ xa mod p is
invertible, and it is fast to compute its inverse.

(A) False (B) True
(e) If hcf

(
a, (p − 1)(q − 1)

)
= 1 then the function

{1, . . . , n − 1} → {1, . . . , n − 1} defined by x 7→ xa mod n is
invertible.

(A) False (B) True

(f) Suppose x 7→ xa mod n is invertible. Given a and n it is fast
to compute its inverse.

(A) False (B) True



Let p and q be primes of size about 21024. Let n = pq.

(a) Given g and a it is fast to compute ga mod p.
(A) False (B) True

(b) Given g and ga mod p, with a known to be in {1, . . . , p − 2},
it is fast to compute a.

(A) False (B) True
(c) The function {1, . . . , p − 1} → {1, . . . , p − 1} defined by

x 7→ x2 is invertible.
(A) False (B) True

(d) If hcf(a, p − 1) = 1 then the function
{1, . . . , p − 1} → {1, . . . , p − 1} defined by x 7→ xa mod p is
invertible, and it is fast to compute its inverse.

(A) False (B) True
(e) If hcf

(
a, (p − 1)(q − 1)

)
= 1 then the function

{1, . . . , n − 1} → {1, . . . , n − 1} defined by x 7→ xa mod n is
invertible.

(A) False (B) True

(f) Suppose x 7→ xa mod n is invertible. Given a and n it is fast
to compute its inverse.

(A) False (B) True



Let p and q be primes of size about 21024. Let n = pq.

(a) Given g and a it is fast to compute ga mod p.
(A) False (B) True

(b) Given g and ga mod p, with a known to be in {1, . . . , p − 2},
it is fast to compute a.

(A) False (B) True
(c) The function {1, . . . , p − 1} → {1, . . . , p − 1} defined by

x 7→ x2 is invertible.
(A) False (B) True

(d) If hcf(a, p − 1) = 1 then the function
{1, . . . , p − 1} → {1, . . . , p − 1} defined by x 7→ xa mod p is
invertible, and it is fast to compute its inverse.

(A) False (B) True
(e) If hcf

(
a, (p − 1)(q − 1)

)
= 1 then the function

{1, . . . , n − 1} → {1, . . . , n − 1} defined by x 7→ xa mod n is
invertible.

(A) False (B) True

(f) Suppose x 7→ xa mod n is invertible. Given a and n it is fast
to compute its inverse.

(A) False (B) True



Let p and q be primes of size about 21024. Let n = pq.

(a) Given g and a it is fast to compute ga mod p.
(A) False (B) True

(b) Given g and ga mod p, with a known to be in {1, . . . , p − 2},
it is fast to compute a.

(A) False (B) True
(c) The function {1, . . . , p − 1} → {1, . . . , p − 1} defined by

x 7→ x2 is invertible.
(A) False (B) True

(d) If hcf(a, p − 1) = 1 then the function
{1, . . . , p − 1} → {1, . . . , p − 1} defined by x 7→ xa mod p is
invertible, and it is fast to compute its inverse.

(A) False (B) True
(e) If hcf

(
a, (p − 1)(q − 1)

)
= 1 then the function

{1, . . . , n − 1} → {1, . . . , n − 1} defined by x 7→ xa mod n is
invertible.

(A) False (B) True

(f) Suppose x 7→ xa mod n is invertible. Given a and n it is fast
to compute its inverse.

(A) False (B) True



Let p and q be primes of size about 21024. Let n = pq.

(a) Given g and a it is fast to compute ga mod p.
(A) False (B) True

(b) Given g and ga mod p, with a known to be in {1, . . . , p − 2},
it is fast to compute a.

(A) False (B) True
(c) The function {1, . . . , p − 1} → {1, . . . , p − 1} defined by

x 7→ x2 is invertible.
(A) False (B) True

(d) If hcf(a, p − 1) = 1 then the function
{1, . . . , p − 1} → {1, . . . , p − 1} defined by x 7→ xa mod p is
invertible, and it is fast to compute its inverse.

(A) False (B) True
(e) If hcf

(
a, (p − 1)(q − 1)

)
= 1 then the function

{1, . . . , n − 1} → {1, . . . , n − 1} defined by x 7→ xa mod n is
invertible.

(A) False (B) True

(f) Suppose x 7→ xa mod n is invertible. Given a and n it is fast
to compute its inverse.

(A) False (B) True



Let p and q be primes of size about 21024. Let n = pq.

(a) Given g and a it is fast to compute ga mod p.
(A) False (B) True

(b) Given g and ga mod p, with a known to be in {1, . . . , p − 2},
it is fast to compute a.

(A) False (B) True
(c) The function {1, . . . , p − 1} → {1, . . . , p − 1} defined by

x 7→ x2 is invertible.
(A) False (B) True

(d) If hcf(a, p − 1) = 1 then the function
{1, . . . , p − 1} → {1, . . . , p − 1} defined by x 7→ xa mod p is
invertible, and it is fast to compute its inverse.

(A) False (B) True
(e) If hcf

(
a, (p − 1)(q − 1)

)
= 1 then the function

{1, . . . , n − 1} → {1, . . . , n − 1} defined by x 7→ xa mod n is
invertible.

(A) False (B) True

(f) Suppose x 7→ xa mod n is invertible. Given a and n it is fast
to compute its inverse.

(A) False (B) True



Let p and q be primes of size about 21024. Let n = pq.

(a) Given g and a it is fast to compute ga mod p.
(A) False (B) True

(b) Given g and ga mod p, with a known to be in {1, . . . , p − 2},
it is fast to compute a.

(A) False (B) True
(c) The function {1, . . . , p − 1} → {1, . . . , p − 1} defined by

x 7→ x2 is invertible.
(A) False (B) True

(d) If hcf(a, p − 1) = 1 then the function
{1, . . . , p − 1} → {1, . . . , p − 1} defined by x 7→ xa mod p is
invertible, and it is fast to compute its inverse.

(A) False (B) True
(e) If hcf

(
a, (p − 1)(q − 1)

)
= 1 then the function

{1, . . . , n − 1} → {1, . . . , n − 1} defined by x 7→ xa mod n is
invertible.

(A) False (B) True

(f) Suppose x 7→ xa mod n is invertible. Given a and n it is fast
to compute its inverse.

(A) False (B) True



RSA as an Illegal Munition



§12 Digital Signatures and Hash Functions
Suppose Alice and Bob have the RSA keys:

public private

Alice (m, a) (m, r)
Bob (n, b) (n, s)

Suppose Alice wants to tell Bob his bank details in a message x .
She looks up his public key (n, b) and sends him eB(x) = xb mod
n. (Assume that x < n.)

Malcolm cannot decrypt xb mod n, because he does not know s.
But if he has control of the channel, he can replace xb mod n with
another x ′b mod n, of his choice.

This requires Malcolm to know Bob’s public key. So the attack is
specific to public key cryptosystems such as RSA. If the key k is
secret, only Alice and Bob know the encryption function ek .

How can Bob be confident that a message signed ‘Alice’ is from
Alice, and not from Malcolm pretending to Alice?
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Motivation for Hash Functions
Alice and Bob’s encryption and decryption functions are

eA(x) = xa mod m dA(x) = x r mod m

eB(x) = xb mod n dB(x) = x s mod n.

Example 12.1

Bob is expecting a message from Alice. He receives z , and
computes dB(z) = zs mod n, but gets garbage. Thinking that
Alice has somehow confused the keys, he computes eA(z) = za

mod m, and gets the ASCII encoding of

‘Dear Bob, my account number is 40081234, best wishes, Alice’.

(a) How did Alice compute z?

(b) Should Bob believe z was sent by Alice?

(c) Can Malcolm read z?

(d) How can Alice avoid the problem in (c)? (Assume that
m < n.)
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Signed Messages using RSA

Recall that Bob’s RSA functions are

eB(x) = xb mod n dB(x) = x s mod n.

Let x ∈ N0 be Alice’s message. If Alice’s RSA modulus m is about
22048 then the message x is a legitimate ciphertext only if
x < 22048. This may seem big, but, using the 8-bit ASCII coding,
it means only 2048/8 = 28 = 256 characters can be sent.

Alice can get round this by splitting the message into blocks, but
computing dA(x (i)) for each block x (i) ∈ {1, . . . , n − 1} is slow. It
is better to send x , and then append dA

(
h(x)

)
where

h(x) ∈ {0, 1, . . . , n − 1} is a hash of x .



Equality and Diversity Survey
The Mathematics and ISG Equality and Diversity Committee wants
to hear from you!

All students in the Mathematics Department and ISG are warmly
encouraged to complete this survey. Go to:
I https://rhul.onlinesurveys.ac.uk/athena-swan-student-survey-

mathematics-2019
I tinyurl.com/vof7lso
I use QR code below, or read your email for the link

The survey is linked to the Athena SWAN scheme. Its purpose is
to promote gender equality in higher education for staff and
students. Your responses will inform our Athena SWAN actions.



Course Questionnaires

Please complete the online questionnaire for MT362/462/5462.

There are fewer questions than in the old version so your
comments are particularly welcome.

I Did you find the quizzes useful?

I Was the pace too fast, too slow or about right?

I Were the problem sheets too hard, too easy, or about right?



Hash Functions
Definition 12.2

(i) A hash function of length r is a function h : N0 → Fr
2. The

value h(x) is the hash of the message x ∈ N0.

(ii) Let (m, a) be Alice’s public key in the RSA cryptosystem
where m > 2r . To sign a message x , Alice computes
h(x) ∈ Fr

2 and, reading h(x) as a number written in binary,
computes dA

(
h(x)

)
. The pair

(
x , dA(h(x))

)
is a signed

message of x from Alice.

Bob (or anyone else) verifies that a pair (x , v) is a valid signed
message from Alice by checking that h(x) = eA(v).

A cryptographically useful hash function satisfies:

(a) It is fast to compute h(x).
(b) Given a message x ∈ N0, and its hash h(x), it is hard to find

x ′ ∈ N such that x ′ 6= x and h(x ′) = h(x). (Preimage
resistance.)

(c) It is hard to find a pair (x , x ′) with x 6= x ′ such that
h(x) = h(x ′). (Collision resistance.)
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Preimage resistance: Example 12.3

Malcolm has intercepted a signed message (x , v) from Alice. If he
can find x ′ with h(x ′) = v then he can replace x with x ′ and Bob
will still verify Alice’s signature.

Assume hash values are distributed uniformly at random in Fr
2.

I Given a hash value v ∈ Fr
2, what is the probability that a

random x ′ ∈ N0 will have h(x ′) = v?
(A) 1

22r
(B) 1

2r (C) 1
2r/2

(D) 1
2

I How many hashes does Malcolm need to compute on average
to find x ′ such that h(x ′) = v?

(A) 2r/2 (B) 2r−1 (C) 2r (D) 22r

I What is the distribution of the number of hashes Malcolm
computes before finding a suitable x ′?

Answer: geometric
with parameter 1/2r .
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Birthday Paradox

Exercise 12.4
Let h : N0 → Fr

2 be a good hash function. On average, how many
hashes does an attacker need to calculate to find x , x ∈ N0 with
x 6= x ′ and h(x) = h(x ′)?

Assume hash values are distributed uniformly at random in Fr
2.

I Given a pair (x , x ′) ∈ N0, what is the probability that
h(x) = h(x ′)?

(A) 0 (B)
1

2m
(C)

1

2m+1
(D)

1

22m
I Suppose we hash R distinct numbers, x (1), . . . , x (R). How

many (unordered) pairs {x , x ′} with x 6= x ′ can be made?

(A) R (B)
R(R − 1)

2
(C)

R(R + 1)

2
(D) R(R − 1)
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Lemma 12.5
If there are B possible birthdays then in a room of

√
2 ln 2

√
B

people, the probability is about 1
2 that two people have the same

birthday.
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Lemma 12.5 (If you don’t celebrate your birthday)

If a hash function has values in Fr
2 then if we hash

√
2 ln 2

√
2r

different numbers, the probability is about 1
2 that two numbers

have the same hash.



Hash Functions In Practice
A block cipher of length r can be used as a hash function. Chop
the message x (maybe already encrypted) into blocks x (1), x (2),
. . ., x (`), such that each x (i) < 2r . Replacing each x (i) with its r
bit binary form, we use the block cipher in CBC mode to get

y (1) = ek(x (1))

y (2) = ek(y (1) + x (2)),
...

y (`) = ek(y (`−1) + x (`))

The final ciphertext y (`)) ∈ Fr
2 depends on the entire message x in

a complicated way, so is a good choice for h(x). Using RSA, Alice
sends the signed message

(
x , dA

(
h(x)

))
.

I Should the chosen key k be secret?
(A) No (B) Yes

If Bob receives (x , v), then, as usual, he computed eA(v). He
then needs to know k so that he can repeat the calculation
above and verify that h(x) = eA(v). (The secret part is dA.)
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Coin-flips by Email

Example 12.6

Alice flips a coin and records the result. Bob guesses heads or tails
and Alice informs him whether he is correct. If the two can
communicate only by email, how can Bob be sure that Alice does
not falsely claim that the flip is the opposite of Bob’s guess?



SHA-256

Example 12.7 (SHA-256)

SHA-256 is the most commonly used hash function today. It has
length 256. There is an internal state of 256 bits, divided into 8
blocks of 32 bits.

The blocks are combined with each other by multiplying bits in the
same positions (this is ‘logical and’), addition in F32

2 , cyclic shifts
(like an LFSR), and addition modulo 232, over 64 rounds.

The best attack can break (b) when the number of rounds is
reduced to 57, and (c) reducing the rounds further to 46.

A draft of this year’s MT362 exam is available from Moodle. It has
been encrypted using AES in ECB mode: the key is the first 128
bits of the SHA-512 hash of the lecturer’s password. The
SHA-256 hash of this password is

170972f840215582a876e057f7b22ff662d77e94526df8e1f57c854ccd29c6c5

Here each of the 64 digits is a hexadecimal digit representing 4
bits. The decimal form is on the Preliminary Problem Sheet.
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Wiring Diagram for SHA256



Hashing Passwords

When you create an account online, you typically choose a
username, let us say ‘Alice’ and a password, say ‘alicepassword’. A
well run website will not store your password. Instead,
oversimplifying slightly, your password is converted to a number x
and the SHA-256 hash h(x) is stored. By (b), it is hard for anyone
to find another word whose hash is also h(x).

Provided your password is hard to guess, your account is secure,
and you have avoided telling the webmaster your password.

Exercise 12.8
As described, it will be obvious to a hacker who has access to the
password database when two users have the same password.
Moreover, if you use the same password on two different sites, the
same hash will be stored on both. How can this be avoided?



Example 12.9 (Bitcoin blockchain)

The bitcoin blockchain is a distributed record of all transactions
involving bitcoins. When Alice transfers a bitcoin b to Bob, she
appends a message x to his bitcoin, saying ‘I Alice give Bob the
bitcoin b’, and signs this message, by appending da(h(x)).

Signing the message ensures that only Alice can transfer Alice’s
bitcoins. But as described so far, Alice can double-spend: a few
minutes later she can sign another message

(
x ′, da(h(x ′))

)
where

x ′ says ‘I Alice give Charlie the bitcoin b’.

To avoid this, transactions are validated. To validate a list of
transactions

(
b(1), x (1), da(1)(h(x (1)))

)
,
(
b(2), x (2), da(2)(h(x (2)))

)
, . . .

a miner searches for c ∈ N such that, when this list is converted to
a number, its hash, by two iterations of SHA-256, has a large
number of initial zeros.



Example 12.9 [continued]
When Bob receives

(
b, x ′, da(h(x ′))

)
, he looks to see if there is a

block already containing a transaction involving b. When Bob
finds (b, x , da(h(x))) as part of a block with the laboriously
computed c, Bob knows Alice has cheated.

Vast numbers of hashes must be computed to grow the blockchain.
Miners are incentivized to do this: the reward for growing the
blockchain is given in bitcoins.

This time last year the bitcoin traded at $3245.00; the year before
in December it was at a near record high of $15879.79. This year
it is at $7415.64. The reward for growing the blockchain is 12.5
bitcoins. (This gradually decreases; there will never be more than
21× 106 bitcoins in circulation.) Most transactions therefore
involve small fractions of a bitcoin. A typical block verifies about
2500 separate transactions.

Miners are further incentivized by transaction fees, again paid in
bitcoins, attached to each transaction. These will become more
important as the per block reward gets smaller.


