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§1 Revision of fields and polynomials

Definition 1.1
A field is a set of elements F with two operations, + (addition)
and × (multiplication), and two special elements 0, 1 ∈ F such
that 0 6= 1 and

(1) a + b = b + a for all a, b ∈ F;

(2) 0 + a = a + 0 = a for all a ∈ F;

(3) for all a ∈ F there exists b ∈ F such that a + b = 0;

(4) a + (b + c) = (a + b) + c for all a, b, c ∈ F;

(5) a× b = b × a for all a, b ∈ F;

(6) 1× a = a× 1 = a for all a ∈ F;

(7) for all non-zero a ∈ F there exists b ∈ F such that a× b = 1;

(8) a× (b × c) = (a× b)× c for all a, b, c ∈ F;

(9) a× (b + c) = a× b + a× c for all a, b, c ∈ F.

If F is finite, then we define its order to be its number of elements.



Exercise: Show, from the field axioms, that if x ∈ F, then x has a
unique additive inverse, and that if x 6= 0 then x has a unique
multiplicative inverse. Show also that if F is a field then a× 0 = 0
for all a ∈ F.

Exercise: Show from the field axioms that if F is a field and a,
b ∈ F are such that ab = 0, then either a = 0 or b = 0.

Theorem 1.2
Let p be a prime. The set Fp = {0, 1, . . . , p− 1} with addition and
multiplication defined modulo p is a finite field of order p.



Example 1.3

The addition and multiplication tables for the finite field
F4 = {0, 1, α, 1 + α} of order 4 are

+ 0 1 α 1 + α

0 0 1 α 1 + α
1 1 0 1 + α α
α α 1 + α 0 1

1 + α 1 + α α 1 0

× 1 α 1 + α

1 1 α 1 + α
α α 1 + α 1

1 + α 1 + α 1 α



Definition 1.4
If f (x) = a0 + a1x + a2 + · · ·+ amx

m where am 6= 0, then we say
that m is the degree of the polynomial f , and write deg f = m.
The degree of the zero polynomial is, by convention, −1. We say
that a0 is the constant term and am is the leading term.

Lemma 1.5 (Division algorithm)

Let F be a field, let g(x) ∈ F[x ] be a non-zero polynomial and let
g(x) ∈ F[x ]. There exist polynomials s(x), r(x) ∈ F[x ] such that

f (x) = s(x)g(x) + r(x)

and either r(x) = 0 or deg r(x) < deg g(x).

We say that s(x) is the quotient and r(x) is the remainder when
f (x) is divided by g(x). Lemma 1.5 will not be proved in lectures.
The important thing is that you can compute the quotient and
remainder. In Mathematica: PolynomialQuotientRemainder,
using Modulus -> p for finite fields.



Lemma 1.7
Let F be a field.

(i) If f ∈ F[x ] has a ∈ F as a root, i.e. f (a) = 0, then there is a
polynomial g ∈ F[x ] such that f (x) = (x − a)g(x).

(ii) If f ∈ F[x ] has degree m ∈ N0 then f has at most m distinct
roots in F.

(iii) Suppose that f , g ∈ F[x ] are non-zero polynomials such that
deg f , deg g < t. If there exist distinct c1, . . . , ct ∈ F such
that f (ci ) = g(ci ) for each i ∈ {1, . . . , t} then f = g.

Part (iii) is the critical result. It says, for instance, that a linear
polynomial is determined by any two of its values: when F is the
real numbers R this should be intuitive—there is a unique line
through any two distinct points. Similarly a quadratic is
determined by any three of its values, and so on.
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Conversely, given t values, there is a polynomial of degree at most
t taking these values at any t distinct specified points. This has a
nice constructive proof.

Lemma 1.8 (Polynomial interpolation)

Let F be a field. Let

c1, c2, . . . , ct ∈ F

be distinct and let y1, y2, . . . , yt ∈ F. The unique polynomial
f (x) ∈ F[x ] of degree < t such that f (ci ) = yi for all i is

f (x) =
t∑

i=1

yi

∏
j 6=i (x − cj)∏
j 6=i (ci − cj)

.



§2: Shamir’s Secret Sharing Scheme

Example 2.1

Ten people want to know their mean salary. But none is willing to
reveal her salary si to the others, or to a ‘Trusted Third Party’.
Instead Person 1 chooses a large number M. She remembers M,
and whispers M + s1 to Person 2. Then Person 2 whispers
M + s1 + s2 to Person 3, and so on, until finally Person 10 whispers
M + s1 + s2 + · · ·+ s10 to Person 1. Person 1 then subtracts M
and can tell everyone the mean (s1 + s2 + · · ·+ s10)/10.

Exercise 2.3
In the two person version of the scheme, Person 1 can deduce
Person 2’s salary from M + s1 + s2 by subtracting M + s1. Is this a
defect in the scheme?



Definition 2.4
Let p be a prime and let s ∈ Fp. Let n ∈ N, t ∈ N be such that
t ≤ n < p. Let c1, . . . , cn ∈ Fp be distinct non-zero elements. In
the Shamir scheme with n people and threshold t, Trevor chooses
at random a1, . . . , at−1 ∈ Fp and constructs the polynomial

f (x) = s + a1x + · · ·+ at−1x
t−1

with constant term s. Trevor then issues the share f (ci ) to
Person i .

Example 2.5

Suppose that n = 5 and t = 3. Take p = 7 and ci = i for each
i ∈ {1, 2, 3, 4, 5}. We suppose that s = 5. Trevor chooses
a1, a2 ∈ F7 at random, getting a1 = 6 and a2 = 1. Therefore
f (x) = 5 + 6x + x2 and the share of Person i is f (ci ), for each
i ∈ {1, 2, 3, 4, 5}, so(

f (1), f (2), f (3), f (4), f (5)
)

= (5, 0, 4, 3, 4).



Exercise 2.6
Suppose that Person 1, with share f (1) = 5, and Person 2, with
share f (2) = 0, cooperate in an attempt to discover s. Show that
for each z ∈ F7 there exists a unique polynomial fz(x) such that
deg f ≤ 2 and f (0) = z , fz(1) = 5 and fz(2) = 0.

Theorem 2.7
In a Shamir scheme with n people, threshold t and secret s, any t
people can determine s but any t − 1 people can learn nothing
about s.
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Exercise 2.8
Suppose Trevor shares s ∈ Fp across n computers using the Shamir
scheme with threshold t. He chooses the first t computers. They
are instructed to exchange their shares; then each computes s and
sends it to Trevor. Unfortunately Malcolm has compromised
computer 1. Show that Malcolm can both learn s and trick Trevor
into thinking his secret is any chosen s ′ ∈ Fp.



Example 2.9

The root key for DNSSEC, part of web of trust that guarantees an
IP connection really is to the claimed end-point, and not Malcolm
doing a Man-in-the-Middle attack, is protected by a secret sharing
scheme with n = 7 and t = 5: search for ‘Schneier DNSSEC’.

Exercise 2.10
Take the Shamir scheme with threshold t and evaluation points
1, . . . , n ∈ Fp where p > n. Trevor has shared two large numbers r
and s across n cloud computers, using polynomials f and g so that
the shares are

(
f (1), . . . , f (n)

)
and

(
g(1), . . . , g(n)

)
.

(a) How can Trevor secret share r + s mod p?

(b) How can Trevor secret share rs mod p? [Hint: several steps
are needed.]

Note that all the computation has to be done on the cloud!



Remark 2.11
The Reed–Solomon code associated to the parameters p, n, t and
the field elements c1, c2, . . . , cn is the length n code over Fp with
codewords all possible n-tuples

{
(
f (c1), f (c2), . . . , f (cn)

)
: f ∈ Fp[x ], deg f ≤ t − 1}.

It will be studied in MT5461. By Theorem 2.7, each codeword is
determined by any t of its positions. Thus two codewords agreeing
in n − t + 1 positions are equal: this shows the Reed–Solomon
code has minimum distance at least n − t + 1.

For simplicity we have worked over a finite field of prime order in
this section. Reed–Solomon codes and the Shamir secret sharing
scheme generalize in the obvious way to arbitrary finite fields. For
example, the Reed–Solomon codes used on compact discs have
alphabet the finite field F28 .
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§3 Introduction to Boolean Functions

Recall that F2 = {0, 1} is the finite field of size 2 whose elements
are the bits 0 and 1. As usual, + denotes addition in F2 or in Fn

2.

Definition 3.1
Let n ∈ N. An n-variable boolean function is a function Fn

2 → F2.

For example, f (x , y , z) = xyz + x is a Boolean function of the
three variables x , y and z , such that f (1, 0, 0) = 0 + 1 = 1 and
f (1, 1, 1) = 1 + 1 = 0. We shall see that Boolean functions are
very useful for describing the primitive building blocks of modern
stream and block ciphers.

Exercise 3.2
What is a simpler form for x2y + xz + z + z2?



Exercise 3.3
Let maj(x , y , z) = xy + yz + zx where, as usual, the coefficients
are in F2. Show that

maj(x , y , z) =

{
0 if at most one of x , y , z is 1

1 if at least two of x , y , z are 1.

We call maj : F3
2 → F2 the majority vote function. It is a

3-variable Boolean function.



A modern block cipher has plaintexts and ciphertexts Fn
2 for some

fixed n. The encryption functions are typically defined by
composing carefully chosen cryptographic primitives over a number
of rounds.

Example 3.4

(1) Each round of the widely used block cipher AES is of the form
(x , k) 7→ G (x) + k where + is addition in F128

2 , x ∈ F128
2 is

the input to the round (derived ultimately from the plaintext)
and k ∈ F128

2 is a ‘round key’ derived from the key.

The most important cryptographic primitive in the function
G : F128

2 → F128
2 is inversion in the finite field F28 . The

inversion function is highly non-linear and hard to attack. Just
for fun, the 255 values of the boolean function sending 0 to 0
and a non-zero x to the bit in position 0 of x−1 are shown
below, for one natural order on F28 .

0110101101100111000111010110100000011101100100000100110001011111
1011111110110111101000110000101100111001011111111111010000001010
1010010010111010000100000010101010011010000001000011110110011001
1011000111101000010111000101100111010011001110011100001010101010.



(2) In the block cipher SPECK proposed by NSA in June 2013,
the non-linear primitive is modular addition in Z/2mZ. As a
’toy’ version we take m = 8; in practice m is at least 16 and
usually 64. Identify F8

2 with Z/28Z by writing numbers in
their binary form, as on the preliminary problem sheet. For
instance, 13 ∈ Z/28Z has binary form 0000 1101 (the space is
just for readability) and

1010 1010� 0000 1111 = 1011 1001

1000 0001� 1000 0001 = 0000 0010

corresponding to 170 + 15 = 185 mod 256 and 129 + 129 = 2
mod 256. Modular addition is a convenient operation because
it is very fast on a computer, but it has some cryptographic
weaknesses. In SPECK it is combined with other functions in
a way that appears to give a very strong and fast cipher.



One sign that modular addition is weak is that the low numbered
bits are ’close to’ linear functions. We make this precise in §6 on
linear cryptanalysis. For example

(. . . , x2,x1, x0)� (. . . , y2, y1, y0)

= (. . . , x2 + y2 + c2, x1 + y1 + x0y0, x0 + y0)

where c2 is the carry into position 2, defined using the majority
vote function by c2 = maj(x1, y1, x0y0). Unless both x0 and y0

are 1, bit 1 is x1 + y1, a linear function of (. . . , x2, x1, x0) and
(. . . , y2, y1, y0). By Exercise 4.4, output bit 2 is given by the more
complicated polynomial

x2 + y2 + x1y1 + x0x1y0 + x0y0y1.

This formula can be used for part of Question 5 on Problem
Sheet 3: it is the algebraic normal form of the boolean function for
bit 2 in modular addition.



A boolean function f : Fn
2 → F2 can be defined by its truth table,

which records for each x ∈ Fn
2 its image f (x). For example, the

boolean functions F2
2 → F2 of addition and multiplication are

shown below:

x y x + y xy x ∧ y x ∨ y x =⇒ y

0 0 0 0 F F
0 1 1 0 F T
1 0 1 0 F T
1 1 0 1 T T

It is often useful to think of 0 as false and 1 as true. Then xy
corresponds to x ∧ y , the logical ‘and’ of x and y , as shown above.
The logical ‘or’ of x and y is denoted x ∨ y .

Exercise 3.5
Use the true/false interpretation to complete the columns for
x =⇒ y . Could you convince a sceptical friend that false
statement imply true statements?
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Example 3.6

The Toffoli function is a 3-variable boolean function important in
quantum computing. It can be defined by

toffoli(x0, x1, x2) =

{
x0 if x1x2 = 0

x0 if x1x2 = 1.

Here x denotes the bitflip of x , defined by 0 = 1 and 1 = 0. (You
will have seen this if you did the Preliminary Problem Sheet.) In
the true/false interpretation F = T and T = F .

x2 x1 x0 maj(x0, x1, x2) toffoli(x0, x1, x2) f{0} f{0,2}

∅ 0 0 0 0 0 0 0
{0} 0 0 1 0 1 1 0
{1} 0 1 0 0 0 0 0
{0, 1} 0 1 1 1 1 0 0
{2} 1 0 0 0 0 0 0
{0, 2} 1 0 1 1 1 0 1
{1, 2} 1 1 0 1 1 0 0
{0, 1, 2} 1 1 1 1 0 0 0



x2 x1 x0 maj(x0, x1, x2) toffoli(x0, x1, x2) f{0} f{0,2}

∅ 0 0 0 0 0 0 0
{0} 0 0 1 0 1 1 0
{1} 0 1 0 0 0 0 0
{0, 1} 0 1 1 1 1 0 0
{2} 1 0 0 0 0 0 0
{0, 2} 1 0 1 1 1 0 1
{1, 2} 1 1 0 1 1 0 0
{0, 1, 2} 1 1 1 1 0 0 0

The sets on the left record which variables are true. For example,
the majority vote function is true on the rows labelled by the sets
of sizes 2 and 3, namely, {0, 1}, {0, 2}, {1, 2}, {1, 2, 3}, and false
on the other rows.



Given a subset J of {0, . . . , n − 1} we define fJ : Fn
2 → F2 by

fJ(x) =
∧
j∈J

xj ∧
∧
j 6∈J

x j .

In words, fJ is the n-variable boolean function whose truth table
has a unique 1 (or true) in the row labelled J. For instance
f{0}(x0, x1, x2) = x0 ∧ x1 ∧ x2 and f{0,2}(x0, x1, x2) = x0 ∧ x1 ∧ x2

are shown above.

Exercise 3.7

(i) For what set J do we have

toffoli = f{0} ∨ f{0,1} ∨ f{0,2} ∨ fJ?

(ii) Express the majority vote function in the form above.

(iii) Find a way to complete the right-hand side in

maj(x) = (x0 ∧ x1 ∧ x2)∨ (x0 ∧ x1 ∧ x2)∨ (x0 ∧ x1 ∧ x2)∨ (. . .).



Recall that [Typo in printed notes: i ∈ J should be j ∈ J]

fJ(x) =
∧
j∈J

xj ∧
∧
j 6∈J

x j .

x2 x1 x0 maj(x0, x1, x2) toffoli(x0, x1, x2) f{0} f{0,2}

∅ 0 0 0 0 0 0 0
{0} 0 0 1 0 1 1 0
{1} 0 1 0 0 0 0 0
{0, 1} 0 1 1 1 1 0 0
{2} 1 0 0 0 0 0 0
{0, 2} 1 0 1 1 1 0 1
{1, 2} 1 1 0 1 1 0 0
{0, 1, 2} 1 1 1 1 0 0 0

We saw in Exercise 3.7 that

(a) toffoli = f{0} ∨ f{0,1} ∨ f{0,2} ∨ f{1,2};

(b) maj = f{0,1} ∨ f{0,2} ∨ f{1,2} ∨ f{1,2,3};

(c) maj(x0, x1, x2) = (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2).

How would you express the boolean function g(x0, x1, x2) that is
true if and only if x0 = x1 = x2 as a disjunction (

∨
) of the fJ?



Theorem 3.8 (Disjunctive Normal Form)

Let f : Fn
2 → F2 be a boolean function.

(i) Suppose that the truth table of f has 1 in the rows labelled by
the sets J for J ∈ T . Then

f =
∨
J∈T

fJ .

(ii) If T 6= T ′ then
∨

J∈T fJ 6=
∨

J∈T ′ fJ .

This theorem says that every boolean function f has a unique
disjunctive normal form

∨
J∈T fJ , for a suitable set T .

Corollary 3.9

There are 22n n-variable boolean functions.



Exercise 3.10
By Corollary 3.9, there are 16 truth tables of 2-variable boolean
functions. Using the true/false notation, the 8 for which
f (F ,F ) = F are shown below. What is a suitable label for the
rightmost column? What are the disjunctive normal forms of these
8 functions? What is a concise way to specify the remaining 8
functions?

x1 x0 x0 ∨ x1 x0 x1 x0 + x1 x0 ∧ x1 x0 ∧ x1 x0 ∧ x1 ??

∅ F F F F F F F F F F
{0} F T T T F T F T F F
{1} T F T F T T F F T F
{0, 1} T T T T T F T F F F



In F2 we have 02 = 0 and 12 = 1. Therefore the Boolean functions
f (x1) = x2

1 and f (x1) = x1 are equal. Hence, as seen in
Exercise 3.2, multivariable polynomials over F2 do not need
squares or higher powers of the variables. Similarly, since 2x1 = 0,
the only coefficients needed are the bits 0 and 1. For instance,
x0 + x0x

2
2x

3
3 + x2

0 + x2x3 is the same Boolean function as
x2x3 + x0x2x3.

Given I ⊆ {0, 1, . . . , n − 1}, let

xI =
∏
i∈I

xi .

We say the xI are boolean monomials. By definition (or convention
if you prefer), x∅ = 1. For example, x{1,2} = x1x2. It is one of the
three boolean monomial summands of

maj(x0, x1, x2) = x0x1 + x1x2 + x2x0.



The functions fJ so useful for proving Theorem 3.8 have a
particularly simple form as polynomials:

fJ(x) =
∏
j∈J

xj
∏
j 6∈J

x j .

Exercise 3.11
Define the 3-variable Boolean function

g(x0, x1, x2) =

{
1 if x0 = x1 = x2

0 otherwise.

Express g as sum of boolean monomials. The negation of g is
defined by g = g(x). What is g as a sum of boolean monomials?

Similarly you can use the truth table on page 10 to express the
Toffoli function and its negation as a sum of boolean monomials.



It is only a small generalization of Exercise 3.11 to prove the
following theorem.

Theorem 3.12
Let f : Fn

2 → F2 be an n-variable Boolean function.

(a) There exist unique coefficients bJ ∈ {0, 1}, one for each
J ⊆ {0, 1, . . . , n − 1} such that

f =
∑

I⊆{0,1,...,n}

bJ fJ .

(b) There exist unique coefficients cI ∈ {0, 1}, one for each
I ⊆ {0, 1, . . . , n − 1}, such that

f =
∑

I⊆{0,1,...,n−1}

cI xI .

The expression for f in (b) is called the algebraic normal form of f .

As shorthand, we write [xI ]f for the coefficient of xI in the boolean
function f . Thus f =

∑
I⊆{1,...,n}([xI ]f )xI is the algebraic normal

form of f .



It is only a small generalization of Exercise 3.11 to prove the
following theorem.

Theorem 3.12
Let f : Fn

2 → F2 be an n-variable Boolean function.

(a) There exist unique coefficients bJ ∈ {0, 1}, one for each
J ⊆ {0, 1, . . . , n − 1} such that

f =
∑

I⊆{0,1,...,n}

bJ fJ .

(b) There exist unique coefficients cI ∈ {0, 1}, one for each
I ⊆ {0, 1, . . . , n − 1}, such that

f =
∑

I⊆{0,1,...,n−1}

cI xI .

The expression for f in (b) is called the algebraic normal form of f .

As shorthand, we write [xI ]f for the coefficient of xI in the boolean
function f . Thus f =

∑
I⊆{1,...,n}([xI ]f )xI is the algebraic normal

form of f .



Exercise 3.13
Let f (x , y , z) = 1 + x + xz + yz + xyz and let

g(x , y , z) = f (0, y , z) + f (1, y , z)

and let

h(x , y , z) = g(x , 0, z) + g(x , 1, z)

= f (0, 0, z) + f (1, 0, z) + f (0, 1, z) + f (1, 1, z)

Find the algebraic normal form of g and h. What is the connection
between g(0, 0, 0) and h(0, 0, 0) and [x ]f , [xy ]f ? How would you
find [xz ]f and [xyz ]f by this method?

Proposition 3.14

Let f : Fn
2 → F2 be an n-variable Boolean function. Then

[xI ]f =
∑

f (z0, . . . , zn−1)

where the sum is over all z0, . . . , zn−1 ∈ {0, 1} such that
{j : zj = 1} ⊆ I .
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Find the algebraic normal form of g and h. What is the connection
between g(0, 0, 0) and h(0, 0, 0) and [x ]f , [xy ]f ? How would you
find [xz ]f and [xyz ]f by this method?

Proposition 3.14

Let f : Fn
2 → F2 be an n-variable Boolean function. Then

[xI ]f =
∑

f (z0, . . . , zn−1)

where the sum is over all z0, . . . , zn−1 ∈ {0, 1} such that
{j : zj = 1} ⊆ I .



Coulter McDowell Lecture 2019
I Prof. Jeffrey Vaaler (University of Texas at Austin)

Minkowski’s convex body theorem and some of its
applications

I Tuesday 5th November 6.15pm

I Windsor Building Auditorium, 6.15pm

Public lecture, suitable for A-level students. Refreshments
afterwards. Stefanie Gerke (and I) will be around to say hello.

Pure Mathematics Seminar
I Prof. Kevin Buzzard (Imperial College)

The future of mathematics?
I Wednesday 6th November 2pm

I Munro Fox Lecture Room

Kevin is leading a team of M.Sc. students to formalize
mathematics using a computer theorem prover. From his abstract

I personally believe that Lean is part of what will become a
paradigm shift in the way humans do mathematics, and that
people who do not switch will ultimately be left behind.



§4 The Discrete Fourier Transform

Given x ∈ F2 we define (−1)x by regarding x as an ordinary
integer. Thus (−1)0 = 1 and (−1)1 = −1. Given an n-variable
boolean function f : Fn

2 → F2 we define (−1)f : Fn
2 → {−1, 1} by

(−1)f (x) = (−1)f (x).

Definition 4.1
Let f , g : Fn

2 → F be Boolean functions. We define the correlation
between f and g by

corr(f , g) =
1

2n

∑
x∈Fn

2

(−1)f (x)(−1)g(x).

The summand (−1)f (x)(−1)g(x) is 1 when f (x) = g(x) and −1
when f (x) = −g(x). Hence

corr(f , g) =
csame − cdiff

2n

where

csame =
∣∣{x ∈ Fn

2 : f (x) = g(x)}
∣∣, cdiff =

∣∣{x ∈ Fn
2 : f (x) 6= g(x)}

∣∣.



Given T ⊆ {0, 1, . . . , n − 1}, define LT : Fn
2 → F2 by

LT (x) =
∑
t∈T

xt .

For example, L{i}(x0, x1, . . . , xn−1) = xi returns the entry in
position i and L∅(x) = 0 is the zero function.

Exercise 4.2
Find all the linear 3-variable boolean functions. Which 3-variable
boolean functions are uncorrelated with the zero function?

Lemma 4.3
The linear functions Fn

2 → F are precisely the LT : Fn
2 → F2 for

T ⊆ {0, 1, . . . , n − 1}. If S ,T ⊆ {0, 1, . . . , n − 1} then

corr(LS , LT ) =

{
1 if S = T

0 otherwise.



Recall that if T ⊆ {0, 1, . . . , n− 1} then LT : Fn
2 → F2 is the linear

n-variable boolean function defined by

LT (x) =
∑
t∈T

xt .

Example 4.4

Let maj : F3
2 → F2 be the majority vote function from Exercise .

We have [corrected off-by-one error]

corr(maj, LT ) =


1
2 if T = {0}{1}, {2}
−1

2 if T = {0, 1, 2}
0 otherwise.



We define an inner product on the vector space W of functions
Fn

2 → R by

〈θ, φ〉 =
1

2n

∑
x∈2n

θ(x)φ(x).

If f and g are n-variable boolean functions then

〈(−1)f , (−1)g 〉 = corr(f , g).

Exercise 4.5

(i) Let θ ∈W . Check that, as required for an inner product,
〈θ, θ〉 ≥ 0 and that 〈θ, θ〉 = 0 if and only if θ(x) = 0 for all
x ∈ Fn

2.

(ii) Show that if n = 2 then W is 4-dimensional. What is dimW
in general?

Writing functions f ∈W like columns of truth tables


f (00)
f (01)
f (10)
f (11)

,

we have

(−1)L∅ =


1
1
1
1

 and (−1)L{1} =


1
1
−1
−1

 and so on.



We define an inner product on the vector space W of functions
Fn

2 → R by

〈θ, φ〉 =
1

2n

∑
x∈2n

θ(x)φ(x).

If f and g are n-variable boolean functions then

〈(−1)f , (−1)g 〉 = corr(f , g).

Exercise 4.5

(i) Let θ ∈W . Check that, as required for an inner product,
〈θ, θ〉 ≥ 0 and that 〈θ, θ〉 = 0 if and only if θ(x) = 0 for all
x ∈ Fn

2.

(ii) Show that if n = 2 then W is 4-dimensional. What is dimW
in general?

Writing functions f ∈W like columns of truth tables


f (00)
f (01)
f (10)
f (11)

,

we have

(−1)L∅ =


1
1
1
1

 and (−1)L{1} =


1
1
−1
−1

 and so on.



Reminder of Inner Product Spaces

I Any orthonormal set is linearly independent: for instance, with
three orthonormal vectors u, v , w , if αu + βv + γw = 0 then
taking the inner product with u we get

0 = 〈0, u〉 = 〈αu + βv + γw , u〉 = α.

I If x = αu + βv + γw where u, v , w are orthonormal then
〈x , x〉 = α2 + β2 + γ2.



The inner product on the vector space W of functions Fn
2 → R is

defined by

〈θ, φ〉 =
1

2n

∑
x∈2n

θ(x)φ(x).

We saw that 〈(−1)f , (−1)g 〉 = corr(f , g) for n-variable boolean
functions f and g .

Theorem 4.6 (Discrete Fourier Transform)

(a) The functions (−1)LT for T ⊆ {0, 1, . . . , n − 1} are an
orthonormal basis for the vector space W of functions
Fn

2 → R.

(b) Let θ : Fn
2 → R. Then

θ =
∑

T⊆{0,1,...,n−1}

〈θ, (−1)LT 〉(−1)LT .

(c) Let f : Fn
2 → F2 be a Boolean function. Then

(−1)f =
∑

T⊆{0,1,...,n−1}

corr(f , LT )(−1)LT .



Corollary 4.7

Let f be an n-variable boolean function. Then∑
T⊆{0,1,...,n−1}

corr(f , LT )2 = 1.

Since there are 2n linear functions (corresponding to the 2n subsets
of {0, 1, . . . , n − 1}), it follows that any n-variable boolean
function f has a squared correlation of at least 1/2n.

Example 4.8

(1) Let f (x0, x1, x2) = x0x1x2. We have corr(f , L∅) = 3
4 ,

corr(f , L{0}) = 1
4 , corr(f , L{0,1}) = −1

4 and

corr(f , L{0,1,2}) = 1
4 . By Theorem 4.6(c) and symmetry, the

Discrete Fourier Transform of f is

(−1)f = 3
4 + 1

4

∑
T⊆{0,1,2}

T 6=∅

(−1)|T |−1(−1)LT .

We will check Parseval’s Theorem holds.



Example 4.8 [continued]

(2) Exercise: Consider the 2-variable boolean function
f (x0, x1) = x0x1. Find its correlations with the four linear
functions L∅(x0, x1) = 1, L{0}(x0, x1) = x0, L{1}(x0, x1) = x1,
L{0,1}(x0, x1) = x1 + x2 and deduce that

(−1)x0x1 = 1
2 (−1)L∅ + 1

2 (−1)L{0} + 1
2 (−1)L{1} − 1

2 (−1)L{0,1}

(3) Let b(x0, x1, y0, y1) = x0y0 + x1y1. We shall use
Mathematica to show that corr(b, LT ) = ±1

4 for every
T ⊆ {0, 1, 2, 3}. By the remark following Corollary 4.7, this
function achieves the cryptographic ideal of having all
correlations as small (in absolute value) as possible.



Bent Functions

An n-variable boolean function such as b where the correlations all
have absolute value 1/

√
2n is called a bent function. Since

correlations are rational numbers, bent functions exist only for even
n. Many different constructions have been found and applied in
cryptography.



Piling-Up Lemma

Lemma 4.9 (Piling-up Lemma)

Let f be an m-variable boolean function of x0, . . . , xm−1 and let g
be an n-variable boolean function of y0, . . . , yn−1. Define f + g by

(f +g)(x0, . . . , xm−1, y0, . . . , yn−1) = f (x0, . . . , xm−1)+g(y0, . . . , yn−1).

Given S ⊆ {0, . . . ,m − 1} and T ⊆ {0, . . . , n − 1}, let
L(S,T )(x , y) = LS(x) + LT (y). The L(S ,T ) are all linear functions
of the m + n variables and

corr(f + g , L(S ,T )) = corr(f , LS) corr(g , LT ).

For instance the Piling-up Lemma implies that
x0y0 + · · ·+ xm−1ym−1 is a bent function for all m, generalizing
Example 4.8.



§5 The Berlekamp–Massey Algorithm

Example 5.1

By Question 4 on Sheet 5, the sum u of the keystreams of the
LFSR with taps {3, 4} and width 4 and the LFSR with taps {2, 3}
and width 3, using keys 0001 and 001, has period 105.

ui = (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

The output of the Berlekamp–Massey algorithm applied to the first
n terms u0 . . . un−1 for n ≥ 6 is below. No change for n = 7, 8, 12.

n width feedback polynomial taps m

6 3 1 + z {1} 2
9 4 1 + z + z4 {1, 4} 6

10 6 1 + z + z3 {1, 3} 9
11 6 1 + z2 + z3 + z5 {2, 3, 5} 9
≥ 13 7 1 + z2 + z4 + z5 + z7 {2, 4, 5, 7} 12



Example 5.1 [continued]
For instance, the first 10 terms u0u1 . . . u9 are generated by the
LFSR of width 6 with feedback polynomial 1 + z + z3; its taps are
{1, 3}. Taking as the key u0u1u2u3u4u5 = 001111, the first 30
terms of the keystream are:

ki =(0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, . . .)
ui =(0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, . . .)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Since k10 6= u10, running the Berlekamp–Massey algorithm on the
first 11 bits u0 . . . u9u10 gives a different LFSR. (The width stays
as 6, but the taps change to {2, 3, 5}.) The new LFSR generates
u0 . . . u9u10u11, so is also correct for the first 12 bits. This is why
there is no change for n = 12.

For all n ≥ 13 the output of the algorithm is the LFSR of width 7
and feedback polynomial 1 + z2 + z4 + z5 + z7; as suggested on
the problem sheet, this may also be found by the method of
annihilators.



Preliminaries

Fix throughout a binary stream

u0u1u2 . . . .

Let Un(z) = u0 + u1z + · · ·+ un−1z
n−1 be the polynomial

recording the first n terms. Recall from §1 that the degree of a
non-zero polynomial h(z) is its highest power of z .

Lemma 5.3
The word u0u1 . . . un−1 is the output of the LFSR with width ` and
taps T if and only if Un(z)gTn(z) = h(z) + znr(z) for some
polynomials h(z) and r(z) with deg h < `.



Example of Lemma 5.3

Example 5.4

Let u = (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0) = u0 . . . u12 be the first 13
entries of the keystream in Example 5.1. The first 12 entries
u0 . . . u11 are generated by the LFSR of width 6 with taps {2, 3, 5}.
Correspondingly, by the ‘if’ direction of Lemma 5.3,

(z2 + z3 + z4 + z5 + z7)g{2,3,5}(z)

= (z2 + z3 + z4 + z5 + z7)(1 + z2 + z3 + z5)

= z2 + z3 + z5 + z12

= h(z) + z12r(z)

where h(z) = z2 + z3 + z5 and r(z) = 1. This equation also shows
that the ‘only if’ direction fails to hold when n = 13 since z12 is
not of the form z13r(z). Correspondingly, by the ‘only if’ direction
of Lemma 5.3, the LFSR generates (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1)
rather than u.



At step n of the Berlekamp–Massey algorithm we have two LFSRs:
I An LFSR Fm of width `m with taps Tm, generating

u0u1 . . . um−1um . . . .

I An LFSR Fn of width `n with taps Tn, where n > m,
generating

u0u1 . . . um−1um . . . un−1.

Thus Fm is correct for the first m positions, and then wrong, since
it generates um rather than um. If Fn generates
u0u1 . . . um−1um . . . un−1un then case (a) applies and the algorithm
returns Fn. The next proposition deals with case (b), when Fn
outputs un rather than un.

Proposition 5.5

With the notation above, suppose that the LFSR Fn generates
u0u1 . . . un−1un. The LFSR with feedback polynomial

zn−mgTm(z) + gTn(z)

and width max(n −m + `m, `n) generates u0u1 . . . un−1un.



Example 5.6

Take the keystream k0k1 . . . k9 of length 10 shown below:

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0).
0 1 2 3 4 5 6 7 8 9

The LFSR F6 of width `6 = 3 and taps T6 = {1, 3} generates the
keystream

(1, 1, 1, 0, 1, 0, 0, 1, 1, 1).
0 1 2 3 4 5 6 7 8 9

The LFSR F7 of width `7 = 4 and taps T7 = {1, 4} generates the
keystream

(1, 1, 1, 0, 1, 0, 1, 1, 0, 0).
0 1 2 3 4 5 6 7 8 9

Note that F7 is wrong in position 7.



Example 5.6 [continued]

Using Proposition 5.5, taking m = 6 and n = 7 we compute

zn−mgTm + gTn(z) = z7−6g{1,3}(z) + g{1,4}(z)

= z(1 + z + z3) + (1 + z + z4)

= 1 + z2.

This is the feedback polynomial of the LFSR F8 with taps
T8 = {2} and width `8 = n −m + `m = 7− 6 + 3 = 4. As
expected this generates

(1, 1, 1, 0, 1, 0, 1, 0, 1, 0).
0 1 2 3 4 5 6 7 8 9

correct for the first 8 positions. (And then wrong for u8.)
Although the only tap in {2} is 2, we still have to take the width
of F8 to be 4 (or more), to get the first 8 positions correct.



Continuing Example 5.6

Exercise 5.7
Continuing from the example, apply Proposition 5.5 taking n = 8,
m = 6, and F8 and F6 as in Example 5.6. You should get the
LFSR F9 with taps {3, 5} generating

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0).
0 1 2 3 4 5 6 7 8 9

which is the full keystream. The width is now 8− 6 + 3 = 5; since
5 is a tap, this is the minimum possible width for these taps.



Berlekamp–Massey algorithm
Let c be least such that uc 6= 0. The algorithm defines LFSRs
Fc ,Fc+1, . . . so that each Fn has width `n and taps Tn and
generates the first n positions of the keystream: u0, . . . , un−1.

• [Initialization] Set Tc = ∅, `c = 0, Tc+1 = ∅ and
`c+1 = c + 1. Set m = c .

• [Step] We have an LFSR Fn with taps Tn of width `n
generating u0, . . . , un−1 and an LFSR Fm generating
u0, . . . , um−1, um.

(a) If Fn generates u0, . . . , un−1, un then set Tn+1 = Tn,
`n+1 = `n. This defines Fn+1 with Fn+1 = Fn. Keep m as it is.

(b) If Fn generates u0, . . . , un−1, un, calculate

g(z) = zn−mgTm(z) + gTn(z)

where, as usual, gTm and gTn are the feedback polynomials.
Define Tn+1 so that g(z) = 1 +

∑
t∈Tn+1

z t . Set

`n+1 = max(`n, n + 1− `n).

If `n+1 > `n, update m to n, otherwise keep m as it is.

Thus m changes if and only if the width increases in step (b).



Example 5.8

We apply the Berlekamp–Massey algorithm to the keystream
(1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1) from Example 5.6 extended by one extra
bit u10 = 1. After initialization we have T0 = ∅, `0 = 0, T1 = ∅,
`1 = 1. Case (a) applies in each step n for n ∈ {2, 4, 5, 9}. The
table below shows the steps when case (b) applies.

n Tn `n m Tm n −m Tn+1 `n+1

1 ∅ 1 0 ∅ 1 {1} 1
3 {1} 1 0 ∅ 3 [corr.] {1, 3} 3
6 {1, 3} 3 3 {1} 3 {1, 4} 4
7 {1, 4} 4 6 {1, 3} 1 {2} 4
8 {2} 4 6 {1, 3} 2 {3, 5} 5

10 {3, 5} 5 8 {2} 2 {2, 3, 4, 5} 6



Exercise on Example 5.8

I Run the algorithm starting with step 1, in which you should
define T2 = {1}, and finishing with step 6, in which you
should define T7 = {1, 4}.

I Then check that steps 7 and 8 of the algorithm are exactly
what we did in Example 5.6 and Exercise 5.7.

I At step 9 you should find that case (a) applies; check that
step 10 finishes with the LFSR F11 of width `11 = 6 and taps
T11 = {2, 3, 4, 5}, generating u0u1 . . . u10.



Berlekamp–Massey theorem
To prove that the LFSRs defined by running the Berlekamp–Massey
algorithm have minimal possible width we need the following
lemma. The proof is not obvious, but if you think ‘what can I
possibly do using Lemma 5.3’ you should find the main idea.

Lemma 5.9
Let n ≥ `. If an LFSR F of width ` generates the keystream
(u0, u1, . . . , un−1, b) of length n + 1 then any LFSR F ′ generating
the keystream (u0, u1, . . . , un−1, b) has width `′ where
`′ ≥ n + 1− `.

Lemma 5.3
The word u0u1 . . . un−1 is the output of the LFSR with width ` and
taps T if and only if Un(z)gTn(z) = h(z) + znr(z) for some
polynomials h(z) and r(z) with deg h < `.



Berlekamp–Massey theorem
To prove that the LFSRs defined by running the Berlekamp–Massey
algorithm have minimal possible width we need the following
lemma. The proof is not obvious, but if you think ‘what can I
possibly do using Lemma 5.3’ you should find the main idea.

Lemma 5.9
Let n ≥ `. If an LFSR F of width ` generates the keystream
(u0, u1, . . . , un−1, b) of length n + 1 then any LFSR F ′ generating
the keystream (u0, u1, . . . , un−1, b) has width `′ where
`′ ≥ n + 1− `.
Recall that step n of the Berlekamp–Massey algorithm returns an
LFSR Fn+1 with taps Tn+1 and width `n+1 generating
u0 . . . un−1un.

Theorem 5.10
With the notation above, maxTn+1 ≤ `n+1. Moreover `n+1 is the
least width of any LFSR generating u0, . . . , un−1, un.



Linear Complexity

The linear complexity of a word u0u1 . . . un−1 is the minimal width
of an LFSR that generates it. Modern stream ciphers aim to
generate keystreams with high linear complexity. For example, take
the m-quadratic stream cipher from Example 8.5. If m = 1 the
keystream u0u1 . . . u29 for k = 10101 and k ′ = 101010 is

(1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1).

The table below shows the linear complexity of the first n bits of
the keystream for small n and m.

m\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 2 2 2 2 5 5 5 5 5 5 5 5 5
2 0 2 2 2 2 2 5 5 5 5 5 5 5 5 5
3 0 0 0 4 4 4 4 4 4 6 6 6 6 6 6
4 0 0 0 0 0 7 7 7 7 7 7 7 7 7 8
5 0 0 0 0 5 5 5 5 5 5 5 7 7 7 8

For n = 5 the linear complexity is about n/2: this is the expected
linear complexity of a random sequence of bits.



§6 Linear cryptanalysis

Example 6.1

Let S : F4
2 → F4

2 be the S-box in the Q-block cipher (see Example
9.5 in the main notes), defined by

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

(a) Suppose we look at position 0 of the output by considering
L{0} ◦ S : F4

2 → F2. We have

(L{0} ◦ S)
(
(x0, x1, x2, x3)

)
= L{0}(x2, x3, x0 + x1x2, x1 + x2x3)

= x2

= L{2}
(
(x0, x1, x2, x3)

)
.

Hence L{0} ◦ S = L{2}. By Lemma 4.3,

corr(L{0} ◦ S , LT ) =

{
1 if T = {2}
0 otherwise.



Example 6.1 [continued]

(b) Instead if we look at position 2, the relevant Boolean function
is L{2} ◦ S , for which L{2} ◦ S

(
(x0, x1, x2, x3)

)
= x0 + x1x2.

Exercise: show that

corr(L{2} ◦ S , LT ) =


1
2 if T = {0}, {0, 1}, {0, 2}
−1

2 if T = {0, 1, 2}
0 otherwise

.



Example 6.2

For k ∈ F12
2 let ek : F8

2 → F8
2 be the Q-block cipher, as defined in

Example 8.4. Then ek
(
(v ,w)

)
= (v ′,w ′) where

v ′ = w + S
(
v + S(w + k(1)) + k(2)).

Recall that k(1) = (k0, k1, k2, k3) and k(2) = (k4, k5, k6, k7).
Example 6.1 suggests considering corr(L{0} ◦ ek , L{2}). We have

(L{0} ◦ ek)
(
(v ,w)

)
= L{0}

(
(v ′,w ′)

)
= v ′0

L{2}
(
(v ,w)

)
= v2.

Exercise: using that k
(1)
0 = k0, k

(1)
1 = k1, k

(1)
2 = k2 and k

(2)
2 = k6,

check that

v ′0 = v2 + (w1 + k1)(w2 + k2) + k0 + k6.



Example 6.2 [continued]
By definition

corr(L{0} ◦ ek , L{2}) =
1

28

∑
(v ,w)∈F8

2

(−1)v2+(w1+k1)(w2+k2)+k0+k6(−1)v2

=
1

28
(−1)k0+k6

∑
(v ,w)∈F8

2

(−1)(w1+k1)(w2+k2)

= (−1)k0+k6
1

22

∑
w1,w2∈F2

(−1)(w1+k1)(w2+k2)

where the third line follows because the summand for (v ,w) is the
same for all 26 pairs with the same w1 and w2. In∑

w1,w2∈F2
(−1)(w1+k1)(w2+k2), the values of k1 and k2 are

irrelevant.

For instance, if both are 0 we average (−1)w1w2 over all
four (w1,w2) ∈ F2

2 to get 1
2 ; if both are 1 we average

(−1)(w1+1)(w2+1), seeing the same summands in a different order,
and still getting 1

2 . Hence 1
22

∑
w1,w2∈F2

(−1)(w1+k1)(w2+k2) = 1
2 and

corr(L{0} ◦ ek , L{2}) = 1
2 (−1)k0+k6



Example 6.2 [continued]
By definition

corr(L{0} ◦ ek , L{2}) =
1

28

∑
(v ,w)∈F8

2

(−1)v2+(w1+k1)(w2+k2)+k0+k6(−1)v2

=
1

28
(−1)k0+k6

∑
(v ,w)∈F8

2

(−1)(w1+k1)(w2+k2)

= (−1)k0+k6
1

22

∑
w1,w2∈F2

(−1)(w1+k1)(w2+k2)

where the third line follows because the summand for (v ,w) is the
same for all 26 pairs with the same w1 and w2. In∑

w1,w2∈F2
(−1)(w1+k1)(w2+k2), the values of k1 and k2 are

irrelevant. For instance, if both are 0 we average (−1)w1w2 over all
four (w1,w2) ∈ F2

2 to get 1
2 ; if both are 1 we average

(−1)(w1+1)(w2+1), seeing the same summands in a different order,
and still getting 1

2 . Hence 1
22

∑
w1,w2∈F2

(−1)(w1+k1)(w2+k2) = 1
2 and

corr(L{0} ◦ ek , L{2}) = 1
2 (−1)k0+k6



Attack on the Q-block cipher

We can estimate this correlation from a collection of
plaintext/ciphertext pairs (v ,w), (v ′,w ′) by computing (−1)v

′
0+v2

for each pair. The mean should be close to 1
2 (−1)k0+k6 , and the

sign then tells us k0 + k6. There are similar high correlations of 1
2

for output bit 1. Using these one learns k2 and k3 as well as
k1 + k7.

Exercise 6.3
Given k0 + k6, k1 + k7, k1, k2, k3, how many possibilities are there
for the key in the Q-block cipher?

The attack by differential cryptanalysis required chosen plaintexts.
The attack by linear cryptanalysis works with any observed
collection of plaintext/ciphertext pairs. It is therefore more widely
applicable, as well as more powerful.
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How to Find High Correlations
In the attack on the Q-Block Cipher we saw that the correlation
depended on the key only by a sign. This is because key addition,
as is almost universally the case for block ciphers, was done in Fn

2.

Lemma 6.4
Fix k ∈ Fn

2. Define F : Fn
2 → Fn

2 by F (x) = x + k. Then

corr(LS ◦ F , LT ) =

{
(−1)LS (k) if S = T

0 if S 6= T.

Another very useful result gives correlations through the
composition of two functions.

Proposition 6.5

Let F : Fn
2 → Fn

2 and G : Fn
2 → Fn

2 be functions. For
S ,T ⊆ {0, 1, . . . , n − 1},

corr(LS◦G◦F , LT ) =
∑

U⊆{0,1,...,n−1}

corr(LS◦G , LU) corr(LU◦F , LT ).
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Example 6.6

(1) Take G (x0, x1) = (x0, x0x1). The matrix of correlations, with
rows and columns labelled ∅, {0}, {1}, {0, 1} is

1 0 0 0
0 1 0 0
1
2

1
2

1
2 −1

2
1
2

1
2 −1

2
1
2

 .

(2) By Lemma 6.4, the matrix for (x0, x1) 7→ (x0 + 1, x1) is
diagonal, with entries 1,−1, 1, 1.

(3) Hence H(x0, x1) = (x0 + 1, x0x1 + x1) = (x0, x0x1) has
correlation matrix

1 0 0 0
0 1 0 0
1
2

1
2

1
2 −1

2
1
2

1
2 −1

2
1
2




1 · · ·
· 1 · ·
· · 1 ·
· · · 1

 =


1 0 0 0
0 −1 0 0
1
2 −1

2
1
2

1
2

1
2 −1

2 −1
2 −1

2

 .



Application of Proposition 6.5 to Q-block cipher
Let F : F3

2 → F3
2 be the S-box in the 3 bit version of the Q-block

cipher, so F
(
(x0, x1, x2)

)
= (x1, x2, x0 + x1x2). The matrix below

shows the correlations,

1 · · · · · · ·
· · 1 · · · · ·
· · · · 1 · · ·
· · · · · · 1 ·
· 1

2 · 1
2 · 1

2 · −1
2

· 1
2 · 1

2 · −1
2 · 1

2

· 1
2 · −1

2 · 1
2 · 1

2

· −1
2 · 1

2 · 1
2 · 1

2


using · for a 0 correlation, with subsets ordered

∅, {0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}.
For example the first four rows show that tapping in positions ∅,
{0}, {1}, or {0, 1} gives a linear function.
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2 → F3
2 be the S-box in the 3 bit version of the Q-block

cipher, so F
(
(x0, x1, x2)

)
= (x1, x2, x0 + x1x2). The matrix below

shows the correlations,

1 · · · · · · ·
· · 1 · · · · ·
· · · · 1 · · ·
· · · · · · 1 ·
· 1

2 · 1
2 · 1

2 · −1
2

· 1
2 · 1

2 · −1
2 · 1

2

· 1
2 · −1

2 · 1
2 · 1

2

· −1
2 · 1

2 · 1
2 · 1

2


using · for a 0 correlation, with subsets ordered

∅, {0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}.
By taking powers of this matrix we can compute correlations
through any power of F . In the lecture we will use Mathematica
to find the order of the (normal) four bit version of F .



Problem Sheet 8, Question 5

(5) Let P = C = F8
2. Consider the cryptosystem with keys

(k , k ′) ∈ F8
2 × F8

2 and encryption functions defined by

e(k,k ′)(x) = P(x + k) + k ′,

where P is the pseudo-inversion function from AES.

(a) Find e−1
(k,k ′)(z) for z ∈ F8

2.

(b) In a difference attack on this cryptosystem, the attacker takes
∆ = 1000 0000 corresponding to 1 ∈ F28 and chooses x ∈ F8

2.
She uses her black box to calculate z = e(k,k ′)(x) and
z∆ = e(k,k ′)(x∆), and finds Γ = z + z∆. Suppose that
Γ 6= 1000 0000. Show, using Lemma 10.8, that she can find
{k , k + ∆}.

(c) Find all possible keys (k, k ′) in terms of Γ.


