Plethysms: permutations, weights and Schur functions

Mark Wildon (joint work with Rowena Paget)

London Algebra Colloquium
City University, 1 December 2016

Outline

- §1 Motivation: Examples of plethysms
- §2 Main result: Minimal and maximal constituents of $s_{\nu} \circ s_{\mu}$
$\S 1$ Polynomial representations of GL(V)
Let V be a finite-dimensional \mathbb{C}-vector space.
- The natural representation of $\mathrm{GL}(V)$ is irreducible.
$\S 1$ Polynomial representations of GL(V)
Let V be a finite-dimensional \mathbb{C}-vector space.
- The natural representation of $\mathrm{GL}(V)$ is irreducible.
- $V \otimes V \cong \operatorname{Sym}^{2} V \oplus \wedge^{2} V$.
$\S 1$ Polynomial representations of GL(V)
Let V be a finite-dimensional \mathbb{C}-vector space.
- The natural representation of $\mathrm{GL}(V)$ is irreducible.
- $V \otimes V \cong \operatorname{Sym}^{2} V \oplus \wedge^{2} V$.
- $V^{\otimes 3} \cong \operatorname{Sym}^{3} V \oplus \wedge^{3} V \oplus \ldots$
$\S 1$ Polynomial representations of GL(V)
Let V be a finite-dimensional \mathbb{C}-vector space.
- The natural representation of $\mathrm{GL}(V)$ is irreducible.
- $V \otimes V \cong \operatorname{Sym}^{2} V \oplus \wedge^{2} V$.
- $V^{\otimes 3} \cong \operatorname{Sym}^{3} V \oplus \wedge^{3} V \oplus \ldots$
- $u=\left(v_{1} \wedge v_{2}\right) \otimes v_{1} \in \wedge^{2} V \otimes V$ is highest weight, weight $(2,1)$.

§1 Polynomial representations of GL(V)

Let V be a finite-dimensional \mathbb{C}-vector space.

- The natural representation of $\mathrm{GL}(V)$ is irreducible.
- $V \otimes V \cong \operatorname{Sym}^{2} V \oplus \wedge^{2} V$.
- $V^{\otimes 3} \cong \operatorname{Sym}^{3} V \oplus \wedge^{3} V \oplus \ldots$
- $u=\left(v_{1} \wedge v_{2}\right) \otimes v_{1} \in \wedge^{2} V \otimes V$ is highest weight, weight $(2,1)$.
- Why highest weight? Check u killed by Lie algebra action of $e \in \operatorname{gl}(V)$, defined by $e\left(v_{2}\right)=v_{1}, e\left(v_{i}\right)=0$ if $i \neq 2$:

$\S 1$ Polynomial representations of GL(V)

Let V be a finite-dimensional \mathbb{C}-vector space.

- The natural representation of $\mathrm{GL}(V)$ is irreducible.
- $V \otimes V \cong \operatorname{Sym}^{2} V \oplus \wedge^{2} V$.
- $V^{\otimes 3} \cong \operatorname{Sym}^{3} V \oplus \wedge^{3} V \oplus \ldots$
- $u=\left(v_{1} \wedge v_{2}\right) \otimes v_{1} \in \wedge^{2} V \otimes V$ is highest weight, weight $(2,1)$.
- Why highest weight? Check u killed by Lie algebra action of $e \in \operatorname{gl}(V)$, defined by $e\left(v_{2}\right)=v_{1}, e\left(v_{i}\right)=0$ if $i \neq 2$:

$$
\begin{aligned}
e u & =\left(e v_{1} \wedge v_{2}\right) \otimes v_{1}+\left(v_{1} \wedge e v_{2}\right) \otimes v_{1}+\left(v_{1} \wedge v_{2}\right) \otimes e v_{1} \\
& =0+0+0
\end{aligned}
$$

$\S 1$ Polynomial representations of GL(V)

Let V be a finite-dimensional \mathbb{C}-vector space.

- The natural representation of $\mathrm{GL}(V)$ is irreducible.
- $V \otimes V \cong \operatorname{Sym}^{2} V \oplus \wedge^{2} V$.
- $V^{\otimes 3} \cong \operatorname{Sym}^{3} V \oplus \wedge^{3} V \oplus \ldots$
- $u=\left(v_{1} \wedge v_{2}\right) \otimes v_{1} \in \wedge^{2} V \otimes V$ is highest weight, weight $(2,1)$.
- Why highest weight? Check u killed by Lie algebra action of $e \in \operatorname{gl}(V)$, defined by $e\left(v_{2}\right)=v_{1}, e\left(v_{i}\right)=0$ if $i \neq 2$:

$$
\begin{aligned}
e u & =\left(e v_{1} \wedge v_{2}\right) \otimes v_{1}+\left(v_{1} \wedge e v_{2}\right) \otimes v_{1}+\left(v_{1} \wedge v_{2}\right) \otimes e v_{1} \\
& =0+0+0 .
\end{aligned}
$$

- Two isomorphic complementary submodules are generated by $\left(v_{1} \otimes v_{2}-v_{2} \otimes v_{1}\right) \otimes v_{1}$ and $v_{1} \otimes\left(v_{1} \otimes v_{2}-v_{2} \otimes v_{1}\right)$,

$\S 1$ Polynomial representations of GL(V)

Let V be a finite-dimensional \mathbb{C}-vector space.

- The natural representation of $\mathrm{GL}(V)$ is irreducible.
- $V \otimes V \cong \operatorname{Sym}^{2} V \oplus \wedge^{2} V$.
- $V^{\otimes 3} \cong \operatorname{Sym}^{3} V \oplus \wedge^{3} V \oplus \Delta^{(2,1)} V \oplus \Delta^{(2,1)} V$
- $u=\left(v_{1} \wedge v_{2}\right) \otimes v_{1} \in \wedge^{2} V \otimes V$ is highest weight, weight $(2,1)$.
- Why highest weight? Check u killed by Lie algebra action of $e \in \operatorname{gl}(V)$, defined by $e\left(v_{2}\right)=v_{1}, e\left(v_{i}\right)=0$ if $i \neq 2$:

$$
\begin{aligned}
e u & =\left(e v_{1} \wedge v_{2}\right) \otimes v_{1}+\left(v_{1} \wedge e v_{2}\right) \otimes v_{1}+\left(v_{1} \wedge v_{2}\right) \otimes e v_{1} \\
& =0+0+0 .
\end{aligned}
$$

- Two isomorphic complementary submodules are generated by $\left(v_{1} \otimes v_{2}-v_{2} \otimes v_{1}\right) \otimes v_{1}$ and $v_{1} \otimes\left(v_{1} \otimes v_{2}-v_{2} \otimes v_{1}\right)$,

$\S 1$ Polynomial representations of GL(V)

Let V be a finite-dimensional \mathbb{C}-vector space.

- The natural representation of $\mathrm{GL}(V)$ is irreducible.
- $V \otimes V \cong \operatorname{Sym}^{2} V \oplus \wedge^{2} V$.
- $V^{\otimes 3} \cong \operatorname{Sym}^{3} V \oplus \wedge^{3} V \oplus \Delta^{(2,1)} V \oplus \Delta^{(2,1)} V$
- $u=\left(v_{1} \wedge v_{2}\right) \otimes v_{1} \in \wedge^{2} V \otimes V$ is highest weight, weight $(2,1)$.
- Why highest weight? Check u killed by Lie algebra action of $e \in \operatorname{gl}(V)$, defined by $e\left(v_{2}\right)=v_{1}, e\left(v_{i}\right)=0$ if $i \neq 2$:

$$
\begin{aligned}
e u & =\left(e v_{1} \wedge v_{2}\right) \otimes v_{1}+\left(v_{1} \wedge e v_{2}\right) \otimes v_{1}+\left(v_{1} \wedge v_{2}\right) \otimes e v_{1} \\
& =0+0+0
\end{aligned}
$$

- Two isomorphic complementary submodules are generated by $\left(v_{1} \otimes v_{2}-v_{2} \otimes v_{1}\right) \otimes v_{1}$ and $v_{1} \otimes\left(v_{1} \otimes v_{2}-v_{2} \otimes v_{1}\right)$,
Generally

$$
V^{\otimes r} \cong \bigoplus_{\lambda \in \operatorname{Par}(r)}\left(\Delta^{\lambda} V\right)^{\oplus d_{\lambda}}
$$

where $\Delta^{\lambda} V$ is the unique irreducible representation of $\mathrm{GL}(V)$ of highest weight λ.

$\S 1$ Polynomial representations of GL(V)

Let V be a finite-dimensional \mathbb{C}-vector space.

- The natural representation of $\mathrm{GL}(V)$ is irreducible.
- $V \otimes V \cong \operatorname{Sym}^{2} V \oplus \wedge^{2} V$.
- $V^{\otimes 3} \cong \operatorname{Sym}^{3} V \oplus \wedge^{3} V \oplus \Delta^{(2,1)} V \oplus \Delta^{(2,1)} V$
- $u=\left(v_{1} \wedge v_{2}\right) \otimes v_{1} \in \wedge^{2} V \otimes V$ is highest weight, weight $(2,1)$.
- Why highest weight? Check u killed by Lie algebra action of $e \in \operatorname{gl}(V)$, defined by $e\left(v_{2}\right)=v_{1}, e\left(v_{i}\right)=0$ if $i \neq 2$:

$$
\begin{aligned}
e u & =\left(e v_{1} \wedge v_{2}\right) \otimes v_{1}+\left(v_{1} \wedge e v_{2}\right) \otimes v_{1}+\left(v_{1} \wedge v_{2}\right) \otimes e v_{1} \\
& =0+0+0 .
\end{aligned}
$$

- Two isomorphic complementary submodules are generated by $\left(v_{1} \otimes v_{2}-v_{2} \otimes v_{1}\right) \otimes v_{1}$ and $v_{1} \otimes\left(v_{1} \otimes v_{2}-v_{2} \otimes v_{1}\right)$,
Generally

$$
V^{\otimes r} \cong \bigoplus_{\lambda \in \operatorname{Par}(r)}\left(\Delta^{\lambda} V\right)^{\oplus d_{\lambda}}
$$

where $\Delta^{\lambda} V$ is the unique irreducible representation of $\mathrm{GL}(V)$ of highest weight λ. For instance $\operatorname{Sym}^{n} V=\Delta^{(n)} V, \wedge^{n} V=\Delta^{\left(1^{n}\right)} V$.

Plethysm: Composing polynomial representations

Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \rightarrow \operatorname{Sym}^{4} V:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\Delta^{(2,2)} V$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is highest weight, of weight $(2,2)$.

Plethysm: Composing polynomial representations

Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \rightarrow \operatorname{Sym}^{4} V:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\Delta^{(2,2)} V$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V$.

Plethysm: Composing polynomial representations

Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \rightarrow \operatorname{Sym}^{4} V:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\Delta^{(2,2)} V$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V$.
- Take $\operatorname{dim} V=2$. Geometrically:

Plethysm: Composing polynomial representations

Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \rightarrow \operatorname{Sym}^{4} V:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\Delta^{(2,2)} V$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V$.
- Take $\operatorname{dim} V=2$. Geometrically:
- $\operatorname{Sym}^{2} V=\left\langle v_{1} v_{1}, 2 v_{1} v_{2}, v_{2} v_{2}\right\rangle_{\mathbb{C}}$

Plethysm: Composing polynomial representations

Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \rightarrow \operatorname{Sym}^{4} V:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\Delta^{(2,2)} V$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V$.
- Take $\operatorname{dim} V=2$. Geometrically:
- $\operatorname{Sym}^{2} V=\left\langle v_{1} v_{1}, 2 v_{1} v_{2}, v_{2} v_{2}\right\rangle_{\mathrm{C}}$
- $\mathcal{O}\left(\operatorname{Sym}^{2} V\right)=\mathbb{C}\left[Y_{11}, Y_{12}, Y_{22}\right]$

Plethysm: Composing polynomial representations

Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \rightarrow \operatorname{Sym}^{4} V:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\Delta^{(2,2)} V$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V$.
- Take $\operatorname{dim} V=2$. Geometrically:
- $\operatorname{Sym}^{2} V=\left\langle v_{1} v_{1}, 2 v_{1} v_{2}, v_{2} v_{2}\right\rangle_{\mathbb{C}}$
- $\mathcal{O}\left(\operatorname{Sym}^{2} V\right)=\mathbb{C}\left[Y_{11}, Y_{12}, Y_{22}\right]$
- let \mathcal{C} be the image of the squaring map $V \hookrightarrow \operatorname{Sym}^{2} V$,

$$
\alpha v_{1}+\beta v_{2} \mapsto \alpha^{2} v_{1} v_{1}+2 \alpha \beta v_{1} v_{2}+\beta^{2} v_{2} v_{2}
$$

Plethysm: Composing polynomial representations

Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \rightarrow \operatorname{Sym}^{4} V:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\Delta^{(2,2)} V$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V$.
- Take $\operatorname{dim} V=2$. Geometrically:
- $\operatorname{Sym}^{2} V=\left\langle v_{1} v_{1}, 2 v_{1} v_{2}, v_{2} v_{2}\right\rangle_{\mathrm{C}}$
- $\mathcal{O}\left(\operatorname{Sym}^{2} V\right)=\mathbb{C}\left[Y_{11}, Y_{12}, Y_{22}\right]$
- let \mathcal{C} be the image of the squaring map $V \hookrightarrow \operatorname{Sym}^{2} V$,

$$
\alpha v_{1}+\beta v_{2} \mapsto \alpha^{2} v_{1} v_{1}+2 \alpha \beta v_{1} v_{2}+\beta^{2} v_{2} v_{2}
$$

- $\mathcal{C}=\operatorname{Zeros}\left(Y_{11} Y_{22}-Y_{12}^{2}\right)$; the $G L(V)$-submodule of $\mathcal{O}\left(\operatorname{Sym}^{2} V\right)$ generated by $Y_{11} Y_{22}-Y_{12}^{2}$ is $\Delta^{(2,2)} V$.

Plethysm: Composing polynomial representations

Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \rightarrow \operatorname{Sym}^{4} V:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\Delta^{(2,2)} V$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V$.
- Take $\operatorname{dim} V=2$. Geometrically:
- $\operatorname{Sym}^{2} V=\left\langle v_{1} v_{1}, 2 v_{1} v_{2}, v_{2} v_{2}\right\rangle_{\mathbb{C}}$
- $\mathcal{O}\left(\operatorname{Sym}^{2} V\right)=\mathbb{C}\left[Y_{11}, Y_{12}, Y_{22}\right]$
- let \mathcal{C} be the image of the squaring map $V \hookrightarrow \operatorname{Sym}^{2} V$,

$$
\alpha v_{1}+\beta v_{2} \mapsto \alpha^{2} v_{1} v_{1}+2 \alpha \beta v_{1} v_{2}+\beta^{2} v_{2} v_{2}
$$

- $\mathcal{C}=\operatorname{Zeros}\left(Y_{11} Y_{22}-Y_{12}^{2}\right)$; the $G L(V)$-submodule of $\mathcal{O}\left(\operatorname{Sym}^{2} V\right)$ generated by $Y_{11} Y_{22}-Y_{12}^{2}$ is $\Delta^{(2,2)} V$.
Next step up: $f \in \operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} V\right)=\mathcal{O}\left(\operatorname{Sym}^{2} V\right)_{4}$ may
- Vanish doubly on $\mathcal{C}:\left(Y_{11} Y_{22}-Y_{12}^{2}\right)^{2}$
- Vanish singly on $\mathcal{C}: Y_{11}^{2}\left(Y_{11} Y_{22}-Y_{12}^{2}\right)$

Plethysm: Composing polynomial representations

Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \rightarrow \operatorname{Sym}^{4} V:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\Delta^{(2,2)} V$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V$.
- Take $\operatorname{dim} V=2$. Geometrically:
- $\operatorname{Sym}^{2} V=\left\langle v_{1} v_{1}, 2 v_{1} v_{2}, v_{2} v_{2}\right\rangle_{\mathbb{C}}$
- $\mathcal{O}\left(\operatorname{Sym}^{2} V\right)=\mathbb{C}\left[Y_{11}, Y_{12}, Y_{22}\right]$
- let \mathcal{C} be the image of the squaring map $V \hookrightarrow \operatorname{Sym}^{2} V$,

$$
\alpha v_{1}+\beta v_{2} \mapsto \alpha^{2} v_{1} v_{1}+2 \alpha \beta v_{1} v_{2}+\beta^{2} v_{2} v_{2}
$$

- $\mathcal{C}=\operatorname{Zeros}\left(Y_{11} Y_{22}-Y_{12}^{2}\right)$; the GL($\left.V\right)$-submodule of $\mathcal{O}\left(\operatorname{Sym}^{2} V\right)$ generated by $Y_{11} Y_{22}-Y_{12}^{2}$ is $\Delta^{(2,2)} V$.
Next step up: $f \in \operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} V\right)=\mathcal{O}\left(\operatorname{Sym}^{2} V\right)_{4}$ may
- Vanish doubly on $\mathcal{C}:\left(Y_{11} Y_{22}-Y_{12}^{2}\right)^{2}$
- Vanish singly on $\mathcal{C}: Y_{11}^{2}\left(Y_{11} Y_{22}-Y_{12}^{2}\right)$
- Such functions are in kernel of $\operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} V\right) \rightarrow \operatorname{Sym}^{8} V$, so

$$
\operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} V\right) \cong \Delta^{(4,4)} V \oplus \Delta^{(6,2)} V \oplus \Delta^{(8)} V
$$

Plethysm: Symmetric groups and wreath products
Take $\operatorname{dim} V \geq$. So $S_{4} \leq \operatorname{GL}(V):(13) \mapsto\left(\begin{array}{cccc}. & \cdot & 1 & \cdot \\ . & 1 & \cdot & \cdot \\ 1 & \cdot & . & . \\ . & \cdot & . & 1\end{array}\right)$.

Plethysm: Symmetric groups and wreath products

Take $\operatorname{dim} V \geq 4$. So $S_{4} \leq \operatorname{GL}(V):(1234) \mapsto\left(\begin{array}{cccc}. & . & . & 1 \\ 1 & . & . & . \\ . & 1 & . & . \\ . & \cdot & 1 & .\end{array}\right)$.

- Weight space $(1,1,1,1)$ inside $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right)$ is

$$
\left\langle\left(v_{1} v_{2}\right)\left(v_{3} v_{4}\right),\left(v_{1} v_{3}\right)\left(v_{2} v_{4}\right),\left(v_{1} v_{4}\right)\left(v_{2} v_{3}\right)\right\rangle .
$$

Plethysm: Symmetric groups and wreath products

Take $\operatorname{dim} V \geq 4$. So $S_{4} \leq \operatorname{GL}(V):(1234) \mapsto\left(\begin{array}{cccc}. & . & . & 1 \\ 1 & . & . & . \\ . & 1 & . & . \\ . & \cdot & 1 & .\end{array}\right)$.

- Weight space $(1,1,1,1)$ inside $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right)$ is

$$
\left\langle\left(v_{1} v_{2}\right)\left(v_{3} v_{4}\right),\left(v_{1} v_{3}\right)\left(v_{2} v_{4}\right),\left(v_{1} v_{4}\right)\left(v_{2} v_{3}\right)\right\rangle .
$$

- Identify $\left(v_{1} v_{2}\right)\left(v_{3} v_{4}\right)$ with the set partition $\{\{1,2\},\{3,4\}\}$.

Plethysm: Symmetric groups and wreath products

Take $\operatorname{dim} V \geq 4$. So $S_{4} \leq \operatorname{GL}(V):(1234) \mapsto\left(\begin{array}{cccc}. & . & . & 1 \\ 1 & . & . & . \\ . & 1 & . & . \\ . & \cdot & 1 & .\end{array}\right)$.

- Weight space $(1,1,1,1)$ inside $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right)$ is

$$
\left\langle\left(v_{1} v_{2}\right)\left(v_{3} v_{4}\right),\left(v_{1} v_{3}\right)\left(v_{2} v_{4}\right),\left(v_{1} v_{4}\right)\left(v_{2} v_{3}\right)\right\rangle .
$$

- Identify $\left(v_{1} v_{2}\right)\left(v_{3} v_{4}\right)$ with the set partition $\{\{1,2\},\{3,4\}\}$.
- Stabiliser S_{2} 乙 $S_{2}=\left(S_{2} \times S_{2}\right) \rtimes S_{2}=\langle(12),(34)\rangle \rtimes\langle(13)(24)\rangle$.

Plethysm: Symmetric groups and wreath products

Take $\operatorname{dim} V \geq 4$. So $S_{4} \leq \operatorname{GL}(V):(1234) \mapsto\left(\begin{array}{cccc}. & . & . & 1 \\ 1 & . & . & . \\ \cdot & 1 & . & . \\ . & \cdot & 1 & .\end{array}\right)$.

- Weight space $(1,1,1,1)$ inside $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right)$ is

$$
\left\langle\left(v_{1} v_{2}\right)\left(v_{3} v_{4}\right),\left(v_{1} v_{3}\right)\left(v_{2} v_{4}\right),\left(v_{1} v_{4}\right)\left(v_{2} v_{3}\right)\right\rangle .
$$

- Identify $\left(v_{1} v_{2}\right)\left(v_{3} v_{4}\right)$ with the set partition $\{\{1,2\},\{3,4\}\}$.
- Stabiliser $S_{2}\left\langle S_{2}=\left(S_{2} \times S_{2}\right) \rtimes S_{2}=\langle(12),(34)\rangle \rtimes\langle(13)(24)\rangle\right.$.

- Weight space is permutation module $\mathbb{C} \uparrow_{S_{2} S_{2}}^{S_{4}}$

Plethysm: Symmetric groups and wreath products

Take $\operatorname{dim} V \geq 4$. So $S_{4} \leq \operatorname{GL}(V):(1234) \mapsto\left(\begin{array}{cccc}. & . & . & 1 \\ 1 & . & . & . \\ \cdot & 1 & . & . \\ . & \cdot & 1 & .\end{array}\right)$.

- Weight space $(1,1,1,1)$ inside $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right)$ is

$$
\left\langle\left(v_{1} v_{2}\right)\left(v_{3} v_{4}\right),\left(v_{1} v_{3}\right)\left(v_{2} v_{4}\right),\left(v_{1} v_{4}\right)\left(v_{2} v_{3}\right)\right\rangle .
$$

- Identify $\left(v_{1} v_{2}\right)\left(v_{3} v_{4}\right)$ with the set partition $\{\{1,2\},\{3,4\}\}$.
- Stabiliser S_{2} ২ $S_{2}=\left(S_{2} \times S_{2}\right) \rtimes S_{2}=\langle(12),(34)\rangle \rtimes\langle(13)(24)\rangle$.

- Weight space is permutation module $\mathbb{C} \uparrow \begin{aligned} & S_{4} \\ & S_{2} 2 S_{2}\end{aligned}$
- Character $\chi^{(2,2)}+\chi^{(4)}$, corresponding to $\Delta^{(2,2)} \oplus \Delta^{(4)}$.

Imprimitivity is surprisingly primitive!

Let $f(X) \in \mathbb{Q}[X]$ be irreducible with roots $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{C}$.

- Then $\operatorname{Gal}(f)$ acts on $K=\mathbb{Q}\left[\alpha_{1}, \ldots, \alpha_{d}\right]$, permuting the roots $\alpha_{1}, \ldots, \alpha_{d}$ transitively.

Imprimitivity is surprisingly primitive!

Let $f(X) \in \mathbb{Q}[X]$ be irreducible with roots $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{C}$.

- Then $\operatorname{Gal}(f)$ acts on $K=\mathbb{Q}\left[\alpha_{1}, \ldots, \alpha_{d}\right]$, permuting the roots $\alpha_{1}, \ldots, \alpha_{d}$ transitively.
- Let $L=\mathbb{Q}\left[\sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{d}}\right]$. Then $\operatorname{Gal}(L / K) \leq C_{2} \times \cdots \times C_{2}$ and

Imprimitivity is surprisingly primitive!

Let $f(X) \in \mathbb{Q}[X]$ be irreducible with roots $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{C}$.

- Then $\operatorname{Gal}(f)$ acts on $K=\mathbb{Q}\left[\alpha_{1}, \ldots, \alpha_{d}\right]$, permuting the roots $\alpha_{1}, \ldots, \alpha_{d}$ transitively.
- Let $L=\mathbb{Q}\left[\sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{d}}\right]$. Then $\operatorname{Gal}(L / K) \leq C_{2} \times \cdots \times C_{2}$ and $\ldots \operatorname{Gal}(L / \mathbb{Q}) \leq C_{2} \imath \operatorname{Gal}(K / \mathbb{Q})$.

Imprimitivity is surprisingly primitive!

Let $f(X) \in \mathbb{Q}[X]$ be irreducible with roots $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{C}$.

- Then $\operatorname{Gal}(f)$ acts on $K=\mathbb{Q}\left[\alpha_{1}, \ldots, \alpha_{d}\right]$, permuting the roots $\alpha_{1}, \ldots, \alpha_{d}$ transitively.
- Let $L=\mathbb{Q}\left[\sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{d}}\right]$. Then $\operatorname{Gal}(L / K) \leq C_{2} \times \cdots \times C_{2}$ and $\ldots \operatorname{Gal}(L / \mathbb{Q}) \leq C_{2} 2 \operatorname{Gal}(K / \mathbb{Q})$.
For example, $X^{3}-12 X-4=(X-\alpha)(X-\beta)(X-\gamma)$ has Galois group $S_{\{\alpha, \beta, \gamma\}}$. Since $\alpha \beta \gamma=4 \in \mathbb{Q}^{\times 2}, \operatorname{Gal}\left(X^{6}-12 X^{2}-4\right)$ is a proper subgroup of C_{2} \{ S_{3} :

$$
\begin{gathered}
\operatorname{Gal}(L / \mathbb{Q})=\left\langle\begin{array}{c}
(\sqrt{\alpha},-\sqrt{\alpha})(\sqrt{\beta},-\sqrt{\beta} \\
(\sqrt{\beta},-\sqrt{\beta})(\sqrt{\gamma},-\sqrt{\gamma})
\end{array}\right\rangle \rtimes \underset{\left.\left.\begin{array}{c}
(\sqrt{\alpha}, \sqrt{\beta})(-\sqrt{\alpha},-\sqrt{\beta}) \\
(\sqrt{\alpha}, \sqrt{\beta}, \sqrt{\gamma})(-\sqrt{\alpha},-\sqrt{\beta},-\sqrt{\gamma})
\end{array}\right\rangle \leq C_{2}\right\} S_{3}}{\mid} \begin{array}{c}
\mid \\
\operatorname{Gal}(L / K)=\left\langle\begin{array}{c}
(\sqrt{\alpha},-\sqrt{\alpha})(\sqrt{\beta},-\sqrt{\beta} \\
(\sqrt{\beta},-\sqrt{\beta})(\sqrt{\gamma},-\sqrt{\gamma})
\end{array}\right\rangle \\
1
\end{array}
\end{gathered}
$$

Foulkes' Conjecture

Let $\Omega^{\left(m^{n}\right)}$ be the set of all set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.
Conjecture (Foulkes)
If $m \leq n$ then there is an injective map of $S_{m n}$-representations $\left\langle\Omega^{\left(n^{m}\right)}\right\rangle_{\mathbb{C}} \rightarrow\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$.

Foulkes' Conjecture

Let $\Omega^{\left(m^{n}\right)}$ be the set of all set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.
Conjecture (Foulkes)
If $m \leq n$ then there is an injective map of $S_{m n}$-representations $\left\langle\Omega^{\left(n^{m}\right)}\right\rangle_{\mathbb{C}} \rightarrow\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$.
Equivalently, there is an injective map of $\mathrm{GL}(V)$-representations

$$
\operatorname{Sym}^{m}\left(\operatorname{Sym}^{n} V\right) \rightarrow \operatorname{Sym}^{n}\left(\operatorname{Sym}^{m} V\right) .
$$

Foulkes' Conjecture

Let $\Omega^{\left(m^{n}\right)}$ be the set of all set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.
Conjecture (Foulkes)
If $m \leq n$ then there is an injective map of $S_{m n}$-representations $\left\langle\Omega^{\left(n^{m}\right)}\right\rangle_{\mathbb{C}} \rightarrow\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$.
Equivalently, if $\phi^{\left(m^{n}\right)}$ is the character of $\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$, then $\left\langle\phi^{\left(n^{m}\right)}, \chi^{\lambda}\right\rangle \leq\left\langle\phi^{\left(m^{n}\right)}, \chi^{\lambda}\right\rangle$ for all $\lambda \in \operatorname{Par}(m n)$.

Foulkes' Conjecture

Let $\Omega^{\left(m^{n}\right)}$ be the set of all set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.
Conjecture (Foulkes)
If $m \leq n$ then there is an injective map of $S_{m n}$-representations $\left\langle\Omega^{\left(n^{m}\right)}\right\rangle_{\mathbb{C}} \rightarrow\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$.
Equivalently, if $\phi^{\left(m^{n}\right)}$ is the character of $\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$, then $\left\langle\phi^{\left(n^{m}\right)}, \chi^{\lambda}\right\rangle \leq\left\langle\phi^{\left(m^{n}\right)}, \chi^{\lambda}\right\rangle$ for all $\lambda \in \operatorname{Par}(m n)$.

$$
\begin{aligned}
& \phi^{\left(n^{2}\right)}=\chi^{(2 n)}+\chi^{(2 n-2,2)}+\chi^{(2 n-4,4)}+\cdots \\
& \phi^{\left(2^{n}\right)}=\sum_{\lambda \in \operatorname{Par}(n)} \chi^{2 \lambda}
\end{aligned}
$$

- Hence FC holds when $m=2$.

Foulkes' Conjecture

Let $\Omega^{\left(m^{n}\right)}$ be the set of all set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.
Conjecture (Foulkes)
If $m \leq n$ then there is an injective map of $S_{m n}$-representations $\left\langle\Omega^{\left(n^{m}\right)}\right\rangle_{\mathbb{C}} \rightarrow\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$.
Equivalently, if $\phi^{\left(m^{n}\right)}$ is the character of $\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$, then $\left\langle\phi^{\left(n^{m}\right)}, \chi^{\lambda}\right\rangle \leq\left\langle\phi^{\left(m^{n}\right)}, \chi^{\lambda}\right\rangle$ for all $\lambda \in \operatorname{Par}(m n)$.

$$
\begin{aligned}
& \phi^{\left(n^{2}\right)}=\chi^{(2 n)}+\chi^{(2 n-2,2)}+\chi^{(2 n-4,4)}+\cdots \\
& \phi^{\left(2^{n}\right)}=\sum_{\lambda \in \operatorname{Par}(n)} \chi^{2 \lambda}
\end{aligned}
$$

- Hence FC holds when $m=2$.
- These are the only multiplicity-free Foulkes characters for $m n \geq 18$ (Saxl, 1980).

Foulkes' Conjecture

Let $\Omega^{\left(m^{n}\right)}$ be the set of all set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.
Conjecture (Foulkes)
If $m \leq n$ then there is an injective map of $S_{m n}$-representations $\left\langle\Omega^{\left(n^{m}\right)}\right\rangle_{\mathbb{C}} \rightarrow\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$.
Equivalently, if $\phi^{\left(m^{n}\right)}$ is the character of $\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$, then $\left\langle\phi^{\left(n^{m}\right)}, \chi^{\lambda}\right\rangle \leq\left\langle\phi^{\left(m^{n}\right)}, \chi^{\lambda}\right\rangle$ for all $\lambda \in \operatorname{Par}(m n)$.

$$
\begin{aligned}
& \phi^{\left(n^{2}\right)}=\chi^{(2 n)}+\chi^{(2 n-2,2)}+\chi^{(2 n-4,4)}+\cdots \\
& \phi^{\left(2^{n}\right)}=\sum_{\lambda \in \operatorname{Par}(n)} \chi^{2 \lambda}
\end{aligned}
$$

- Hence FC holds when $m=2$.
- These are the only multiplicity-free Foulkes characters for $m n \geq 18$ (Saxl, 1980).

Decomposition Numbers

- Giannelli, MW 2014: results on decomposition numbers of symmetric groups obtained from local structure of $\left\langle\Omega^{\left(2^{n}\right)}\right\rangle$ over fields of prime characteristic.

$$
(1,2,3,4) \mapsto\left(\begin{array}{cccc}
v_{1} & v_{2} & v_{3} & v_{4} \\
\cdot & \cdot & \cdot & 1 \\
1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot
\end{array}\right)
$$

Decomposition Numbers

- Giannelli, MW 2014: results on decomposition numbers of symmetric groups obtained from local structure of $\left\langle\Omega^{\left(2^{n}\right)}\right\rangle$ over fields of prime characteristic.
$(1,4,3) \mapsto\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \\ 1 & \cdot & \cdot & \cdot\end{array}\right)$

Decomposition Numbers

- Giannelli, MW 2014: results on decomposition numbers of symmetric groups obtained from local structure of $\left\langle\Omega^{\left(2^{n}\right)}\right\rangle$ over fields of prime characteristic.

$$
(1,2)(3,4) \mapsto\left(\begin{array}{cccc}
v_{1} & v_{2} & v_{3} & v_{4} \\
\cdot & 1 & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot
\end{array}\right)
$$

Decomposition Numbers

- Giannelli, MW 2014: results on decomposition numbers of symmetric groups obtained from local structure of $\left\langle\Omega^{\left(2^{n}\right)}\right\rangle$ over fields of prime characteristic.
$(1,2)(3,4) \mapsto\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & 1 & \cdot\end{array}\right)$

In the new basis

$$
\begin{aligned}
& w_{1}=v_{1}+v_{2}+v_{3}+v_{4} \\
& w_{2}=v_{2}-v_{1} \\
& w_{3}=v_{3}-v_{1} \\
& w_{4}=v_{4}-v_{1}
\end{aligned}
$$

Decomposition Numbers

- Giannelli, MW 2014: results on decomposition numbers of symmetric groups obtained from local structure of $\left\langle\Omega^{\left(2^{n}\right)}\right\rangle$ over fields of prime characteristic.
$(1,2)(3,4) \mapsto\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & 1 & \cdot\end{array}\right)$

$$
\mapsto\left(\begin{array}{cccc}
w_{1} & w_{2} & w_{3} & w_{4} \\
1 & \cdot & \cdot & \cdot \\
\cdot & -1 & -1 & -1 \\
\cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot
\end{array}\right)
$$

In the new basis

$$
\begin{aligned}
& w_{1}=v_{1}+v_{2}+v_{3}+v_{4} \\
& w_{2}=v_{2}-v_{1} \\
& w_{3}=v_{3}-v_{1} \\
& w_{4}=v_{4}-v_{1}
\end{aligned}
$$

Decomposition Numbers

- Giannelli, MW 2014: results on decomposition numbers of symmetric groups obtained from local structure of $\left\langle\Omega^{\left(2^{n}\right)}\right\rangle$ over fields of prime characteristic.
$(1,2,3,4) \mapsto\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & 1 & \cdot\end{array}\right) \quad \mapsto\left(\begin{array}{cccc}w_{1} & w_{2} & w_{3} & w_{4} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & -1 & -1 & -1 \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot\end{array}\right)$
In the new basis

$$
\begin{aligned}
& w_{1}=v_{1}+v_{2}+v_{3}+v_{4} \\
& w_{2}=v_{2}-v_{1} \\
& w_{3}=v_{3}-v_{1} \\
& w_{4}=v_{4}-v_{1}
\end{aligned}
$$

Decomposition Numbers

- Giannelli, MW 2014: results on decomposition numbers of symmetric groups obtained from local structure of $\left\langle\Omega^{\left(2^{n}\right)}\right\rangle$ over fields of prime characteristic.

$$
(1,2)(3,4) \mapsto\left(\begin{array}{ccc}
w_{2} & w_{3} & w_{4} \\
-1 & -1 & -1 \\
\cdot & \cdot & 1 \\
\cdot & 1 & \cdot
\end{array}\right) \quad \mapsto\left(\begin{array}{ccc}
z & w_{3} & w_{4} \\
1 & 1 & 1 \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right)
$$

In the rational basis

$$
\begin{aligned}
& w_{2}=v_{2}-v_{1} \\
& w_{3}=v_{3}-v_{1} \\
& w_{4}=v_{4}-v_{1}
\end{aligned}
$$

In the \mathbb{F}_{2}-basis

$$
\begin{aligned}
& z=v_{1}+v_{2}+v_{3}+v_{4} \\
& w_{3}=v_{3}-v_{1} \\
& w_{4}=v_{4}-v_{1}
\end{aligned}
$$

Decomposition Numbers

- Giannelli, MW 2014: results on decomposition numbers of symmetric groups obtained from local structure of $\left\langle\Omega^{\left(2^{n}\right)}\right\rangle$ over fields of prime characteristic.

$$
(1,2,3,4) \mapsto\left(\begin{array}{ccc}
w_{2} & w_{3} & w_{4} \\
-1 & -1 & -1 \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right) \quad \mapsto\left(\begin{array}{ccc}
z & w_{3} & w_{4} \\
1 & 1 & 1 \\
\cdot & 1 & 1 \\
\cdot & \cdot & 1
\end{array}\right)
$$

In the rational basis

$$
\begin{aligned}
& w_{2}=v_{2}-v_{1} \\
& w_{3}=v_{3}-v_{1} \\
& w_{4}=v_{4}-v_{1}
\end{aligned}
$$

In the \mathbb{F}_{2}-basis

$$
\begin{aligned}
& z=v_{1}+v_{2}+v_{3}+v_{4} \\
& w_{3}=v_{3}-v_{1} \\
& w_{4}=v_{4}-v_{1}
\end{aligned}
$$

Decomposition Numbers

- Giannelli, MW 2014: results on decomposition numbers of symmetric groups obtained from local structure of $\left\langle\Omega^{\left(2^{n}\right)}\right\rangle$ over fields of prime characteristic.
$(1,2,3,4) \mapsto\left(\begin{array}{ccc}w_{2} & w_{3} & w_{4} \\ -1 & -1 & -1 \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot\end{array}\right) \quad \mapsto\left(\begin{array}{ccc}z & w_{3} & w_{4} \\ 1 & 1 & 1 \\ \cdot & 1 & 1 \\ \cdot & \cdot & 1\end{array}\right)$

In the rational basis

$$
\begin{aligned}
& w_{2}=v_{2}-v_{1} \\
& w_{3}=v_{3}-v_{1} \\
& w_{4}=v_{4}-v_{1}
\end{aligned}
$$

In the \mathbb{F}_{2}-basis

$$
\begin{aligned}
& z=v_{1}+v_{2}+v_{3}+v_{4} \\
& w_{3}=v_{3}-v_{1} \\
& w_{4}=v_{4}-v_{1}
\end{aligned}
$$

Hence $S_{\mathbb{F}_{2}}^{(3,1)}$ has a trivial submodule.
The quotient is a 2 -dimensional simple $\mathbb{F}_{2} S_{4}$-module

Decomposition matrix of $\mathbb{F}_{3} S_{6}$

$$
\begin{aligned}
& \text { (6) } 1 \\
& (5,1) \quad 1 \quad 1 \\
& (4,2) \text {. } 1 \\
& (3,3) \cdot 1 \text {. } 1 \\
& (4,1,1) \quad . \quad 1 \quad . \quad 1 \\
& (3,2,1) \quad 1 \quad 1 \quad . \quad 1 \quad 1 \quad 1 \\
& (2,2,1,1) \text {. } 1 \\
& (2,2,2) \quad 1 \quad \text {. . . } 1 \\
& (3,1,1,1) \text {. . . } 11 \\
& (2,1,1,1,1) \cdot \text {. } 1 \text {. } 1 \text {. } \\
& (1,1,1,1,1,1) \cdot \text {. } 1
\end{aligned}
$$

Decomposition matrix of $\mathbb{F}_{3} S_{6}$: two-row partitions

$$
\begin{aligned}
& \text { (6) } 1 \\
& (\mathbf{5}, \mathbf{1}) \quad 1 \quad 1 \\
& (4,2) \cdot 1 \\
& (3,3) \cdot 1 \quad 1 \\
& (4,1,1) \cdot 1 \text {. } 1 \\
& (3,2,1) \quad 1 \quad 1 \quad \cdot \quad 1 \quad 1 \quad 1 \\
& (2,2,1,1) \text {. } 1 \\
& (2,2,2) \quad 1 \quad . \quad . \quad . \quad 1 \text {. } \\
& (3,1,1,1) \cdot \text {. . } 1 \text {. } \\
& (2,1,1,1,1) \cdot \text {. } 1 \text {. } 1 \text {. } \\
& (1,1,1,1,1,1)
\end{aligned}
$$

General form of the two-row decomposition matrix

Decomposition matrix of $\mathbb{F}_{3} S_{6}$: separated into blocks

Decomposition matrix of $\mathbb{F}_{2} S_{10}$: separated into blocks

Decomposition Numbers: 3-block of S_{12} with core $(3,1,1)$

Decomposition Numbers: 3-block of S_{12} with core $(3,1,1)$

Decomposition Numbers: 3 -block of S_{12} with core $(3,1,1)$

Decomposition Numbers: 3-block of S_{12} with core $(3,1,1)$

		$\begin{aligned} & \text { I } \\ & \dot{+} \\ & \text { or } \\ & \text { on } \end{aligned}$		तु					
$\left(12,1^{2}\right)=\langle 2\rangle$	1								
$(9,4,1)=\langle 2,2\rangle$		1							
$(9,3,2)=\langle 2,1\rangle$		1	1						
$(8,4,2)=\langle 1\rangle$		11	11						
$\left(6^{2}, 2\right)=\langle 1,2\rangle$				1					
$\left(6,4^{4}\right)=\langle 1,2,2\rangle$			11	1	1				
$\left(6,4,2^{2}\right)=\langle 2,2,2\rangle$		11	11	1	1	1			
$\left(6,3,2^{2}, 1\right)=\langle 1,1,2\rangle$		1	1						
$\left(5,4,2^{2}, 1\right)=\langle 1,1\rangle$		11	1	1	1	1	1		
$\left(4^{2}, 2^{2}, 1^{2}\right)=\langle 3\rangle$	1		1	1	1		1		
$\left(9,1^{5}\right)=\langle 2,3\rangle$			1						
$\left(6,4,1^{4}\right)=\langle 2,2,3\rangle$						1			
$\left(6,3,2,1^{3}\right)=\langle 1,2,3\rangle$			1		1	1	1		
$\left(6,2^{3}, 1^{2}\right)=\langle 3,2\rangle$									
$\left(6,1^{8}\right)=\langle 2,3,3\rangle$					1				
$\left(5,4,2,1^{3}\right)=\langle 1,3\rangle$				2	1	1	1		
$\left(3^{4}, 1^{2}\right)=\langle 3,1\rangle$	1		1		1				
$\left(3^{2}, 2^{4}\right)=\langle 1,1,3\rangle$	1								
$\left(3^{2}, 2^{2}, 1^{4}\right)=\langle 1,1,1\rangle$				1	1				
$\left(3^{2}, 2,1^{6}\right)=\langle 1,3,3\rangle$				2	1				
$\left(3,2^{3}, 1^{5}\right)=\langle 3,3\rangle$				1					
$\left(3,1^{11}\right)=\langle 3,3,3\rangle$				1					

Decomposition Numbers: 3-block of S_{12} with core $(3,1,1)$

Foulkes' Conjecture and Howe's Conjecture

 Let $\Omega^{\left(m^{n}\right)}$ be the set of all set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.Conjecture (Howe 1987)
The $\mathbb{C} S_{m n}$-homomorphism $\theta^{\left(m^{n}\right)}:\left\langle\Omega^{\left(n^{m}\right)}\right\rangle_{\mathbb{C}} \rightarrow\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$ defined by

$$
\left\{A_{1}, \ldots, A_{m}\right\} \mapsto \sum\left\{B_{1}, \ldots, B_{n}\right\}
$$

where the sum is over all $\left\{B_{1}, \ldots, B_{n}\right\} \in \Omega^{\left(m^{n}\right)}$ such that $\left|A_{i} \cap B_{j}\right|=1$ for all i and j, is injective.

Foulkes' Conjecture and Howe's Conjecture

 Let $\Omega^{\left(m^{n}\right)}$ be the set of all set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.Conjecture (Howe 1987)
The $\mathbb{C} S_{m n}$-homomorphism $\theta^{\left(m^{n}\right)}:\left\langle\Omega^{\left(n^{m}\right)}\right\rangle_{\mathbb{C}} \rightarrow\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$ defined by

$$
\left\{A_{1}, \ldots, A_{m}\right\} \mapsto \sum\left\{B_{1}, \ldots, B_{n}\right\}
$$

where the sum is over all $\left\{B_{1}, \ldots, B_{n}\right\} \in \Omega^{\left(m^{n}\right)}$ such that $\left|A_{i} \cap B_{j}\right|=1$ for all i and j, is injective.

- Dent, Siemons 2000: FC is true for $m=3$.

Foulkes' Conjecture and Howe's Conjecture

 Let $\Omega^{\left(m^{n}\right)}$ be the set of all set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.Conjecture (Howe 1987)
The $\mathbb{C} S_{m n}$-homomorphism $\theta^{\left(m^{n}\right)}:\left\langle\Omega^{\left(n^{m}\right)}\right\rangle_{\mathbb{C}} \rightarrow\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$ defined by

$$
\left\{A_{1}, \ldots, A_{m}\right\} \mapsto \sum\left\{B_{1}, \ldots, B_{n}\right\}
$$

where the sum is over all $\left\{B_{1}, \ldots, B_{n}\right\} \in \Omega^{\left(m^{n}\right)}$ such that $\left|A_{i} \cap B_{j}\right|=1$ for all i and j, is injective.

- Dent, Siemons 2000: FC is true for $m=3$.
- McKay 2007: if $\theta^{\left(m^{n}\right)}$ is injective then so is $\theta^{\left(m^{n^{\prime}}\right)}$ for all $n^{\prime} \geq n$. Hence HC and FC hold for $m=4$.

Foulkes' Conjecture and Howe's Conjecture

 Let $\Omega^{\left(m^{n}\right)}$ be the set of all set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.Conjecture (Howe 1987)
The $\mathbb{C} S_{m n}$-homomorphism $\theta^{\left(m^{n}\right)}:\left\langle\Omega^{\left(n^{m}\right)}\right\rangle_{\mathbb{C}} \rightarrow\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$ defined by

$$
\left\{A_{1}, \ldots, A_{m}\right\} \mapsto \sum\left\{B_{1}, \ldots, B_{n}\right\}
$$

where the sum is over all $\left\{B_{1}, \ldots, B_{n}\right\} \in \Omega^{\left(m^{n}\right)}$ such that $\left|A_{i} \cap B_{j}\right|=1$ for all i and j, is injective.

- Dent, Siemons 2000: FC is true for $m=3$.
- McKay 2007: if $\theta^{\left(m^{n}\right)}$ is injective then so is $\theta^{\left(m^{n^{\prime}}\right)}$ for all $n^{\prime} \geq n$. Hence HC and FC hold for $m=4$.
- Müller, Neunhöffer 2005: $\theta^{\left(5^{5}\right)}$ is not injective.

Foulkes' Conjecture and Howe's Conjecture

Let $\Omega^{\left(m^{n}\right)}$ be the set of all set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.
Conjecture (Howe 1987)
The $\mathbb{C} S_{m n}$-homomorphism $\theta^{\left(m^{n}\right)}:\left\langle\Omega^{\left(n^{m}\right)}\right\rangle_{\mathbb{C}} \rightarrow\left\langle\Omega^{\left(m^{n}\right)}\right\rangle_{\mathbb{C}}$ defined by

$$
\left\{A_{1}, \ldots, A_{m}\right\} \mapsto \sum\left\{B_{1}, \ldots, B_{n}\right\}
$$

where the sum is over all $\left\{B_{1}, \ldots, B_{n}\right\} \in \Omega^{\left(m^{n}\right)}$ such that $\left|A_{i} \cap B_{j}\right|=1$ for all i and j, is injective.

- Dent, Siemons 2000: FC is true for $m=3$.
- McKay 2007: if $\theta^{\left(m^{n}\right)}$ is injective then so is $\theta^{\left(m^{n^{\prime}}\right)}$ for all $n^{\prime} \geq n$. Hence HC and FC hold for $m=4$.
- Müller, Neunhöffer 2005: $\theta^{\left(5^{5}\right)}$ is not injective.
- Cheung, Ikenmeyer, Mkrtchyan 2015: $\theta^{\left(5^{6}\right)}$ is injective, hence FC is true for $m=5$.

Open problem

Problem
Decompose $\phi^{\left(3^{n}\right)}$ into irreducible characters of $S_{3 n}$.
Equivalently, decompose $\operatorname{Sym}^{n}\left(\operatorname{Sym}^{3} V\right)$ into irreducible representations of GL(V).

Open problem

Problem

Decompose $\phi^{\left(3^{n}\right)}$ into irreducible characters of $S_{3 n}$.
Equivalently, decompose $\operatorname{Sym}^{n}\left(\operatorname{Sym}^{3} V\right)$ into irreducible representations of GL(V).

It is not hard to show that

$$
\phi^{\left(3^{n}\right)} \downarrow_{S_{3 n-1}}=\left(\phi^{\left(3^{n-1}\right)} \times 1_{S_{2}}\right) \uparrow^{S_{3 n-1}}
$$

Computational evidence suggests that this property, together with $\left\langle\phi^{\left(3^{n}\right)}, 1_{S_{3 n}}\right\rangle=1$, determines $\phi^{\left(3^{n}\right)}$ uniquely.

Foulkes' Conjecture: computational results

- Müller, Neunhöffer 2005: FC is true if $m+n \leq 17$.
- Evseev, Paget, MW 2014: FC is true if $m+n \leq 19$.

Foulkes' Conjecture: computational results

- Müller, Neunhöffer 2005: FC is true if $m+n \leq 17$.
- Evseev, Paget, MW 2014: FC is true if $m+n \leq 19$.

Foulkes' Conjecture: computational results

- Müller, Neunhöffer 2005: FC is true if $m+n \leq 17$.
- Evseev, Paget, MW 2014: FC is true if $m+n \leq 19$.

Foulkes' Conjecture: computational results

- Müller, Neunhöffer 2005: FC is true if $m+n \leq 17$.
- Evseev, Paget, MW 2014: FC is true if $m+n \leq 19$.

Plethysm: Symmetric polynomials.

Suppose $\operatorname{dim} V=d$.

- A basis of weight vectors for $\operatorname{Sym}^{2} V$ is

$$
\begin{array}{cccccc}
v_{1} v_{1}, & v_{1} v_{2}, & v_{2} v_{2}, & v_{1} v_{3}, & \ldots & v_{d} v_{d} \\
x_{1}^{2} & x_{1} x_{2}, & x_{2}^{2}, & x_{1} x_{3}, & \ldots & x_{d}^{2}
\end{array}
$$

- The formal character of $\operatorname{Sym}^{2} V$ is

$$
s_{(2)}\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+\cdots+x_{d}^{2} .
$$

Formal characters are symmetric polynomials.

Plethysm: Symmetric polynomials.

Suppose $\operatorname{dim} V=d$.

- A basis of weight vectors for $\operatorname{Sym}^{2} V$ is

$$
\begin{array}{cccccc}
v_{1} v_{1}, & v_{1} v_{2}, & v_{2} v_{2}, & v_{1} v_{3}, & \ldots & v_{d} v_{d} \\
x_{1}^{2} & x_{1} x_{2}, & x_{2}^{2}, & x_{1} x_{3}, & \ldots & x_{d}^{2}
\end{array}
$$

- The formal character of $\operatorname{Sym}^{2} V$ is

$$
s_{(2)}\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+\cdots+x_{d}^{2} .
$$

Formal characters are symmetric polynomials.

- The formal character h of $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right)$ is obtained by evaluating $s_{(2)}$ at the monomials $x_{1}^{2}, x_{1} x_{2}, \ldots$ $\begin{array}{ccccc}\left(v_{1} v_{1}\right)\left(v_{1} v_{1}\right), & \left(v_{1} v_{1}\right)\left(v_{1} v_{2}\right), & \left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right), & \left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right), & \ldots \\ x_{1}^{2} x_{1}^{2} & x_{1}^{2} x_{1} x_{2}, & x_{1} x_{2} x_{1} x_{2} & x_{1}^{2} x_{2}^{2}, & \cdots\end{array}$

Plethysm: Symmetric polynomials.

Suppose $\operatorname{dim} V=d$.

- A basis of weight vectors for $\operatorname{Sym}^{2} V$ is

$$
\begin{array}{cccccc}
v_{1} v_{1}, & v_{1} v_{2}, & v_{2} v_{2}, & v_{1} v_{3}, & \ldots & v_{d} v_{d} \\
x_{1}^{2} & x_{1} x_{2}, & x_{2}^{2}, & x_{1} x_{3}, & \ldots & x_{d}^{2}
\end{array}
$$

- The formal character of $\operatorname{Sym}^{2} V$ is

$$
s_{(2)}\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+\cdots+x_{d}^{2} .
$$

Formal characters are symmetric polynomials.

- The formal character h of $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right)$ is obtained by evaluating $s_{(2)}$ at the monomials $x_{1}^{2}, x_{1} x_{2}, \ldots$

$$
\begin{array}{cccc}
\left(v_{1} v_{1}\right)\left(v_{1} v_{1}\right), & \left(v_{1} v_{1}\right)\left(v_{1} v_{2}\right), & \left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right), & \left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right), \\
x_{1}^{2} x_{1}^{2} & x_{1}^{2} x_{1} x_{2}, & x_{1} x_{2} x_{1} x_{2} & x_{1}^{2} x_{2}^{2},
\end{array} \cdots .
$$

$\pi \lambda \eta \theta v \sigma \mu \circ \sigma:$ Stanley's Problem 9

Let f and g be symmetric polynomials. Assume g has coefficients in \mathbb{N}_{0} when expressed in the monomial basis. The plethysm $f \circ g$ is defined by evaluating f at the monomials of g.

- The formal character of $\Delta^{\nu}\left(\Delta^{\mu} V\right)$ is $s_{\nu} \circ s_{\mu}$.
- The corresponding character of $S_{m n}$ is

$$
\left(\widetilde{\left(\chi^{\mu}\right)^{\times n}} \operatorname{Inf}_{S_{n}}^{S_{m} 2 S_{n}} \chi^{\nu}\right) \uparrow{ }_{S_{m} / S_{n}}^{S_{m}}
$$

$\pi \lambda \eta \theta v \sigma \mu о \sigma:$ Stanley's Problem 9

Let f and g be symmetric polynomials. Assume g has coefficients in \mathbb{N}_{0} when expressed in the monomial basis. The plethysm $f \circ g$ is defined by evaluating f at the monomials of g.

- The formal character of $\Delta^{\nu}\left(\Delta^{\mu} V\right)$ is $s_{\nu} \circ s_{\mu}$.
- The corresponding character of $S_{m n}$ is

$$
\left.\widetilde{\left(\left(\chi^{\mu}\right)^{\times n}\right.} \operatorname{Inf}_{S_{n}}^{S_{m} S_{n}} \chi^{\nu}\right) \uparrow{ }_{S_{m} 2 S_{n}}^{S_{m n}}
$$

Problem (Weak Foulkes' Conjecture)

Show that if $m \leq n$ then $s_{(n)} \circ s_{(m)}-s_{(m)} \circ s_{(n)}$ has non-negative coefficients.
Equivalently, S_{m} 乙 S_{n} has at least as many orbits as S_{n} 乙 S_{m} on the coset space $S_{m n} / S_{\lambda_{1}} \times S_{\lambda_{2}} \times \cdots$, for each $\lambda \in \operatorname{Par}(m n)$.

$\pi \lambda \eta \theta v \sigma \mu о \sigma:$ Stanley's Problem 9

Let f and g be symmetric polynomials. Assume g has coefficients in \mathbb{N}_{0} when expressed in the monomial basis. The plethysm $f \circ g$ is defined by evaluating f at the monomials of g.

- The formal character of $\Delta^{\nu}\left(\Delta^{\mu} V\right)$ is $s_{\nu} \circ s_{\mu}$.
- The corresponding character of $S_{m n}$ is

$$
\left.\widetilde{\left(\left(\chi^{\mu}\right)^{\times n}\right.} \operatorname{Inf}_{S_{n}}^{S_{m} 2 S_{n}} \chi^{\nu}\right) \uparrow S_{S_{m} 2 S_{n}}^{S_{n}}
$$

Problem (Weak Foulkes' Conjecture)

Show that if $m \leq n$ then $s_{(n)} \circ s_{(m)}-s_{(m)} \circ s_{(n)}$ has non-negative coefficients.
Equivalently, S_{m} 亿 S_{n} has at least as many orbits as S_{n} 亿 S_{m} on the coset space $S_{m n} / S_{\lambda_{1}} \times S_{\lambda_{2}} \times \cdots$, for each $\lambda \in \operatorname{Par}(m n)$.
Problem (Stanley, 2000)
Let $\mu \in \operatorname{Par}(m), \nu \in \operatorname{Par}(n), \lambda \in \operatorname{Par}(m n)$. Find a combinatorial interpretation of the coefficient of s_{λ} in $s_{\nu} \circ s_{\mu}$.

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ s_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ S_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ S_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of $S_{3} \backslash S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ S_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} 々 $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3 -regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} \ $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3 -regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} \ $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3 -regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} \ $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3 -regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} \ $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3 -regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ S_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} 々 $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3-regular graphs:

$$
i \quad i \rightarrow 0
$$

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} 々 $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3 -regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} 々 $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3 -regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} 々 $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3-regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ S_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of $S_{3} \backslash S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3 -regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of $S_{3} \backslash S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3 -regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ s_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} 々 $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3-regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ S_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} ؛ $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3-regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} \ $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3 -regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} \ $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3-regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} 々 $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3-regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ s_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} 々 $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3-regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ S_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} \ $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3 -regular graphs:

Plethysms and enumeration

Theorem (Read 1959)
$\left\langle s_{(2 m)} \circ s_{(3)}, s_{(3 m)} \circ s_{(2)}\right\rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on $2 m$ vertices.
Why on earth should this be true?

- $s_{(2 m)} \circ S_{(3)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(3^{2 m}\right)}$.
- $s_{(3 m)} \circ S_{(2)}$ is the cycle index of $S_{6 m}$ acting on $\Omega^{\left(2^{3 m}\right)}$.
- Their inner product is the number of orbits of $S_{6 m}$ on $\Omega^{\left(3^{2 m}\right)} \times \Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of orbits of S_{3} 々 $S_{2 m}$ on $\Omega^{\left(2^{3 m}\right)} \ldots$
- ... which is the number of 3 -regular graphs:

§2: Minimal and maximal constituents of plethysms

Let $\lambda, \lambda^{\star} \in \operatorname{Par}(r)$. We say λ dominates λ^{\star}, and write $\lambda \unrhd \lambda^{\star}$, if

$$
\lambda_{1}+\cdots+\lambda_{j} \geq \lambda_{1}^{\star}+\cdots+\lambda_{j}^{\star} .
$$

for all j. For example

- $(4,2,2) \unrhd(3,3,1,1)$,

§2: Minimal and maximal constituents of plethysms

Let $\lambda, \lambda^{\star} \in \operatorname{Par}(r)$. We say λ dominates λ^{\star}, and write $\lambda \unrhd \lambda^{\star}$, if

$$
\lambda_{1}+\cdots+\lambda_{j} \geq \lambda_{1}^{\star}+\cdots+\lambda_{j}^{\star} .
$$

for all j. For example

- $(4,2,2) \unrhd(3,3,1,1)$,
- $(4,1,1)$ and $(3,3)$ are incomparable.

§2: Minimal and maximal constituents of plethysms

Let $\lambda, \lambda^{\star} \in \operatorname{Par}(r)$. We say λ dominates λ^{\star}, and write $\lambda \unrhd \lambda^{\star}$, if

$$
\lambda_{1}+\cdots+\lambda_{j} \geq \lambda_{1}^{\star}+\cdots+\lambda_{j}^{\star} .
$$

for all j. For example

- $(4,2,2) \unrhd(3,3,1,1)$,
- $(4,1,1)$ and $(3,3)$ are incomparable.

Quiz: Choose partitions λ and λ^{\star} of n (a large number) uniformly at random. What is the chance that λ and λ^{\star} are comparable?

§2: Minimal and maximal constituents of plethysms

Let $\lambda, \lambda^{\star} \in \operatorname{Par}(r)$. We say λ dominates λ^{\star}, and write $\lambda \unrhd \lambda^{\star}$, if

$$
\lambda_{1}+\cdots+\lambda_{j} \geq \lambda_{1}^{\star}+\cdots+\lambda_{j}^{\star} .
$$

for all j. For example

- $(4,2,2) \unrhd(3,3,1,1)$,
- $(4,1,1)$ and $(3,3)$ are incomparable.

Quiz: Choose partitions λ and λ^{\star} of n (a large number) uniformly at random. What is the chance that λ and λ^{\star} are comparable?

Our main theorem gives a combinatorial characterization of all maximal and minimal partitions λ in the dominance order on $\operatorname{Par}(m n)$ such that s_{λ} has non-zero coefficient in $s_{\nu} \circ s_{\mu}$.

§2: Minimal and maximal constituents of plethysms

Let $\lambda, \lambda^{\star} \in \operatorname{Par}(r)$. We say λ dominates λ^{\star}, and write $\lambda \unrhd \lambda^{\star}$, if

$$
\lambda_{1}+\cdots+\lambda_{j} \geq \lambda_{1}^{\star}+\cdots+\lambda_{j}^{\star} .
$$

for all j. For example

- $(4,2,2) \unrhd(3,3,1,1)$,
- $(4,1,1)$ and $(3,3)$ are incomparable.

Quiz: Choose partitions λ and λ^{\star} of n (a large number) uniformly at random. What is the chance that λ and λ^{\star} are comparable?

Our main theorem gives a combinatorial characterization of all maximal and minimal partitions λ in the dominance order on $\operatorname{Par}(m n)$ such that s_{λ} has non-zero coefficient in $s_{\nu} \circ s_{\mu}$.
This solves a special case of Stanley's Problem 9.

Special case $\mu=(m)$ for minimals

Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{m}\right\}$ be m-subsets of \mathbb{N}, written so that $a_{1}<\ldots<a_{m}$ and $b_{1}<\ldots<b_{m}$. We say that A majorizes B, and write $A \preceq B$, if

$$
a_{1} \leq b_{1}, \ldots, a_{m} \leq b_{m}
$$

Special case $\mu=(m)$ for minimals

Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{m}\right\}$ be m-subsets of \mathbb{N}, written so that $a_{1}<\ldots<a_{m}$ and $b_{1}<\ldots<b_{m}$. We say that A majorizes B, and write $A \preceq B$, if

$$
a_{1} \leq b_{1}, \ldots, a_{m} \leq b_{m}
$$

- A closed set family of size r is a family \mathcal{P} of m-subsets of \mathbb{N} such that $|\mathcal{P}|=r$ and if $B \in \mathcal{P}$ and $A \preceq B$ then $A \in \mathcal{P}$.

Special case $\mu=(m)$ for minimals

Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{m}\right\}$ be m-subsets of \mathbb{N}, written so that $a_{1}<\ldots<a_{m}$ and $b_{1}<\ldots<b_{m}$. We say that A majorizes B, and write $A \preceq B$, if

$$
a_{1} \leq b_{1}, \ldots, a_{m} \leq b_{m}
$$

- A closed set family of size r is a family \mathcal{P} of m-subsets of \mathbb{N} such that $|\mathcal{P}|=r$ and if $B \in \mathcal{P}$ and $A \preceq B$ then $A \in \mathcal{P}$.

Special case $\mu=(m)$ for minimals

Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{m}\right\}$ be m-subsets of \mathbb{N}, written so that $a_{1}<\ldots<a_{m}$ and $b_{1}<\ldots<b_{m}$. We say that A majorizes B, and write $A \preceq B$, if

$$
a_{1} \leq b_{1}, \ldots, a_{m} \leq b_{m}
$$

- A closed set family of size r is a family \mathcal{P} of m-subsets of \mathbb{N} such that $|\mathcal{P}|=r$ and if $B \in \mathcal{P}$ and $A \preceq B$ then $A \in \mathcal{P}$.

Special case $\mu=(m)$ for minimals

- A closed set family of size r is a family \mathcal{P} of m-subsets of \mathbb{N} such that $|\mathcal{P}|=r$ and if $B \in \mathcal{P}$ and $A \preceq B$ then $A \in \mathcal{P}$.
- A closed set family tuple of size ν is a tuple $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{e}\right)$ where \mathcal{P}_{j} is a closed set family of size ν_{j} for each j.

Special case $\mu=(m)$ for minimals

- A closed set family of size r is a family \mathcal{P} of m-subsets of \mathbb{N} such that $|\mathcal{P}|=r$ and if $B \in \mathcal{P}$ and $A \preceq B$ then $A \in \mathcal{P}$.
- A closed set family tuple of size ν is a tuple $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{e}\right)$ where \mathcal{P}_{j} is a closed set family of size ν_{j} for each j.
- The weight of $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{e}\right)$ is the partition λ such that each $i \in \mathbb{N}$ appears in exactly λ_{i} sets in the \mathcal{P}_{j}.

Special case $\mu=(m)$ for minimals

- A closed set family of size r is a family \mathcal{P} of m-subsets of \mathbb{N} such that $|\mathcal{P}|=r$ and if $B \in \mathcal{P}$ and $A \preceq B$ then $A \in \mathcal{P}$.
- A closed set family tuple of size ν is a tuple $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{e}\right)$ where \mathcal{P}_{j} is a closed set family of size ν_{j} for each j.
- The weight of $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{e}\right)$ is the partition λ such that each $i \in \mathbb{N}$ appears in exactly λ_{i} sets in the \mathcal{P}_{j}.
- The type of $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{e}\right)$ is the conjugate partition λ^{\prime}.
- For example,

$$
(\{\{1,2,3\},\{1,2,4\},\{1,3,4\}\},\{\{1,2,3\}\})
$$

is a closed set family tuple of size $(3,1)$, weight $(4,3,3,2)$ and type $(4,4,3,1)$.

Special case $\mu=(m)$ for minimals

- A closed set family of size r is a family \mathcal{P} of m-subsets of \mathbb{N} such that $|\mathcal{P}|=r$ and if $B \in \mathcal{P}$ and $A \preceq B$ then $A \in \mathcal{P}$.
- A closed set family tuple of size ν is a tuple $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{e}\right)$ where \mathcal{P}_{j} is a closed set family of size ν_{j} for each j.
- The weight of $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{e}\right)$ is the partition λ such that each $i \in \mathbb{N}$ appears in exactly λ_{i} sets in the \mathcal{P}_{j}.
- The type of $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{e}\right)$ is the conjugate partition λ^{\prime}.
- For example,

$$
(\{\{1,2,3\},\{1,2,4\},\{1,3,4\}\},\{\{1,2,3\}\})
$$

is a closed set family tuple of size $(3,1)$, weight $(4,3,3,2)$ and type $(4,4,3,1)$.

Theorem (Paget, MW, 2014)

Let m be odd. The minimal partitions λ such that s_{λ} has non-zero coefficient in $s_{\nu} \circ s_{(m)}$ are precisely the minimal types of the closed set family tuples of size ν.

Special case $\nu=(n)$ for minimals

- A μ-tableau is conjugate-semistandard if its rows are strictly increasing and its columns are non-decreasing. When $\mu=(m)$ such tableaux correspond to m-subsets: $\{1,3,4\} \leftrightarrow$| 1 | 3 | 4 |
| :--- | :--- | :--- |
- The majorization order generalizes to a partial order on conjugate-semistandard μ-tableaux.
- We define closed μ-tableau families and their weights and types analogously.

Special case $\nu=(n)$ for minimals

- A μ-tableau is conjugate-semistandard if its rows are strictly increasing and its columns are non-decreasing. When $\mu=(m)$ such tableaux correspond to m-subsets: $\{1,3,4\} \leftrightarrow$| 1 | 3 | 4 |
| :--- | :--- | :--- |
- The majorization order generalizes to a partial order on conjugate-semistandard μ-tableaux.
- We define closed μ-tableau families and their weights and types analogously. For example
is a closed $(2,1)$-tableau family of size 3 , weight $(5,3,1)$ and type (3, 2, 2, 1, 1).

Special case $\nu=(n)$ for minimals

- A μ-tableau is conjugate-semistandard if its rows are strictly increasing and its columns are non-decreasing. When $\mu=(m)$ such tableaux correspond to m-subsets: $\{1,3,4\} \leftrightarrow$| 1 | 3 | 4 |
| :--- | :--- | :--- |
- The majorization order generalizes to a partial order on conjugate-semistandard μ-tableaux.
- We define closed μ-tableau families and their weights and types analogously. For example
is a closed $(2,1)$-tableau family of size 3 , weight $(5,3,1)$ and type $(3,2,2,1,1)$.

Theorem (Paget, MW, 2016)
Let m be odd and let $\mu \in \operatorname{Par}(n)$. The minimal partitions λ such that s_{λ} has non-zero coefficient in $s_{(n)} \circ s_{\mu}$ are precisely the minimal types of the closed μ-tableau families of size n.
This determines all minimal λ such that $\Delta^{\lambda} V$ appears in the coordinate ring of $\Delta^{\mu} V$.

Application to invariants of Riemann curvature tensor

mathoverflow

Questions Tags Users Badges Ur

A question on invariant theory of $G L_{n}(\mathbb{C})$.

Let ρ denote the irreducible algebraic representation of $G L_{n}(\mathbb{C})$ with the highest weight
$(2,2, \underbrace{0, \ldots, 0}_{n-2})$.
Let $k \leq n / 2$ be a non-negative integer. How to decompose into irreducible representations the representation $\operatorname{Sym}^{k}(\rho)$?

More specifically, I am interested whether $\operatorname{Sym}^{k}(\rho)$ contains the representation with the highest weight $(\underbrace{2, \ldots, 2}_{2 k}, \underbrace{0, \ldots, 0}_{n-2 k})$, and if yes, whether the mutiplicity is equal to one.

A a side remark, the representation ρ has a geometric interpretation important for me: it is the space of curvature tensors, namely the curvature tensor of any Riemannian metric on \mathbb{R}^{n} lies in ρ.

invariant-theory	classical-invariant-theor	dg.differential-geometry	rt.representation-theory	plethysm
share cite edit	lose flag	edited Oct 3 '12 at 19:28	asked Oct 3 '12 at 17:31	

Application to invariants of Riemann curvature tensor

The plethysm $\mathrm{Sym}^{k} \rho$ contains the irreducible representation with highest weight
$(2, \ldots, 2,0, \ldots, 0)$ exactly once. It looks like a tricky problem to say much about its other
14 irreducible constituents.
Let Δ^{λ} denote the Schur functor corresponding to the partition λ, and let E be an n dimensional complex vector space. Using symmetric polynomials (or other methods) one finds

$$
\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)=\Delta^{(2,2)} E \oplus \operatorname{Sym}^{4} E
$$

Therefore

$$
\operatorname{Sym}^{k} \operatorname{Sym}^{2} \operatorname{Sym}^{2} E \cong \sum_{r=0}^{k} \operatorname{Sym}^{r}\left(\Delta^{(2,2)} E\right) \otimes \operatorname{Sym}^{k-r}\left(\operatorname{Sym}^{4} E\right)
$$

The irreducible representations contained in the r th summand are labelled by partitions with at most $2 r+(k-r)=k+r$ parts. So to show that $\operatorname{Sym}^{k}\left(\Delta^{(2,2)}(E)\right)$ contains $\Delta^{\left(2^{2 k}\right)} E$, it suffices to show that $\Delta^{\left(2^{2 h}\right)} E$ appears in $\operatorname{Sym}^{k} \operatorname{Sym}^{2} \operatorname{Sym}^{2} E$.

Let $U=\operatorname{Sym}^{2} E$. There is a canonical surjection

$$
\operatorname{Sym}^{k}\left(\operatorname{Sym}^{2} U\right) \rightarrow \operatorname{Sym}^{2 k} U
$$

given by mapping $\left(u_{1} u_{1}^{\prime}\right) \ldots\left(u_{k} u_{k}^{\prime}\right) \in \operatorname{Sym}^{k}\left(\operatorname{Sym}^{2} U\right)$ to $u_{1} u_{1}^{\prime} \ldots u_{k} u_{k}^{\prime} \in \operatorname{Sym}^{2 k} U$. Therefore $\operatorname{Sym}^{k}\left(\operatorname{Sym}^{2} U\right)$ contains $\operatorname{Sym}^{2 k} U=\operatorname{Sym}^{2 k}\left(\operatorname{Sym}^{2} E\right)$. It is well known that

$$
\operatorname{Sym}^{2 k}\left(\operatorname{Sym}^{2} E\right)=\sum_{\lambda} \Delta^{2 \lambda}(E)
$$

where the sum is over all partitions λ of $2 k$ and $2\left(\lambda_{1}, \ldots, \lambda_{m}\right)=\left(2 \lambda_{1}, \ldots, 2 \lambda_{m}\right)$. Taking $\lambda=\left(1^{2 k}\right)$ we see that $\Delta^{\left(2^{2 k}\right)} E$ appears.

It remains to show that the multiplicity of $\Delta^{\left(2^{2 k}\right)} E$ in $\operatorname{Sym}^{k}\left(\Delta^{(2,2)} E\right)$ is 1 . We work over \mathbb{C}, so there is a chain of inclusions

$$
\operatorname{Sym}^{k}\left(\Delta^{(2,2)}(E)\right) \subseteq \operatorname{Sym}^{k}\left(\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E\right) \subseteq\left(\operatorname{Sym}^{2} E\right)^{\otimes 2 k}
$$

By the Littlewood-Richardson rule (or the easier Young's rule), the multiplicity of $\Delta^{\left(2^{2}\right)} E$ in the right-hand side is 1 .
share cite edit delete flag

