Title: Unlikely intersections for algebraic curves in positive characteristic.

Abstract: In the last decade there has been much study of what happens when an algebraic curve in n-space is intersected with two multiplicative relations

$$x_1^{a_1} \cdots x_n^{a_n} = x_1^{b_1} \cdots x_n^{b_n} = 1 \tag{(X)}$$

for $(a_1, \ldots, a_n), (b_1, \ldots, b_n)$ linearly independent in \mathbb{Z}^n . Usually the intersection with the union of all (\times) is at most finite, at least in zero characteristic. This often becomes false in positive characteristic, and we will give some examples, conjectures, and a substitute result for n = 3. If there is time, we may also mention recent work with Dale Brownawell on additive relations (+) in the contexts of Frobenius Modules and Carlitz Modules.

1