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COUNTING PRIMITIVE POINTS OF BOUNDED HEIGHT

MARTIN WIDMER

Abstract. Let k be a number field and K a finite extension of k. We count

points of bounded height in projective space over the field K generating the

extension K/k. As the height gets large we derive asymptotic estimates with a
particularly good error term respecting the extension K/k. In a future paper

we will use these results to get asymptotic estimates for the number of points of

fixed degree over k. We also introduce the notion of an adelic Lipschitz height
generalizing that of Masser and Vaaler. This will lead to further applications

involving points of fixed degree on linear varieties and algebraic numbers of

fixed degree satisfying certain subfield conditions.
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1. Introduction

Let K be a number field of degree d and write Pn(K) for the projective space
of dimension n over K. Denote by H the non-logarithmic absolute Weil height on
Pn(K); the definition is given in Section 2. A well-known result due to Northcott
([12] Theorem) implies that ZH(Pn(K), X), the number of points in Pn(K) with
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height not larger than X, is finite for each positive real number X. Schanuel [14]
had proved the following asymptotic estimate. As X tends to infinity one has

ZH(Pn(K), X) = SK(n)Xd(n+1) +O(Xd(n+1)−1 logX).(1.1)

The logarithm can be omitted in all cases except for n = d = 1 and the constant
implicit in O depends on K and n only. The constant SK(n) in the main term
depends on the detailed field structure and involves all classical field invariants.

More recently Masser and Vaaler [11] introduced heights where the maximum
norms at the infinite places are replaced by more general so called Lipschitz dis-
tance functions, let us call them Lipschitz heights. Masser and Vaaler generalized
Schanuel’s result to Lipschitz heights and simplified the original proof considerably.
Their main application of this generalization is an asymptotic counting result on
algebraic numbers of bounded height and fixed degree. But they also deduce other
counting results e.g. on algebraic subgroups of the multiplicative group Gn+1

m with
bounded degree.

In the present paper we generalize these results in several respects. First we
allow also arbitrary norms at a finite number of finite places in the spirit of an
adelic viewpoint. Secondly we make the constant in the error term more explicit
in the sense of Schmidt [17] and Gao [5]. Thirdly, also in this sense, we show
that this constant goes rapidly to zero as the field K becomes more complicated,
under the necessary condition that the counting is restricted to primitive points.
Fourthly we generalize the primitivity condition to involve an arbitrary subfield k
of K. Fifthly we express the constant in terms of some new invariant δ(K/k) which
itself generalizes a quantity δ(K/Q) introduced by Roy and Thunder [13]. Sixthly
we present an improvement in terms of certain refined quantities δg(K/k). And
finally, more on the technical level, we calculate the dependence on the Lipschitz
functions themselves.

We carry out these various generalizations not only for their own sake, but also
with definite applications in mind, which we intend to publish in future papers.
Here is a more detailed discussion. First of all, the adelic generalization is natural
in view of the equal status of all places on a number field. But it is also essential
so that we can deduce some new results about counting points on subspaces. Let
us illustrate this with a simple example. The height of a point on the plane defined
by the equation 2x+ 3y − z = 0 involves expressions

max{|x|v, |y|v, |z|v} = max{|x|v, |y|v, |2x+ 3y|v}(1.2)

with valuations v corresponding to various places. If the place is infinite, then
the right-hand side of (1.2) is a function of x, y as allowed in [11]; and if the
place is finite, then it is simply max{|x|v, |y|v} as required in [11]. But if we
change the equation to 2x + 3y − 5z = 0 then the left hand-side of (1.2) is
max{|x|v, |y|v, |(2x+ 3y)/5|v} which is not max{|x|v, |y|v} at places over the prime
5. Hence we must be prepared to allow modifications on the max-norm not only at
the infinite places but also at a finite number of finite places.

In [22] we will prove a counting result for points of fixed degree on a linear pro-
jective variety. This generalizes a result of Thunder (Theorem 1 in [18]). Thunder
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[19] introduced twisted heights where all places are considered in a perfectly equal
manner. But twisted heights are more restrictive at the infinite places and are
therefore not applicable to deduce the results in [23], mentioned in the last para-
graph of this section.

Regarding the second and third generalizations mentioned above, Schmidt [17]
in 1995 considered for quadratic K the set Pn(K/Q) of primitive points of Pn(K)
whose affine coordinates generate (over Q) the whole field K. The main term in
(1.1) is not changed, but he could replace the error term (for d = 2) by

O

(√
hKRK log(3 + hKRK)

|∆K |n/2
X2n+1

)
(1.3)

where hK is the class number, RK denotes the regulator, ∆K is the discriminant
and the constant in O depends only on n but is independent of the field K. It is
not difficult to see that such a good estimate cannot hold without the primitivity
condition. Schmidt’s purpose was to deduce asymptotic results for counting points
of Pn quadratic over Q. This he did by the simple but bold idea of summing over all
quadratic fields K, when the large power of the discriminant in (1.3) is necessary
for convergence. Everything was generalized to arbitrary K by Gao [5], also in
1995. He extended (1.3) and also obtained a more complicated version with better
summatory properties. This enabled him to deduce asymptotic results for counting
points of Pn of fixed degree e over Q provided n > e. However, Gao’s work remains
unpublished.

Regarding the fourth and fifth generalizations, our motivation is to extend Gao’s
results to count points of Pn of fixed degree e over a fixed number field k. This
problem was already considered by Schmidt in [16]. In the present paper we ex-
press our error terms like (1.3) using the quantities δ(K/k), which also have better
summatory properties than the discriminant. Those for the discriminant are still
governed by difficult conjectures such as Linnik’s Conjecture (see [4]). The latter
is proved only for very special cases although great progress was achieved by the
recent work of Ellenberg and Venkatesh [4]. Anyway, by using δ we are able to de-
duce asymptotic results for counting points of Pn of fixed degree e over k provided
n > 4e. And it is the refined quantities δg(K/k) that enable us to improve this to
n about 5e/2.

Finally the Lipschitz functions in the heights are characterised by certain parametriza-
tions involving Lipschitz constants, and we develop a formalism for calculating with
these.

Let us informally present a special case of our main result Theorem 3.1. We are
now counting the set Pn(K/k) of primitive points of Pn(K) whose affine coordinates
generate over k the whole field K; but this time with respect to an adelic Lipschitz
height N . We then generalize and improve (1.1) in the style of (1.3) to

ZN (Pn(K/k), X) = SN (n)Xd(n+1) +O

(
AN

hKRK
δ(K/k)d(n+1)/2−1

Xd(n+1)−1LN
)
,

(1.4)
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now with the constant implied in the O depending only on d and n. Here SN (n) is
related to certain volumes of unit balls and lattice determinants, and AN is related
to the Lipschitz constants for unit spheres and the norms; while LN is logarithmic
in X.

Our Theorem 3.1 sharpens (1.4) yet further in terms of the δg(K/k). It has
various applications such as counting points of fixed degree in Pn(k) (k denotes an
algebraic closure of k) and on linear subvarieties of Pn(k) defined over k (see [22]).
Due to the n > 5e/2 condition we need the dimension of the underlying variety to
be sufficiently large when compared with the degree. In particular we are unable
to count quadratic points on a line. But Theorem 3.1 leads also to a generalized
version of Proposition in [11] (in fact with a particularly good error term) and it is
most likely that using this generalized proposition and following the ideas of Masser
and Vaaler in [11] one can in fact deduce the asymptotics for points of fixed degree
on an arbitrary line, despite the dimension being so small.

Let us mention briefly some other applications of Theorem 3.1. Thanks to [22]
we can sometimes sum over linear subvarieties rather than number fields. In this
way we can obtain the asymptotics for points over a fixed number field on a non-
linear hypersurface like that defined by x − yzr = 0. Here the main term involves
the so-called height zeta function. Or more ambitiously we can occasionally sum
over both linear subvarieties and number fields to get the asymptotics for points of
fixed degree on more elaborate non-linear varieties like that defined by

x1 − y1z
r = · · · = xn − ynzr = 0.

Finally let us mention that Theorem 3.1 can be used to derive a refinement of
Masser and Vaaler’s result (Theorem in [10]) on counting algebraic numbers. Let
m and n be natural numbers. Instead of counting all algebraic numbers α of degree
mn as in [10] we consider only those numbers α such that Q(α) contains a subfield
of degree m. If n is much larger than m Theorem 3.1 can be applied to get the
correct asymptotics. For instance the asymptotics for points of degree 32 involve
X1056 while the number of points of degree 32 generating a field with a quadratic
subfield has only order of magnitude X544. This leads also to information on the
distribution of number fields of degree d containing a proper intermediate field if
ordered via the function δ; for more details we refer to [23].

We close the introduction with a few remarks about the structure of our paper.

In Section 2 we introduce the notion of an adelic Lipschitz system leading to an
adelic Lipschitz height on Pn(K). The main result Theorem 3.1 is stated in Section
3. Furthermore we show that it implies (1.4) as our Corollary 3.2. The problem
of estimating ZN (Pn(K/k), X) is reduced to counting lattice points in a certain
bounded region S of RD. In Section 4 we recall some basic facts about lattices
in general. In Section 5 we develop the basic counting technique for lattice points
which relies on parameterization maps of the boundary ∂S satisfying a Lipschitz
condition. In Section 6 we introduce the set S = SF (T ) where the counting will be
carried out. Then in Section 7 we show that this set satisfies the necessary Lipschitz
conditions; but in order not to distract the reader too much from the basic line of
the proof we postpone the somewhat tedious and lengthy proof to the appendix.
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However, it turns out that we are faced with a serious problem when applying the
counting method since the Lipschitz constants for our boundary ∂S are far too
large, resulting in a very bad error term. In [17] (which deals with d = 2) Schmidt
shows a way out of this misery by splitting up the set S in several subsets and
applying a suitable linear transformation on each of them. Section 8 is dedicated
to the extension of Schmidt’s approach from d = 2 to arbitrary d. As in Gao’s
work [5] this extension is relatively straightforward. The primitivity condition of
Pn(K/k) translates directly into an arithmetic property for the lattice points. In
Section 9 we translate this into a geometric property saying that the length of each
lattice point which gives a contribution to Pn(K/k) is bounded below nicely in
terms of δg(K/k). In Section 10 we apply the counting techniques of Section 5
to obtain estimates for the number of lattice points in SF (T ) using the geometric
property established in Section 9. In this way δg(K/k) enters the error estimates.
Finally in Section 11 we are in position to prove Theorem 3.1.
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2. Definitions

In 1967 Schmidt [15] introduced heights where the max-norm at the infinite
places (see (2.1) below) is replaced by a fixed but arbitrary distance function.
Masser and Vaaler’s Lipschitz heights in [11] are more flexible since they allow dif-
ferent Lipschitz distance functions at the infinite places. Adelic Lipschitz heights
are a natural generalization of Masser and Vaaler’s Lipschitz heights. Before we can
define adelic Lipschitz heights we have to fix some basic notation. For a detailed
account on heights we refer the reader to [1] and [6].

Let K be a finite extension of Q of degree [K : Q] = d. By a place v of K we
mean an equivalence class of non-trivial absolute values on K. The set of all places
of K will be denoted by MK . For each v in MK we write Kv for the completion of
K with respect to the place v and dv for the local degree defined by dv = [Kv : Qv]
where Qv is a completion with respect to the place which extends to v. A place v
in MK corresponds either to a non-zero prime ideal pv in the ring of integers OK
or to a complex embedding σ of K into C. If v comes from a prime ideal we call
v a finite or non-archimedean place indicated by v - ∞ and if v corresponds to an
embedding we say v is an infinite or archimedean place abbreviated to v | ∞. For
each place in MK we choose a representative | · |v, normalized in the following way:
if v is finite and α 6= 0 we set by convention

|α|v = Np
− ordpv (αOK )

dv
v



6 MARTIN WIDMER

where Npv denotes the norm of pv from K to Q and ordpv (αOK) is the power of
pv in the prime ideal decomposition of the fractional ideal αOK . Moreover we set

|0|v = 0.

For v infinite we define

|α|v = |σ(α)|

where | · | is the usual complex modulus. Suppose α is in K∗ = K\{0} then |α|v 6= 1
holds only for a finite number of places v.

Throughout this article n will denote a natural number, which means a positive
rational integer. The height on Kn+1 is defined by

H(α0, ..., αn) =
∏
MK

max{|α0|v, ..., |αn|v}
dv
d .(2.1)

Due to the remark above this is in fact a finite product. Furthermore this definition
is independent of the field K containing the coordinates (see [1] Lemma 1.5.2 or [6]
pp.51-52) and therefore defines a height on Qn+1

for an algebraic closure Q of Q.
The well-known product formula (see [1] Proposition 1.4.4) asserts that∏

MK

|α|dvv = 1 for each α in K∗.

This implies in particular that the value of the height in (2.1) does not change if
we multiply each coordinate with a fixed element of K∗. Therefore one can define
a height on points P = (α0 : ... : αn) in Pn(Q) by

H(P ) = H(α0, ..., αn)(2.2)

and moreover H(α) ≥ 1 for α ∈ Qn+1\{0}. The equations (2.1) and (2.2) define
the absolute non-logarithmic projective Weil height or simpler Weil height.

Let r be the number of real embeddings and s the number of pairs of complex
conjugate embeddings of K so that d = r+2s. For every place v we fix a completion
Kv of K at v. There is a value set

Γv = {|α|v;α ∈ Kv}.

It is [0,∞) for v archimedean and

{0, (Npv)0, (Npv)±1/dv , (Npv)±2/dv , ...}

otherwise. For v | ∞ we identify Kv with R or C respectively and we identify C
with R2 via ξ −→ (<(ξ),=(ξ)) where we used < for the real and = for the imaginary
part of a complex number.

For a vector x in Rn we write |x| for the euclidean length of x. D and M will
always stand for a natural number while L will denote a non-negative real number.

Definition 2.1. Let S be a subset of RD and let c be an integer with 0 ≤ c ≤ D.
We say S is in Lip(D, c,M,L) if there are M maps φ : [0, 1]D−c −→ RD satisfying
a Lipschitz condition

|φ(x)− φ(y)| ≤ L|x− y|(2.3)
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such that S is covered by the images of the maps φ. For c = D this is to be
interpreted simply as the finiteness of the set S.

We call L a Lipschitz constant for φ. For c = D we interpret [0, 1]D−c as {0} ⊆ R
and then M > 0 is simply an upper bound for the cardinality of S and any non-
negative L is allowed. By definition the empty set lies in Lip(D, c,M,L) for any
natural numbers D,M any c in {0, 1, 2, ..., D} and any non-negative L. However,
in our applications c will be 1 or 2.

Definition 2.2 (Adelic Lipschitz system). An adelic Lipschitz system (ALS) NK
or simply N on K (of dimension n) is a set of continuous maps

Nv : Kn+1
v → Γv v ∈MK(2.4)

such that

(i) Nv(z) = 0 if and only if z = 0,

(ii) Nv(ωz) = |ω|vNv(z) for all ω in Kv and all z in Kn+1
v ,

(iii) if v | ∞ : {z : Nv(z) = 1} is in Lip(dv(n+ 1), 1,Mv, Lv) for some Mv, Lv,

(iv) if v -∞ : Nv(z1 + z2) ≤ max{Nv(z1), Nv(z2)} for all z1, z2 in Kn+1
v .

Moreover we assume that only a finite number of the functions Nv(·) are different
from

Nv(z) = max{|z0|v, ..., |zn|v}.(2.5)

If we consider only the functions Nv for v | ∞ then we get an (r, s)-Lipschitz
system (of dimension n) in the sense of Masser and Vaaler [11]. With Mv and Lv
from (iii) we define

MN = max
v|∞

Mv,

LN = max
v|∞

Lv.

We say that N is an ALS with associated constants MN , LN . For v | ∞ we call
Nv a Lipschitz distance function (of dimension n). The set defined in (iii) is the
boundary of the set Bv = {z;Nv(z) < 1} and therefore Bv is a bounded symmetric
open star-body in Rn+1 or Cn+1 (see also [11] p.431). In particular Bv has a finite
volume Vv.

Let us consider the system whereNv is as in (2.5) for all places v. If v is an infinite
place then Bv is a cube for dv = 1 and the complex analogue if dv = 2. Their bound-
aries are clearly in Lip(dv(n+1), 1,Mv, Lv) most naturally with Mv = 2n+2 maps
and Lv = 2 if dv = 1 and with Mv = n+ 1 maps and for example Lv = 2π

√
2n+ 1

if dv = 2. This system is the standard example for an adelic Lipschitz system.

We claim that for any v ∈MK there is a cv in the value group Γ∗v = Γv\{0} with

Nv(z) ≥ cv max{|z0|v, ..., |zn|v}(2.6)

for all z = (z0, ..., zn) in Kn+1
v . For if v is archimedean then Bv is bounded open

and contains the origin. Since Γ∗v contains arbitrary small positive numbers the
claim follows by (ii). Now for v non-archimedean Nv and max{|z0|v, ..., |zn|v} de-
fine norms on the vector space Kn+1

v over the complete field Kv. But on a finite
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dimensional vector space over a complete field all norms are equivalent ([2] Corol-
lary 5. p.93) hence (2.6) remains true for a suitable choice of cv.

So let N be an ALS on K of dimension n. For every v in MK let cv be an
element of Γ∗v, such that cv ≤ 1 and (2.6) holds. Due to (2.5) we can assume that
cv 6= 1 only for a finite number of places v. Define

CfinN =
∏
v

c
− dvd
v ≥ 1(2.7)

where the product runs over all finite v. Next for the infinite part we define

CinfN = max
v
{c−1
v } ≥ 1(2.8)

where now v runs over all infinite v.

Multiplying the finite and the infinite part gives rise to another constant

CN = CfinN CinfN .(2.9)

It will turn out that besides MN and LN this is another important quantity for an
ALS. So we say that N is an ALS with associated constants CN ,MN , LN .

Remark 2.3. Let v be an infinite place. Suppose Nv : Kn+1
v −→ [0,∞) defines a

norm, so thatNv(z1+z2) ≤ Nv(z1)+Nv(z2). Then Bv is convex and (2.6) combined
with (2.7), (2.8) and (2.9) shows that Bv lies in B0(CN

√
n+ 1). This implies (see

Theorem A.1 in [20]) that ∂Bv lies in Lip(dv(n+ 1), 1, 1, 8dv2(n+ 1)5/2CN ).

We denote by σ1, ..., σd the embeddings from K to R or C respectively, ordered
such that σr+s+i = σr+i for 1 ≤ i ≤ s. We write

σ : K −→ Rr × Cs(2.10)

σ(α) = (σ1(α), ..., σr+s(α)).

Sometimes it will be more readable to omit the brackets and simply to write σα.
We identify C in the usual way with R2 and extend σ componentwise to get a map

σ : Kn+1 −→ RD(2.11)

where D = d(n + 1). On RD we use | · | for the usual euclidean norm. Let σv be
the canonical embedding of K in Kv again extended componentwise on Kn+1.

Definition 2.4. Let D 6= 0 be a fractional ideal in K and let N be an ALS of
dimension n. We define

ΛN (D) = {σ(α); α ∈ Kn+1, Nv(σvα) ≤ |D|v for all finite v}(2.12)

where |D|v = Np
− ordpv D

dv
v .

It is easy to see that ΛN (D) is an additive subgroup of RD. Now assume B ≥ 1
and |σ(α)| ≤ B; then (2.6) implies H(α)d ≤ (BCfinN )dND−1 and by Northcott’s
Theorem we deduce that ΛN (D) is discrete. The same argument as for (2.6)
yields positive real numbers Cv, one for each non-archimedean place v ∈ MK ,
with Nv(z) ≤ Cv max{|z0|v, ..., |zn|v} for all z = (z0, ..., zn) in Kn+1

v and Cv = 1 for
all but finitely many non-archimedean v ∈ MK . Thus there exists an ideal C1 6= 0
in OK with |C1|v ≤ 1/Cv for all non-archimedean places v ∈ MK . This means
that σ(C1D)n+1 ⊆ ΛN (D). It is well-known that the additive group σ(C1D)n+1
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has maximal rank in RD. Therefore ΛN (D) is a discrete additive subgroup of RD
of maximal rank. Hence ΛN (D) is a lattice. Notice that for ε in K∗ one has

det ΛN ((ε)D) = |NK/Q(ε)|n+1 det ΛN (D).(2.13)

Therefore

∆N (D) =
det ΛN (D)
NDn+1

(2.14)

is independent of the choice of the representative D but depends only on the ideal
class D of D. Let Cl be the set of ideal classes. We define

V finN = 2−s(n+1)|∆K |
n+1

2 h−1
K

∑
D∈Cl

∆N (D)−1(2.15)

for the finite part. The infinite part is defined by

V infN =
∏
v|∞

Vv.

By virtue of (2.6) we observe that

V infN =
∏
v|∞

Vv ≤
∏
v|∞

(2CinfN )dv(n+1) = (2CinfN )d(n+1).(2.16)

We multiply the finite and the infinite part to get a global volume

VN = V infN V finN .(2.17)

We proceed as in Masser and Vaaler’s article to obtain a height. Let N be an ALS
on K of dimension n. Then the height HN on Kn+1 is defined by

HN (α) =
∏
v

Nv(σv(α))
dv
d

where the product is taken over all v ∈ MK . The product over the archimedean
absolute values will be denoted by Hinf

N (·) and the one over the non-archimedean
absolute values by Hfin

N (·). The product formula together with (ii) implies that
HN is well-defined on Pn(K).

Remark 2.5. Multiplying (2.6) over all places with suitable multiplicities yields

HN (α) ≥ C−1
N H(α).(2.18)

Thanks to Northcott’s Theorem it follows that {P ∈ Pn(K);HN (P ) ≤ X} is a
finite set for each X in [0,∞).

Let k be a number field and let K be a finite extension of k. For a point
P = (α0 : ... : αn) in Pn(K) let k(P ) = k(..., αi/αj , ...) (0 ≤ i, j ≤ n;αj 6= 0). We
write Pn(K/k) for the set of primitive points

Pn(K/k) = {P ∈ Pn(K); k(P ) = K}
and

ZN (Pn(K/k), X) = |{P ∈ Pn(K/k);HN (P ) ≤ X}|
for its counting function with respect to the adelic Lipschitz height HN .

Before stating the main result we have to introduce some more basic notation.
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First of all we need the Schanuel constant from (1.1)

SK(n) =
hKRK

wKζK(n+ 1)

(
2rK (2π)sK√
|∆K |

)n+1

(n+ 1)rK+sK−1.(2.19)

Here hK is the class number, RK the regulator, wK the number of roots of unity in
K, ζK the Dedekind zeta-function of K, ∆K the discriminant, rK is the number of
real embeddings of K and sK is the number of pairs of distinct complex conjugate
embeddings of K.

Moreover we need a set G(K/k) and a new invariant δg(K/k). First for fields
k,K with k ⊆ K and [K : k] = e we define

G(K/k) = {[K0 : k];K0 is a field with k ⊆ K0 ( K}
if k 6= K, and we define

G(K/k) = {1}

if k = K. Clearly |G(K/k)| ≤ e. Then for an integer g ∈ G(K/k) we define

δg(K/k) = inf
α,β
{H(1, α, β); k(α, β) = K, [k(α) : k] = g} ≥ 1(2.20)

and

µg = m(e− g)(n+ 1)− 1.(2.21)

It will be convenient to use Landau’s O-notation. For non-negative real functions
f(X), g(X), h(X) we say that f(X) = g(X)+O(h(X)) as X > X0 tends to infinity
if there is a constant C0 such that |f(X) − g(X)| ≤ C0h(X) for each X > X0.
In Section 10 we will use Vinogradov’s � notation. An expression A � B or
equivalently B � A means that there is a positive constant c depending only on n
and d such that A ≤ cB.

3. The main result

The following theorem is the main result of this article. It gives an asymptotic
estimate of the counting function ZN (Pn(K/k), X) with a particularly good error
term.

Theorem 3.1. Let k,K be number fields with k ⊆ K and [K : k] = e, [k : Q] = m,
[K : Q] = d. Let N be an adelic Lipschitz system of dimension n on K with
associated constants CN , LN ,MN . Write

AN = Md
N (CN (LN + 1))d(n+1)−1

and

B = ANRKhK
∑

g∈G(K/k)

δg(K/k)−µg .

Then as X > 0 tends to infinity we have

ZN (Pn(K/k), X) = 2−rK(n+1)π−sK(n+1)VNSK(n)Xd(n+1) +O(BXd(n+1)−1LN ),

where

LN = log max{2, 2CNX} if (n, d) = (1, 1) and LN = 1 otherwise

and the implied constant in the O depends only on n and d.
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With k = K Theorem 3.1 yields a more general version of the Proposition in
[11] with an explicit error term regarding the field K. Still with k = K, let us
choose the standard ALS with Nv as in (2.5) for all places v. Then HN is just
the Weil height on Pn(K). Moreover ΛN (D) = σ(D)n+1 so that det ΛN (D) =
(2−sKN(D)

√
|∆K |)n+1 and therefore V finN = 1. Furthermore V infN =

∏
v|∞ Vv =

2rK(n+1)πsK(n+1) and thus VN = 2rK(n+1)πsK(n+1). Hence we recover Schanuel’s
Theorem, but with an explicit error term with respect to the field. A more precise
version can be obtained by counting primitive points (over Q) for all subfields of K
(see [20] Corollary 3.2).

Now back to the general case where k is an arbitrary fixed subfield of K. Let us
choose the ALS with Nv as in (2.5) if v -∞ and Nv(z) = M(z0x

n+z1x
n−1+...+zn)

as in (2.7) of [11] if v | ∞. Here M denotes the Mahler measure. The continuity
of M as a function of the coefficients was already shown by Mahler (see Lemma
1 in [9]). Masser and Vaaler have shown that the conditions (i), (ii) and (iii) in
Definition 2.2 are satisfied and clearly (iv) holds as well. Masser and Vaaler have
also calculated V infN = 2rK(n+1)πsK(n+1)VR(n)rKVC(n)sK where VR(n) and VC(n)
are certain rational numbers defined in [11]. As in the previous example we have
V finN = 1 and therefore VN = 2rK(n+1)πsK(n+1)VR(n)rKVC(n)sK . Here Theorem
3.1 counts the monic polynomials f = α0x

n + α1x
n−1 + ...+ αn in K[x] of degree

at most n whose coefficients α0, α1, ..., αn generate the whole field K over k and
whose global absolute Mahler measure M0(f) = HN (α0 : ... : αn) does not exceed
X. This adelic Lipschitz system will be used to deduce the main result in [23].

In [13] Roy and Thunder introduced the quantity

δ(K) = inf
α
{H(1, α);K = Q(α)}.

Generalizing this definition to extensions K/k of number fields k,K

δ(K/k) = inf
α
{H(1, α);K = k(α)}

we can give a simpler error term in Theorem 3.1. Of course δ1(K/k) = δ(K/k) but
we do not use this fact. We define the integers

gmax = max
g∈G

g

and

µ = m(e− gmax)(n+ 1)− 1.(3.1)

Note that 1 ≤ gmax ≤ max{1, e/2} and µ = ming∈G µg ≥ d(n+ 1)/2− 1. We have
the following

Corollary 3.2. Let k,K be number fields with k ⊆ K and [K : k] = e, [k : Q] = m,
[K : Q] = d. Let N be an adelic Lipschitz system of dimension n on K with
associated constants CN , LN ,MN and write

AN = Md
N (CN (LN + 1))d(n+1)−1.

Then as X > 0 tends to infinity we have

ZN (Pn(K/k), X) =2−rK(n+1)π−sK(n+1)VNSK(n)Xd(n+1)

+O(ANRKhKδ(K/k)−µXd(n+1)−1LN )
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where

LN = log max{2, 2CNX} if (n, d) = (1, 1) and LN = 1 otherwise

and the implied constant in the O depends only on n and d.

To see that Theorem 3.1 implies Corollary 3.2 we need the following well-known
argument. Since it will be used also in the Section 9, we give a proof here.

Lemma 3.3. Let F be a field of characteristic zero and L a finite extension of
relative degree e generated by α1, ..., αt. Then there are integers 0 ≤ m1, ...,mt < e
such that F (α) = L for α =

∑t
j=1mjαj.

Proof. It is well-known and easily seen (e.g. by induction on t) that for a polynomial
P (X1, ..., Xt) ∈ F [X1, ..., Xt] not identically zero with total degree p we can find
integers m1, ...,mt among 0, ..., p such that P (m1, ...,mt) 6= 0. Now the case e = 1
is trivial and so we may assume e > 1. Denote the conjugates of αj over F by α(i)

j

for 1 ≤ i ≤ e. We consider the polynomial

P (X1, ..., Xt) =
e∏
i=2

 t∑
j=1

(α(1)
j − α

(i)
j )Xj

 .(3.2)

Since L = F (α1, ..., αt) none of the factors
∑t
j=1(α(1)

j − α
(i)
j )Xj are zero and so

P is not identically zero and of total degree e − 1. Using the observation of the
beginning we get integers m1, ...,mt with 0 ≤ mj < e such that P (m1, ...,mt) 6= 0.
But this implies α =

∑t
j=1mjαj generates L over F . �

Now let us prove that Theorem 3.1 implies Corollary 3.2. We have to show that
the error term in the former is bounded above by the error term in the latter. If
K = k then δ = δ(K/k) = 1, while G(K/k) = {1} and δ1(K/k) = 1, µ1 = −1. So
we are done. If K 6= k then each g in G(K/k) satisfies g ≤ gmax and so µg ≥ µ.
Thus we have to compare δg = δg(K/k) with δ. Let α1, α2 be any numbers in
K such that k(α1, α2) = K. By the previous lemma we deduce that there are
rational integers 0 ≤ m1,m2 < e such that ξ = m1α1 + m2α2 is primitive, so
K = k(ξ). Hence δ(K/k) ≤ H(1, ξ). On the other hand an easy calculation shows
H(1, ξ) ≤ 2H(1,m1,m2)H(1, α1, α2) ≤ 2eH(1, α1, α2). Hence δ ≤ 2eδg for all g in
G(K/k). This suffices to deduce Corollary 3.2 from Theorem 3.1.

4. Preliminaries on counting

Recall that for a vector x in RD we write |x| for the euclidean length of x. The
closed euclidean ball centered at z with radius r will be denoted by Bz(r). Let Λ
be a lattice of rank D in RD then we define the successive minima λ1(Λ), ..., λD(Λ)
of Λ as the successive minima in the sense of Minkowski with respect to the unit
ball. That is

λi = inf{λ; λB0(1) ∩ Λ contains i linearly independent vectors}.
By definition we have

0 < λ1 ≤ λ2 ≤ ... ≤ λD <∞.(4.1)

Next we prove a simple lemma which will be used not only in this but also in Section
9.
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Lemma 4.1. Suppose V is a subspace of RD of dimension i− 1 ≥ 1 and contains
i−1 linearly independent elements v1, ..., vi−1 of Λ with |vj | = λj for 1 ≤ j ≤ i−1.
Then any v in Λ not in V satisfies

|v| ≥ λi.

Proof. Suppose v is in Λ but not in V . Then v1, ..., vi−1, v are linearly independent.
Hence one of these vectors has length at least λi. If λi−1 < λi the claim follows
at once since |v1| ≤ ... ≤ |vi−1| = λi−1. Now let p in {1, ..., i} be minimal with
λp = λi. If p = 1 then the result is clear from the definition of λ1. If p > 1 then
v1, ..., vp−1, v are linearly independent and again we conclude one of these vectors
has length at least λp = λi. But v1, ..., vp−1 have length at most λp−1 < λi, so
|v| ≥ λi as claimed. �

Lemma 4.2. Suppose D = d(n + 1) and Λ = Λn+1
0 for a lattice Λ0 of rank d in

Rd. Then the successive minima of Λ are given by

λ1(Λ0), ..., λ1(Λ0), λ2(Λ0), ..., λ2(Λ0), ..., λd(Λ0), ..., λd(Λ0)

where each minimum is repeated n+ 1 times.

Proof. A typical minimum λi(Λ0) occurs above in the positions (i − 1)(n + 1) +
1, ..., i(n+ 1). Thus it suffices to verify

λi(n+1)(Λ0
n+1) ≤ λi(Λ0) ≤ λ(i−1)(n+1)+1(Λ0

n+1)(4.2)

for 1 ≤ i ≤ d. For the first inequality we note that there is a subspace Vi in Rd of
dimension i containing i linearly independent elements v1, ..., vi of Λ0 with length
λ1(Λ0), ..., λi(Λ0). Now V n+1

i in Rd(n+1) of dimension i(n + 1) contains i(n + 1)
linearly independent elements of Λn+1

0 like (v1, 0, ..., 0) also with length at most
λi(Λ0). The first inequality in (4.2) follows at once.
For the second inequality note that any (i− 1)(n+ 1) + 1 independent points w of
Λn+1

0 cannot all lie in V n+1
i−1 . So some w has the form w = (w1, ..., wn+1) with some

wj not in Vi−1. By the previous lemma we see that |w| ≥ |wj | ≥ λi(Λ0) and the
second inequality is proved. �

To quantify the deficiency from being orthogonal one defines the orthogonality
defect Ω of a set of linearly independent vectors v1, ..., vD in RD as

Ω(v1, ..., vD) =
|v1|...|vD|

det Λ
where Λ is the lattice generated by v1, ..., vD. By Hadamard’s inequality Ω(v1, ..., vD) ≥
1 with equality if and only if the system of vectors is orthogonal. When working
with a lattice it is often convenient to have a basis v1, ..., vD of small orthogonality
defect. We define the orthogonality defect of the lattice Λ as

Ω(Λ) = inf
(v1,...,vD)

|v1|...|vD|
det Λ

where the infimum runs over all bases (v1, ..., vD) of Λ. Since Λ is discrete the
infimum will be attained. Due to its importance it is worth to state Minkowski’s
Theorem explicitly. Since we need only a special case we do not give the full theorem
(see [3] p.218 Theorem V).
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Theorem 4.3 ((Minkowski’s Second Theorem for balls)). Let Λ be a lattice in RD
with successive minima λ1, ..., λD. Then

2D

D!
det Λ ≤ λ1...λDVol B0(1) ≤ 2D det Λ

where Vol B0(1) = πD/2

Γ(D/2+1) .

Proof. For a proof we refer to [3] p.205. �

By Minkowski’s Second Theorem we obtain n linearly independent vectors u1, ..., uD
in Λ, such that |u1|...|uD|/det Λ = λ1...λD/ det Λ is bounded below and above in
terms of D only. Unfortunately these vectors usually fail to build a basis of the
lattice but they can be used to construct a reduced basis. We use the Mahler-Weyl
basis reduction to prove the following bound:

Lemma 4.4. Let Λ be a lattice of rank D > 1. Then

Ω(Λ) ≤ D
3
2D

(2π)
D
2
.

Proof. By Theorem 4.3

λ1...λDVol B0(1) ≤ 2D det Λ.

It is known from the definition of the λi that there are linearly independent vectors
u1, ..., uD, such that |ui| = λi for 1 ≤ i ≤ D. Using a lemma of Mahler and Weyl
([3] Lemma 8 p.135) we obtain a basis v1, ..., vD of Λ satisfying

|vi| ≤ max{|ui|,
1
2

(|u1|+ ...+ |ui|)} ≤ max{1, i
2
}λi

for 1 ≤ i ≤ D. Since Γ(m + 1) = m! and Γ(m + 1/2) = (m − 1/2)(m − 3/2)(m −
5/2)...(1/2)

√
π for positive integers m, we see that Γ(D2 + 1) ≤ (D2 )

D
2 provided

D ≥ 2. Using also D! ≤ DD−1 this yields

Ω(Λ) ≤ |v1|...|vD|
det Λ

≤
DD!Γ(D2 + 1)

π
D
2

≤ D
3
2D

(2π)
D
2

and proves the statement. �

5. The basic counting technique

Let Λ be a lattice in RD of rank D. A set F is called a fundamental domain of
Λ if there is a basis v1, ..., vD of Λ such that

F = [0, 1)v1 + ...+ [0, 1)vD.

Let v1, ..., vD be a basis of Λ with corresponding fundamental domain F . For a set
S in RD write T = TS(F ) for the number of translates Fv = F + v (v ∈ Λ) by
lattice points having non-empty intersection with the boundary ∂S. The following
inequality is well-known but crucial. Therefore we state it as a lemma.

Lemma 5.1. Suppose S is measurable and bounded. Then

||Λ ∩ S| − Vol S
det Λ

| ≤ T.(5.1)
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Proof. Clearly the translates Fv = F+v (v ∈ Λ) define a partition of RD. Moreover
every Fv contains exactly one lattice point - namely v. Denote by m = mS(F ) the
number of translates of F by lattice points, which have empty intersection with the
complement of S. In particular we have m ≤ |Λ ∩ S|. Now suppose v lies in S. So
either Fv lies in S or Fv contains a point of S and a point of its complement. But
Fv is convex and therefore connected. So if Fv contains a point of S and a point of
its complement then it contains a point of the boundary ∂S. Hence |Λ∩S| ≤ m+T.
Now det Λ is the volume of Fv. So the union of all translates Fv lying in S has
volume m det Λ. And the union of all translates having non-empty intersection with
S has volume at most (m+T) det Λ. Thus we have proven the following inequalities:

m ≤ |Λ ∩ S|≤m + T,

m det Λ ≤ Vol S ≤(m + T) det Λ.

Hence

||Λ ∩ S| − Vol S
det Λ

| ≤ T.

�

The inequality above explains why the following proposition is crucial for the
subsequent counting results of this section.

Proposition 5.2 (Masser). Assume D > 1, let Λ ⊆ RD be a lattice and let
λ1, ..., λD be the successive minima of Λ with respect to the unit ball. Assume
S is a bounded subset of RD with boundary ∂S in Lip(D, 1,M,L). Let v1, ..., vD
be a basis of Λ with fundamental domain F and TS(F ) the number of translates
Fv = F + v (v ∈ Λ), which have non-empty intersection with ∂S. Then for any
natural number Q we have

TS(F ) ≤MQD−1
D∏
i=1

(√
D − 1Ω(v1, ..., vD)L

λiQ
+ 2
)
.

Proof. We certainly may assume that S is not empty and therefore that ∂S is not
empty. Choose one of the parameterizing maps φ and split I = [0, 1] in Q intervals
of length 1/Q. Then φ(ID−1) splits in QD−1 subsets φ(C) where C is a hypercube
in RD−1 of side 1/Q. Due to the Lipschitz condition the distance between any
two points in φ(C) does not exceed

√
D−1L
Q . Now F is the fundamental domain

corresponding to the given basis so F = [0, 1)v1 + ...+ [0, 1)vD. We have to count
the v in Λ such that Fv meets ∂S. Thus Fv meets one of the φ(C) say in a point
x. Writing v = r1v1 + ...+ rDvD for r1, ..., rD in Z, we see that there are ϑ1, ..., ϑD
in [0, 1) such that

x = (r1 + ϑ1)v1 + ...+ (rD + ϑD)vD.

We now show that there are not too many other v′ in Λ such that Fv′ meets this
same φ(C). Let x′ be in φ(C) ∩ Fv′ then we get corresponding r′i, ϑ

′
i. To estimate

the length of x − x′ write %i = ri + ϑi − (r′i + ϑ′i) for the coefficient of the basis
element vi. Hence

|%1v1 + ...+ %DvD| = |x− x′| ≤
√
D − 1L
Q

.(5.2)
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After permuting the indices we may assume that |vi| ≤ |vi+1| and therefore |vi| ≥ λi.
Now by Cramer’s rule and the definition of Ω(v1, ..., vD) = Ω we get

|%i| =|
det[v1...x− x′...vD]

det[v1...vi...vD]
| = |det[v1...x− x′...vD]|

|v1|...|vi|...|vD|
Ω.

Now we apply Hadamard’s inequality to obtain the upper bound

|v1|...|x− x′|...|vD|
|v1|...|vi|...|vD|

Ω =
|x− x′|
|vi|

Ω ≤ |x− x′|
λi

Ω.

Due to (5.2) the latter is

≤
√
D − 1ΩL
λiQ

.

Notice that |ϑi − ϑ′i| < 1 therefore all the ri lie in an interval of length
√
D − 1ΩL
λiQ

+ 1.

So the number of (r1, ..., rD) is at most

D∏
i=1

(
[
√
D − 1ΩL
λiQ

] + 2
)
,

provided there are at least two of them. However, it is trivially true if there is just
one of them. On recalling that we have M parameterizing maps and QD−1 subsets
φ(C) for each map we get the desired upper bound for the number of translates
having non-empty intersection with the boundary of S. �

The Proposition 5.2 leads to an explicit version of Lemma 2 [11].

Corollary 5.3. Let S be a bounded set in RD such that the boundary ∂S of S is
in Lip(D, 1,M,L). Let Λ be a lattice in RD. Then S is measurable and moreover

||S ∩ Λ| − Vol S
det Λ

| ≤ 3DM

(√
DΩ(Λ)L
λ1

+ 1

)D−1

.(5.3)

Proof. For D = 1 the set S is a union of at most M intervals (or even single
points) in which case the statement is trivial. So we may assume D > 1. For the
measurability we refer to [8] Satz 7 p.294. To prove the second statement we choose
a basis with minimal orthogonality defect. Thanks to (5.1) it suffices to estimate T
corresponding to this basis. Using Proposition 5.2 we see that T is bounded above
by MQD−1(

√
D−1Ω(Λ)L
λ1Q

+ 2)D. Now let us choose Q = [
√
DΩ(Λ)L
λ1

] + 1. This leads
straightforwardly to

T ≤ 3DM

(√
DΩ(Λ)L
λ1

+ 1

)D−1

and the theorem is proved. �

For our application in Section 10 we need a more precise result which takes into
account not only the first but also the other minima.
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Theorem 5.4. Let Λ be a lattice in RD with successive minima (with respect to
the unit ball) λ1, ..., λD. Let S be a bounded set in RD such that the boundary ∂S
of S is in Lip(D, 1,M,L). Then S is measurable and moreover

||S ∩ Λ| − Vol S
det Λ

| ≤ c0(D)M max
0≤i<D

Li

λ1...λi
.

For i = 0 the expression in the maximum is to be understood as 1. Furthermore
one can choose c0(D) = D3D2/2.

Proof. For the measurability see Corollary 5.3. Since the case D = 1 is straightfor-
ward we assume D > 1. As in the proof of Corollary 5.3 it suffices to estimate T
corresponding to a basis with minimal orthogonality defect. To simplify notation
we write κ for

√
D − 1Ω(Λ). It is convenient to distinguish two cases:

(1) L < λD :
We use Proposition 5.2 with Q = 1. We estimate the D-th term of the product by
κ+ 2. So

T ≤M(κ+ 2)
D−1∏
i=1

(
κL

λi
+ 2
)
≤M(κ+ 2)

D−1∏
i=1

(κ+ 2)
(
L

λi
+ 1
)

= M(κ+ 2)D
D−1∏
i=1

(
L

λi
+ 1
)
.

Now we expand the remaining product and estimate each of the 2D−1 terms in the
resulting sum by max0≤i<D

Li

λ1...λi
. Hence

T ≤M(κ+ 2)D2D−1 max
0≤i<D

Li

λ1...λi
.(5.4)

Next we use Lemma 4.4 and recall that D > 1 to estimate

κ+ 2 ≤
√
D − 1D3D/2

(2π)D/2
+ 2 ≤ 1

2π
D3D/2 +

1
4
D3D/2 <

1
2
D3D/2.

Hence

T ≤MD3D2/2 max
0≤i<D

Li

λ1...λi
,

which proves the theorem in the first case.

(2) L ≥ λD :
Note that in particular L > 0. Here we choose Q = [ LλD ] + 1 and we get

T ≤ M

Q

D∏
i=1

(
κL

λi
+ 2Q

)
≤ MλD

L

D∏
i=1

(
(κ+ 2)L

λi
+ 2
)

≤M(κ+ 4)D
LD−1

λ1...λD−1

≤M2D(κ+ 2)D
LD−1

λ1...λD−1

where this last LD−1

λ1...λD−1
is now the maximum term in (5.4). We have already seen

that (for D > 1) κ+ 2 ≤ 2−1D3D/2 and so the result drops out. �
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Theorem 5.4 can be considered as a version of Schmidt’s Theorem on p.15 in [5]
with different and probably weaker conditions on the set.

6. The basic set

Recall that K is a number field of degree d with r real and s pairs of com-
plex conjugate embeddings. Recall also the basic notation of an adelic Lipschitz
system N on K of dimension n. The constants CN ,MN , LN will be abbreviated
to C,M,L. Lemma 7.1 and Lemma 11.1 of the following sections have much in
common with Lemma 3 and Lemma 4 of [11]. For the convenience of the reader
we tried to keep the notation of [11] whenever possible. So let q = r + s − 1,
Σ the hyperplane in Rq+1 defined by x1 + ... + xq+1 = 0 and δ = (d1, ..., dq+1)
with di = 1 for 1 ≤ i ≤ r and di = 2 for r + 1 ≤ i ≤ r + s = q + 1. The map
l(η) = (d1 log |σ1(η)|, ..., dq+1 log |σq+1(η)|) sends K∗ to Rq+1. For q > 0 the im-
age of the unit group U = O∗K under l is a lattice in Σ with determinant

√
q + 1RK .

Let F be a bounded set in Σ and for real, positive T let F (T ) be the vector sum

F (T ) = F + δ(−∞, log T ].(6.1)

We denote by exp the diagonal exponential map from Rq+1 to [0,∞)q+1. We have
r + s Lipschitz distance functions N1, ..., Nq+1 one for each factor of Rr × Cs. We
use variables z1, ..., zq+1 with zi in Rdi(n+1). Now we define SF (T ) in RD for
D =

∑q+1
i=1 di(n+ 1) = d(n+ 1) as the set of all z1, ..., zq+1 such that

(N1(z1)d1 , ..., Nq+1(zq+1)dq+1) ∈ exp(F (T )).(6.2)

7. On Lipschitz parameterizability

As we have seen in Section 5 one can give good estimates for the number of
lattice points in a bounded set under rather mild conditions on the set such as
the Lipschitz parameterizability of the boundary. As shown by Masser and Vaaler
in [11] Lemma 3 the condition (iii) in Section 2 implies that the set SF (T ) has
Lipschitz parameterizable boundary of co-dimension one. To see the dependence
on F,L,M for the Lipschitz constant we need an explicit (up to dependence on
n, d) version of this Lemma 3. This can be done in a relatively straightforward
manner and might be a bit tedious for the reader. However, we have carried out
this checking very carefully and to the best of the author’s knowledge this is the
first detailed account of such matters in the literature, published and unpublished.
But in order not to distract the reader too much from the basic line we postpone
the proof to the Appendix.

Lemma 7.1. Suppose q ≥ 1 and let F be a set in Σ such that ∂F is in Lip(q +
1, 2,M ′, L′) and moreover assume F lies in B0(rF ). Then ∂SF (1) is in Lip(D, 1, M̃ , L̃)
where one can choose

M̃ = (M ′ + 1)Mq+1

L̃ = 3
√
D(L′ + rF + 1) exp(

√
q(L′ + rF ))(L+ CinfN ).

Proof. See Appendix. �
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Notice that for q = 0 the boundary of SF (1) is nothing but the set defined in
(iii) Section 2 (for v | ∞) and so in this case we have ∂SF (1) lies in Lip(D, 1,M,L).

In our first application F will have the form

[0, 1)v1 + ...+ [0, 1)vq(7.1)

for v1, ..., vq in Rq+1 with |v1|, ..., |vq| < 1. It is easy to see that ∂F is Lipschitz
parameterizable; a typical boundary point has the form x1v1 + ...+xqvq with some
xi = 0 or 1, so for example if i = q then this expression gives a parameterization on
the variables x1, ..., xq−1. We find in this way that ∂F is in Lip(q + 1, 2, 2q, q − 1).

8. Schmidt’s partition method

First suppose q > 0. Recall the standard logarithmic map l from K∗ to Rq+1

(see Section 6). We choose F as a fundamental domain of the unit lattice l(U)

F = [0, 1)u1 + ...+ [0, 1)uq

where U = (u1, ..., uq) is a basis of l(U). A major step of the proof is the counting
of lattice points in the set SF (T ). This will be carried out with the help of Theorem
5.4. But here the relevant Lipschitz constants may depend on the units in a fatal
way. In fact F has volume

√
q + 1RK and so if we are unlucky then it might not

lie in a ball of radius much smaller than RK . Thus exp(F ) might not lie in a ball
of radius much smaller than exp(RK). This might introduce Lipschitz constants
of this size and consequently the error terms in the counting could be this large.
That however is far from what we claim in Theorem 3.1. And such an exponen-
tial dependence on RK would be disastrous for the summation techniques in the
main application following in [21]. To overcome this problem we extend an idea of
Schmidt [17] from the real-quadratic case d = 2 to arbitrary d (see also [5] for d > 2).

Let us carry out the details. First we define the q + 1 natural numbers

nj = [|uj |] + 1 (1 ≤ j ≤ q),(8.1)

t = n1...nq.(8.2)

Let Q = |{β ∈ Q; [Q(α) : Q] ≤ d, logH(1, α) ≤ 1}|. If α of degree at most d is
neither zero nor a root of unity then the Q + 1 numbers 1, α, ..., αQ are pairwise
distinct and therefore logH(1, αQ) > 1, so

logH(1, α) > Q−1.

We take α = ηj for l(ηj) = uj to deduce

exp(d/Q) ≤ H(1, ηj)d =
q+1∏
i=1

max{1, |σi(ηj)|di}.

It follows that |σi(ηj)| ≥ exp(1/Q) for some i. Thus

|uj |2 =
q+1∑
k=1

d2
k log2 |σk(ηj)| ≥ (1/Q)2

and so

|uj | ≥ 1/Q > 0,
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where Q depends only on d. The inequality above implies [|uj |] + 1 ≤ (1 +Q)|uj |.
Recalling the definition of the orthogonality defect Ω(U) of U and not forgetting
that det l(U) =

√
q + 1RK yields√

q + 1RK < t ≤ (1 +Q)qΩ(U)
√
q + 1RK .

Now we choose a reduced basis U so that according to Lemma 4.4 we have in
particular Ω(U) ≤ d2d, provided q > 1. But the latter inequality trivially remains
true for q = 1. Hence there is a constant cd depending only on d with

RK < t ≤ cdRK .(8.3)

We define

F (i) = i1
u1

n1
+ ...+ iq

uq
nq

+ [0, 1)
u1

n1
+ ...+ [0, 1)

uq
nq

(8.4)

with i = (i1, ..., iq) for 0 ≤ ij < nj (1 ≤ j ≤ q). Then the partition F =
⋃

i F (i)
leads to a partition

SF (T ) =
⋃
i

SF (i)(T )(8.5)

in t subsets. For each of these t vectors i we define a translation tri on Rq+1 by

tri(x) = x−
q∑
j=1

ijuj
nj

.

This translation sends Σ to Σ and F (i) to F (0). It has an exponential counterpart
etri defined by etri(exp(x)) = exp(tri(x)) and this takes the form

etri(X1, ..., Xq+1) = (γd11 X1, ..., γ
dq+1
q+1 Xq+1)

for positive real γ1, ..., γq+1, depending on i, with

γd11 ...γ
dq+1
q+1 = 1.(8.6)

We define the automorphism τi of RD by

τi(z1, ..., zq+1) = (γ1z1, ..., γq+1zq+1),(8.7)

so that

det τi = 1.(8.8)

Now

etri(exp(F (i)(T ))) = exp(tri(F (i)(T ))) = exp(F (0)(T ))

and so (6.2) together with (ii) of Section 2 gives

τiSF (i)(T ) = SF (0)(T ).(8.9)

The identity

SF (T ) = TSF (1)(8.10)

holds for any F in Σ whatsoever and in particular

SF (0)(T ) = TSF (0)(1).(8.11)
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Thanks to (8.1) and the triangle inequality, |θ1
u1
n1

+ ... + θq
uq
nq
| ≤ q holds for any

θj ∈ [0, 1). From the definition of F (0) and SF (0) it follows that

SF (0)(1) ⊆ {(z1, ..., zq+1);Ni(zi)di ≤ exp(q) for 1 ≤ i ≤ q + 1}.(8.12)

On recalling the definition (2.8) of CinfN the above inclusion together with (8.11)
yields

SF (0)(T ) ⊆ B0(κT )(8.13)

where κ =
√
d(n+ 1)CinfN exp(q) and B0(κT ) denotes the euclidean ball centered

at the origin with radius κT .
From now on let i be fixed so that we may drop the index and write τ . The zi lie
in Rn+1 or Cn+1. By abuse of notation we temporarily set n = 0 so that we may
interpret these vectors for a moment as numbers in R or C. Then the right hand
side of (8.7) defines an automorphism of Rd, say pτ with

det pτ = 1.(8.14)

Notice that for a set X in Rd one has τ(Xn+1) = (pτ (X))n+1 in Rd(n+1) = RD.
However, it will be more convenient to write τ for pτ , just as the σ in (2.10) is
simply the σ in (2.11) with n = 0.

Now suppose q = 0. In this case the only units are roots of unity and we set
F = 0. Here we may apply the counting principles of Section 5 to the set SF (T )
directly without running into the difficulty of getting huge Lipschitz constants.
In order to treat this rather easy case simultaneously with the more interesting
case q > 0 it will be convenient to define the set of the vectors i as the set {0}
consisting only of the single vector 0 = (0) and we set t = 1. Then we define
SF (i)(T ) = SF (0)(T ) = SF (T ) and moreover τi = τ0 is the identity automorphism.
Hence an expression like

⋃
i SF (i)(T ) is to be understood as SF (T ). With these

conventions (8.3), (8.5) and also (8.9), (8.10), (8.11), (8.12), (8.13) and (8.14)
remain valid.

9. Estimates for the minima

We define the non-zero ideal C0 by

C0 =
∏
v-∞

p
− dv log cv

logNpv
v(9.1)

with cv as in (2.7). Thus |C0|v = cv and

NC0 = (CfinN )d.(9.2)

Let D 6= 0 be a fractional ideal. Clearly |α|v ≤ |C−1
0 D|v for all non-archimedean v

is equivalent to α ∈ C−1
0 D. By (2.6) we conclude

ΛN (D) ⊆ σ(C−1
0 D)n+1.(9.3)

Since N is fixed we can omit the index and simply write Λ(D) for ΛN (D). Certainly
τσ(C−1

0 D) is a lattice in Rd. For each D we choose linearly independent vectors

v1 = τσ(θ1), ..., vd = τσ(θd)
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of the lattice τσ(C−1
0 D) with

|vi| = λi(τσ(C−1
0 D)) (1 ≤ i ≤ d)(9.4)

for the successive minima. Since v1, ..., vd are R-linearly independent, τ−1v1, ..., τ
−1vd

are also R-linearly independent. Hence θ1, ..., θd are Q-linearly independent and
therefore θ1

θ1
, ..., θdθ1 are Q-linearly independent. Now [K : Q] = d implies K =

Q( θ1θ1 , ...,
θd
θ1

) = k( θ1θ1 , ...,
θd
θ1

) and this allows the following definition.

Definition 9.1. Let l ∈ {1, ..., d} be minimal with K = k( θ1θ1 , ...,
θl
θ1

).

In principle l depends on k, on the lattice τσ(C−1
0 D) and on the choice of v1, ..., vd.

So it depends on k, on τ and on C0, D. But τ = τ(i) itself depends on i and on the
basis U of the unit lattice. However, k, C0 and the choice of U are fixed and for
every τσ(C−1

0 D) the choice of v1, ..., vd is fixed also such that l = l(i,D) depends
only on the ideal D and on the vector i. Moreover we have the following statement
which for k = Q is Lemma 2.1 of [5].

Lemma 9.2. We have

l ≤
[
d

2

]
+ 1.

Proof. Assume the statement is false then there exists a proper subfield K0 of K
containing the [d2 ] + 1 Q-linearly independent numbers θi

θ1
for 1 ≤ i ≤ [d2 ] + 1.

But [K0 : Q] ≤ d/2 and so K0 contains no more than d/2 Q-linearly independent
numbers contradicting the fact [d2 ] + 1 > d/2. �

We abbreviate

λi = λi(τσ(C−1
0 D))(9.5)

for 1 ≤ i ≤ d.

Lemma 9.3. Assume a ∈ {1, ..., d} and µ1, ..., µa in R with µa 6= 0 are such that
w = µ1v1 + ...+ µava lies in τσ(C−1

0 D). Then we have

|w| ≥ λa.

Proof. For a = 1 it is clear. For a > 1 we apply Lemma 4.1 of Section 4 with
V = Rv1 + ...+ Rva−1. �

Lemma 9.4. Assume l ≥ 2, and let ω0, ..., ωn in K be not all zero with k(ω0 : ... :
ωn) = K. Then not all of the ω0, ..., ωn are in kθ1 + ...+ kθl−1.

Proof. Set K0 = k( θ1θ1 , ...,
θl−1
θ1

). By definition of l we have K0 ( K. Let a, b be
in {0, ..., n} with ωb 6= 0. Suppose ωa, ωb are in kθ1 + ... + kθl−1. Then there are
αj , βj (1 ≤ j ≤ l − 1) in k such that

ωa
ωb

=

∑l−1
j=1 αjθj∑l−1
j=1 βjθj

=

∑l−1
j=1 αj

θj
θ1∑l−1

j=1 βj
θj
θ1

.

But numerator and denominator of the last fraction are in K0 and so ωa
ωb

is in
K0. So if all ω0, ..., ωn are in kθ1 + ... + kθl−1 then k(ω0 : ... : ωn) ⊆ K0 - a
contradiction. �
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Lemma 9.5. Let ω0, ..., ωn be in C−1
0 D not all zero with k(ω0 : ... : ωn) = K. Then

for v = (τσω0, ..., τσωn) in RD we have

|v| ≥ λl.

Proof. Each of the τσω0,..., τσωn lies in the lattice τσ(C−1
0 D). The sublattice

generated by v1, ..., vd has finite index in τσ(C−1
0 D). Hence there are µ(i)

j ∈ Q such
that

v =

 d∑
j=1

µ
(0)
j vj , ...,

d∑
j=1

µ
(n)
j vj

 .

Lemma 9.4 and the condition K = k(ω0 : ... : ωn) imply at least one of the numbers
µ

(i)
j for l ≤ j ≤ d, 0 ≤ i ≤ n is non-zero and so the result follows by Lemma 9.3. �

Lemma 9.6. If l ≥ 2 then
l − 1
m
≤ [k

(
θ1

θ1
, ...,

θl−1

θ1

)
: k] ≤ max{1, e/2}.(9.6)

Proof. The l− 1 numbers θ1
θ1
, ..., θl−1

θ1
are Q-linearly independent. Hence [K0 : Q] ≥

l−1 for K0 = k( θ1θ1 , ...,
θl−1
θ1

). The first inequality follows at once, since m = [k : Q].
But the second one follows immediately from the definition of l since [K : k] = e. �

Lemma 9.7. We have

λ1 ≥
√
d/2(CfinN )−1N(D)

1
d .

Moreover with K0 = k( θ1θ1 , ...,
θl−1
θ1

) if l ≥ 2 and K0 = k if l = 1 and g = [K0 : k] ∈
G(K/k) one has

λl ≥
1√
2ed

(CfinN )−1N(D)
1
d δg(K/k).

Proof. For the first statement observe that by definition

τσα = (γ1σ1α, ..., γq+1σq+1α).

So the squared length of an element τσα of τσ(C−1
0 D) is

q+1∑
i=1

|γiσiα|2 ≥
1
2

q+1∑
i=1

di|γiσiα|2.

Next we use the inequality between the arithmetic and geometric mean to deduce
that this is at least

(d/2)
q+1∏
i=1

|γiσiα|2di/d.

By (8.6) we see that the latter is (d/2)
∏q+1
i=1 |σiα|2di/d. Here

∏q+1
i=1 |σiα|di is the

absolute value of the norm of α from K to Q which is at least NC0
−1D provided

α 6= 0. Recalling (9.2) we see that NC0
−1D = (CfinN )−dND which leads to the first

statement.

Now let us prove the second estimate. First note that l = 1 is equivalent to
K = k. Thus l = 1 implies k = K, g = 1, δg(K/k) = 1 and so the claim follows
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from the first statement. Next suppose l > 1. We apply Lemma 3.3 twice to obtain
a primitive element β =

∑l
i=1mi

θi
θ1

for the extension K/k where mi are in Z and

0 ≤ mi < e (1 ≤ i ≤ l). And once more to get a primitive element α =
∑l−1
i=1m

′
i
θi
θ1

for the extension k( θ1θ1 , ...,
θl−1
θ1

)/k with m′1, ...,m
′
l−1 in Z and 0 ≤ m′i < e (1 ≤ i ≤

l − 1). So k(α, β) = K and [k(α) : k] = g. Using the product formula we get

δg(K/k)d ≤ H(1, α, β)d =
∏
v-∞

max{|θ1|v, |
l−1∑
i=1

m′iθi|v, |
l∑
i=1

miθi|v}dv

q+1∏
j=1

max{|σjθ1|, |σj(
l−1∑
i=1

m′iθi)|, |σj(
l∑
i=1

miθi)|}dj .

Because θ1, ..., θl are in C−1
0 D this is

≤ N(C−1
0 D)−1

q+1∏
j=1

(le)dj max{|σjθ1|, ..., |σjθl|}dj ,

and since
∏q+1
j=1 γ

dj
j = 1 this in turn is

= (le)dN(C−1
0 D)−1

q+1∏
j=1

max{γj |σjθ1|, ..., γj |σjθl|}dj

= (le)d(CfinN )dN(D)−1

q+1∏
j=1

max{γj |σjθ1|, ..., γj |σjθl|}2dj
 1

2

= (le)d(CfinN )dN(D)−1

q+1∏
j=1

|wj |2dj∞

 1
2

where wj is the vector (γjσjθ1, ..., γjσjθl) in Rl if j ≤ r and in Cl if j > r and | · |∞
denotes the maximum norm. Now using the inequality between the arithmetic and
geometric mean and | · | ≥ | · |∞ for the l2-norm | · | we may estimate the above by

≤ (le)d(CfinN )dN(D)−1

1
d

q+1∑
j=1

dj |wj |2
 d

2

≤ (le)d(2/d)d/2(CfinN )dN(D)−1

q+1∑
j=1

|wj |2
 d

2

.(9.7)

The vector (τσθ1, ..., τσθl) in Rld has squared length exactly

q+1∑
j=1

|(γjσjθ1, ..., γjσjθl)|2,

so that the right-hand side of (9.7) is

= (le)d(2/d)d/2(CfinN )dN(D)−1|(τσθ1, ..., τσθl)|d.(9.8)
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Moreover by (9.4) one has

|(τσθ1, ..., τσθl)| = (|v1|2 + ...+ |vl|2)
1
2 ≤
√
lλl.(9.9)

Note that by definition l ≤ d. Combining (9.8) and (9.9) yields the desired result.
�

10. Application of counting

Recall the partition (8.5) of SF (T ). In this section we concentrate on the com-
ponent SF (0)(T ). We will use Theorem 5.4 to estimate the number of points in
τΛ(D) ∩ SF (0)(T ) satisfying a certain primitivity condition. Let S1 ⊆ σKn+1 and
S2 ⊆ RD be sets with |S1 ∩ S2| or |τS1 ∩ S2| finite. We use the following notation

Z∗(S1, S2) = |{σω ∈ S1 ∩ S2;ω 6= 0, k(ω0 : ... : ωn) = K}|(10.1)

Z∗τ (τS1, S2) = |{τσω ∈ τS1 ∩ S2;ω 6= 0, k(ω0 : ... : ωn) = K}|.(10.2)

We recall that τ and σ are injective. Hence (10.1) and (10.2) are well-defined and
moreover

Z∗(S1, S2) = Z∗τ (τS1, τS2).(10.3)

It might be worth to repeat (9.5) namely

λi = λi(τσ(C−1
0 D))

for 1 ≤ i ≤ d.
Recall also definition (2.21)

µg = m(e− g)(n+ 1)− 1.

Inclusion (8.13) tells us in particular SF (0)(T ) is bounded.

First suppose q > 0.
We apply Lemma 7.1 not to F but to

F (0) = [0, 1)
u1

n1
+ ...+ [0, 1)

uq
nq
.

Remember that by (8.1)

|uj
nj
| = |uj |

[|uj |] + 1
< 1.

We refer to (7.1) and the observations just after to conclude that ∂F (0) lies in
Lip(q + 1, 2, 2q, q − 1). Furthermore it is clear that F (0) lies in a ball of radius
rF (0) = q. Applying Lemma 7.1 gives that the boundary

∂SF (0)(1) lies in Lip(D, 1, M̃ , L̃)(10.4)

where

M̃ = (2q + 1)Mq+1,

L̃ = 3
√
D(2q) exp(

√
q(2q − 1))(L+ CinfN ).
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In the sequel it will sometimes be convenient to use Vinogradov’s� notation. The
implied constant will depend on n and d only. Thus we have

M̃ �Mq+1 ≤Md,

L̃� L+ CinfN .

Now suppose q = 0.
Therefore we have SF (0)(1) = SF (1). Recalling the observation just after Lemma
7.1 shows directly that (10.4) holds with M̃ = M ≤Md and L̃ = L ≤ L+ CinfN .

By Theorem 5.4 we deduce that SF (0)(1) is measurable. Since by (8.11) SF (0)(T ) =
TSF (0)(1) we conclude that the latter remains true for SF (0)(T ). So the quantities
Vol SF (0)(T ) and |τΛ(D) ∩ SF (0)(T )| are well-defined and finite.

Proposition 10.1. With A = AN as in Theorem 3.2, T > 0 and g = [K0 : k] as
in Lemma 9.7 we have

|Z∗τ (τΛ(D), SF (0)(T ))−
Vol SF (0)(T )

det τΛ(D)
| � AT d(n+1)−1

NDn+1−1/dδg(K/k)µg
.

Proof. Recall that A = Md(C(L+ 1))d(n+1)−1. We have

µg = (d−mg)(n+ 1)− 1 ≤ (d− l + 1)(n+ 1)− 1

by Lemma 9.6 provided l ≥ 2. But if l = 1 then K = k and thus G(K/k) = {1},
so g = 1. Hence for l = 1 the inequality remains valid. Thanks to Lemma 9.7 and
(2.9) relating C = CN and CinfN it is enough to verify the claim

|Z∗τ (τΛ(D), SF (0)(T ))−
Vol SF (0)(T )

det τΛ(D)
| �Md (CinfN (L+ 1)T )d(n+1)−1

λ
(l−1)(n+1)
1 λ

(d−l+1)(n+1)−1
l

.(10.5)

Remember also inclusion (8.13) telling us

SF (0)(T ) ⊆ B0(κT )(10.6)

where κ =
√
d(n+ 1)CinfN exp(q).

We consider two cases.

(1) T < κ−1λl.

Now (10.6) shows that |v| < λl for each v in SF (0)(T ). From (9.3) we get τΛ(D) ⊆
τ(σ(C−1

0 D)n+1) and so Lemma 9.5 implies

Z∗τ (τΛ(D), SF (0)(T )) = 0.

On the other hand
Vol SF (0)(T )

det τΛ(D)
≤ Vol B0(κT )

det τ(σ(C−1
0 D)n+1)

.

Since det(Λn+1
0 ) = (det Λ0)n+1 for any lattice Λ0 in Rd the latter is

=
Vol B0(κT )

det(τσ(C−1
0 D))n+1

.
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Because of Vol B0(R) � Rd(n+1), Minkowski’s Second Theorem and (1) this in
turn is

� (κT )d(n+1)

det(τσ(C−1
0 D))n+1

� (κT )d(n+1)

(λ1...λd)n+1

� λl(κT )d(n+1)−1

(λ1...λd)n+1
�

(CinfN T )d(n+1)−1

λ
(l−1)(n+1)
1 λ

(d−l+1)(n+1)−1
l

.

This implies (10.5) in case (1) because M ≥ 1.

(2) T ≥ κ−1λl.

Thus for 1 ≤ i ≤ l one has

CinfN
T

λi
� 1.(10.7)

Set

S = τΛ(D) ∩ SF (0)(T ).

Notice that by definition (6.2) 0 is not in SF (0)(T ) for all T > 0. Thus we can
define

S′ = {v ∈ S; v = (τσω0, ..., τσωn), k(ω0 : ... : ωn) ( K}.
Clearly

Z∗τ (τΛ(D), SF (0)(T )) = |S| − |S′|.

Let us estimate |S| first. Due to (10.4) we know that ∂SF (0)(1) lies in Lip(D, 1, M̃ , L̃)
where M̃ � Md and L̃ � L + CinfN . By (8.11) we see that ∂SF (0)(T ) is in
Lip(D, 1, M̃ , L̃T ). Next we apply Theorem 5.4 of Section 5 to deduce

||S| −
Vol SF (0)(T )

det τΛ(D)
| � M̃ max

0≤j≤d(n+1)−1

(L̃T )j

λ1(τΛ(D))...λj(τΛ(D))

�Md max
0≤j≤d(n+1)−1

((L+ CinfN )T )j

λ1(τΛ(D))...λj(τΛ(D))
.(10.8)

From (9.3) we get

λj(τΛ(D)) ≥ λj((τσ(C−1
0 D))n+1)(10.9)

for 1 ≤ j ≤ d(n + 1). We abbreviate the right-hand side of (10.9) to νj . Inserting
this estimate in (10.8) and then using CinfN ≥ 1 in the form L+CinfN ≤ (L+1)CinfN
yields the bound

�Md(L+ 1)d(n+1)−1 max
0≤j≤d(n+1)−1

(CinfN T )j

ν1...νj
.(10.10)

Consider the expressions

Ej =
(CinfN T )j

ν1...νj
(10.11)

in (10.10). From Lemma 4.2 we see that ν1, ..., νD are

λ1, ..., λ1, λ2, ..., λ2, ..., λd, ..., λd
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in blocks of n+ 1. Thus for j ≤ (l − 1)(n+ 1) we have νj ≤ λl. So in this case

Ej = Ej−1
CinfN T

νj
� Ej−1.(10.12)

Therefore the maximum over these j in (10.11) is

� E(l−1)(n+1) =
(CinfN T )(l−1)(n+1)

(λ1...λl−1)n+1
≤

(CinfN T )(l−1)(n+1)

λ
(l−1)(n+1)
1

.(10.13)

For the other j > (l − 1)(n+ 1) we get νj ≥ λl so

Ej ≤ Ej−1
CinfN T

λl
(10.14)

which contribute an extra(
CinfN T

λl

)d(n+1)−1−(l−1)(n+1)

� 1

to the maximum in (10.13). This yields the bound

�Md(CinfN (L+ 1))d(n+1)−1 T d(n+1)−1

λ
(l−1)(n+1)
1 λ

(d−l+1)(n+1)−1
l

(10.15)

for (10.10).

Next we shall obtain an upper bound for |S′|. For (τσω0, ..., τσωn) in S′ the
field k(ω0 : ... : ωn) lies in a strict subfield, say K1, of K. Hence there exist two
different embeddings σa, σb of K with

σaα = σbα

for all α in K1. Now (τσω0, ..., τσωn) 6= 0 hence at least one of the numbers
ω0, ..., ωn is non-zero. By symmetry we lose only a factor n + 1 if we assume
ω0 6= 0. So let us temporarily regard ω0 6= 0 as fixed; then every ωj for 1 ≤ j ≤ n
satisfies

σa
ωj
ω0

= σb
ωj
ω0
.

Let z0, z1 be in R with z0 + iz1 = σaω0
σbω0

. Then we get

<σaωj = z0<σbωj − z1=σbωj ,
=σaωj = z1<σbωj + z0=σbωj ,

where we used < for the real and = for the imaginary part of a complex number.
This shows that all σωj for 1 ≤ j ≤ n lie in a hyperplane P(ω0) of Rd and therefore
all τσωj lie in the hyperplane τP(ω0). The inclusion (10.6) implies |τσωj | ≤ κT .
The intersection of a ball with radius r and a hyperplane in Rd is a ball in some Rd−1

with radius r′ ≤ r. It is easy to see that it belongs to the class Lip(d, 1, 1, 2
√
d− 1r)

(for example using (A.1) from Appendix with q = d − 1 and rF =
√
d− 1r′ if the

center is at the origin). Moreover its d-dimensional volume is zero. Hence by
Theorem 5.4 and (10.7) we obtain the upper bound

� max
0≤i<d

(κT )i

λ1...λi
�

(CinfN T )d−1

λl−1
1 λd−ll
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for the number of τσωj with 1 ≤ j ≤ n.

Next we have to estimate the number of τσω0. By inclusion (10.6) we see once
more that |τσω0| ≤ κT . Now by virtue of Theorem 5.4 we deduce the following
upper bound

� Vol B0(κT )
det τσ(C−1

0 D)
+ max

0≤i<d

(κT )i

λ1...λi

for the number of τσω0. Going right up to the last minimum, we see that this is
bounded by

� max
0≤i≤d

(κT )i

λ1...λi

and taking (10.7) into account yields the upper bound

�
(CinfN T )d

λl−1
1 λd−l+1

l

.

Multiplying the bounds for the number of τσω0 and τσωj and then summing over
all strict subfields K1 of K leads to

|S′| �
(CinfN T )d

λl−1
1 λd−l+1

l

(
(CinfN T )d−1

λl−1
1 λd−ll

)n
=

(CinfN T )d(n+1)−n

λ
(l−1)(n+1)
1 λ

(d−l+1)(n+1)−n
l

.

We appeal once more to (10.7) with i = l to see that the latter is

�
(CinfN T )d(n+1)−1

λ
(l−1)(n+1)
1 λ

(d−l+1)(n+1)−1
l

.

Combining the estimates for |S| and |S′| proves the claim (10.5) in case (2), hence
the proposition. �

11. Proof of Theorem 3.1

Let Λ∗(A) be the subset of Λ(A) defined by

Λ∗(A) = {σ(α); α ∈ Kn+1, Nv(σvα) = |A|v for all finite v}.

Recall also definition (10.1). As in Section 10 the star ∗ indicates some primitivity
condition. However, the property defining the set above has nothing to do with the
one in Section 10.

Lemma 11.1. For X > 0 we have

ZN (Pn(K/k), X) = w−1
K

∑
A∈R

Z∗(Λ∗(A), SF (NA
1
dX))

where the sum runs over any system R of ideal class representatives of K.

Proof. Let P ∈ Pn(K) with homogeneous coordinates (α0, ..., αn) = α ∈ Kn+1\{0}.
Thanks to the uniqueness of the prime factorization for non-zero fractional ideals
together with property Nv(σvKn+1) ⊆ Γv, we may conclude that there is exactly
one ideal A = Aα such that

Nv(σvα) = |A|v(11.1)
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for all finite v. Suppose ε ∈ K∗ then we have

Nv(σvεα) = |σvε|vNv(σvα)

for all finite v. Hence Aεα = εAα; in other words the ideal class of Aα is inde-
pendent of the coordinates α we have chosen. In particular we can choose α such
that Aα lies in R and so α is unique up to units η. The set F (∞) = F + Rδ is a
fundamental set of Rq+1 under the action of the additive subgroup l(U). Because
of (ii) of Section 2 we have

logNi(σi(ηα))di = logNi(σiα)di + di log |σiη|

for 1 ≤ i ≤ q + 1. And so there exist exactly wK representatives α of P with

(d1 logN1(σ1α), ..., dq+1 logNq+1(σq+1α)) ∈ F (∞).

But the above is equivalent with

(N1(σ1α)d1 , ..., Nq+1(σq+1α)dq+1) ∈ exp(F (∞)).

Furthermore

exp(F (T0)) = {(X1, ..., Xq+1) ∈ exp(F (∞));X1...Xq+1 ≤ T d0 }.

By definition (see end of Section 2) Hinf
N (α), Hfin

N (α) are invariant under substi-
tution of α by ωα where ω denotes a root of unity in K. Hence for all wK possible
choices α of P the inequality

Hinf
N (α) ≤ T0

is equivalent to

σα ∈ SF (T0).

On the other hand

HN (P ) = Hinf
N (α)Hfin

N (α)

and by (11.1)

Hfin
N (α)d =

∏
v-∞

|A|dvv = NA−1,

which completes the proof. �

Let Cl be the set of ideal classes and for (non-zero) ideals A, B, C denote by A,
B, C the ideal classes of A, B and C. Recall from (2.13) that the function ∆N (·) is
well-defined on Cl.

Lemma 11.2. We have∑
A∈R

∑
B

µ(B)
NBn+1

∆N (AB)−1 =
1

ζK(n+ 1)

∑
D∈Cl

∆N (D)−1(11.2)

where the inner sum on the left-hand side runs over all non-zero ideals B in OK .
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Proof. We have∑
A∈R

∑
B

µ(B)
NBn+1

∆N (AB)−1 =
∑
A∈Cl

∑
B

µ(B)
NBn+1

∆N (AB)−1

=
∑
A∈Cl

∑
C∈Cl

∆N (AC)−1
∑
B∈C

µ(B)
NBn+1

=
∑
A∈Cl

∑
D∈Cl

∆N (D)−1
∑

B∈D/A

µ(B)
NBn+1

=
∑
D∈Cl

∆N (D)−1
∑
A∈Cl

∑
B∈D/A

µ(B)
NBn+1

=
∑
D∈Cl

∆N (D)−1
∑
B

µ(B)
NBn+1

where the last sum is over all non-zero ideals B in OK . Now we just have to
remember the fact that

∑
B
µ(B)
NBs = ζK(s)−1 for s > 1 (so in particular for s = n+1)

and the result drops out. �

The image of σv(Kn+1\{0}) under the map Nv lies in Γ∗v and for all non-zero
α in Kn+1 there are only finitely many v with Nv(σvα) 6= 1. So assume α is in
Kn+1\{0}; then Nv(σvα) ≤ |A|v for all v -∞ is equivalent with the existence of a
unique B = B(α) ⊆ OK , B 6= 0 such that Nv(σvα) = |AB|v for all v -∞. Hence
from (2.12) we have the following disjoint union

Λ(A) =
⋃
B

Λ∗(AB)

and therefore

Z∗(Λ(A), SF (T )) =
∑
B

Z∗(Λ∗(AB), SF (T ))

for any T > 0. Using the Möbius function µK of K we get by inversion

Z∗(Λ∗(A), SF (T )) =
∑
B

µK(B)Z∗(Λ(AB), SF (T )).(11.3)

Applying (8.5) we find

Z∗(Λ(AB), SF (T )) =
∑
i

Z∗(Λ(AB), SF (i)(T ))

where i is taken over the same set as in (8.5). Referring to (10.3) we see that the
latter is

=
∑
i

Z∗τi(τiΛ(AB), τiSF (i)(T ))

and by (8.9) this in turn is

=
∑
i

Z∗τi(τiΛ(AB), SF (0)(T )).

Thus

Z∗(Λ(AB), SF (T )) =
∑
i

Z∗τi(τiΛ(AB), SF (0)(T ))(11.4)



32 MARTIN WIDMER

and again i is taken over the same set as in (8.5). Next we apply Proposition
10.1 with D = AB. To emphasize the dependence on i and AB we can think of
g = g(i,AB). We get

Z∗τi(τiΛ(AB), SF (0)(T )) =
Vol SF (0)(T )
det τiΛ(AB)

+O

(
AT d(n+1)−1

(NAB)n+1−1/dδg(K/k)µg

)
.

By (8.8) we have det τiΛ(AB) = det Λ(AB) and taking also into account (8.9) and
(8.5) gives∑

i

Vol SF (0)(T ) =
∑
i

Vol τiSF (i)(T ) =
∑
i

Vol SF (i)(T ) = Vol SF (T ).

Referring back to (11.4) we conclude

Z∗(Λ(AB), SF (T )) =
∑
i

Z∗τi(τiΛ(AB), SF (0)(T ))

=
Vol SF (T )
det Λ(AB)

+O

(
AT d(n+1)−1

(NAB)n+1−1/d

∑
i

δg(K/k)−µg
)
.(11.5)

Let us focus on the error term. Recall that g = g(i,AB) = [K0 : k] ∈ G = G(K/k)
where K0 = k(θ1/θ1, ..., θl−1/θ1) if l ≥ 2 and K0 = k if l = 1. Thus the

∑
i above

can be replaced by t
∑
g∈G with t =

∑
i 1. By (8.3) we have

t� RK

and (8.10) says

SF (T ) = TSF (1).

Thus by (11.3) we get

Z∗(Λ∗(A), SF (T )) =
∑
B

µK(B)
Vol SF (1)T d(n+1)

det Λ(AB)
(11.6)

+O

∑
B

ARKT
d(n+1)−1

(NAB)n+1−1/d

∑
g∈G

δg(K/k)−µg

 .

According to Lemma 11.1 we set

T = T (A) = NA
1
dX.

By (2.14) we see that

det Λ(AB) = ∆N (AB)(NAB)n+1

for the corresponding ideal classes A,B. Therefore (11.6) with T = NA
1
dX is equal∑

B

µK(B)
NBn+1

∆N (AB)−1Vol SF (1)Xd(n+1)

+O

∑
B

ARKX
d(n+1)−1

NBn+1−1/d

∑
g∈G

δg(K/k)−µg

 .
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Lemma 11.1 tells us that this quantity has to be summed over a set R of ideal
class representatives A and divided by the number wK of roots of unity. Applying
Lemma 11.2 yields

ZN (Pn(K/k), X) =
1

ζK(n+ 1)wK

∑
D∈Cl

∆N (D)−1Vol SF (1)Xd(n+1)

+O

∑
B

AhKRKX
d(n+1)−1

NBn+1−1/d

∑
g∈G

δg(K/k)−µg

 .

By (2.15) we have ∑
D∈Cl

∆N (D)−1 = 2sK(n+1)hKV
fin
N |∆K |−

n+1
2 .

The volume of SF (1) has been computed by Masser and Vaaler in [11] Lemma 4

Vol SF (1) = (n+ 1)qRKV
inf
N .

On recalling that VN = V finN V infN we end up with

1
ζK(n+ 1)wK

2sK(n+1)hKV
fin
N |∆K |−

n+1
2 (n+ 1)qRKV

inf
N Xd(n+1)

=SK(n)2−rK(n+1)π−sK(n+1)VNX
d(n+1)

for the main term - exactly the main term of the theorem.

To deal with the error term we assume first (n, d) 6= (1, 1). It is well-known that
ζK(x) ≤ ζQ(x)d for x > 1 (see Lang [7] p.322). Thus we have∑

B

NB−(n+1−1/d) � 1

and so we are done. Next assume (n, d) = (1, 1) so k = K = Q, q = 0 and therefore
SF (0)(T ) = SF (T ). By (8.13) we have SF (T ) ⊆ B0(κT ) and here κ =

√
2CinfN .

From Lemma 9.7 we get λ1 ≥ (1/
√

2)(CfinN )−1ND. It follows without difficulty
that B0(κT ) contains no point of the lattice (σC−1

0 D)2 except the origin provided
T < (1/2)C−1

N ND. But the origin does not lie in SF (T ) and on recalling the
inclusion (9.3) we deduce SF (T ) ∩ ΛN (D) is empty for T < (1/2)C−1

N ND. Hence
we may restrict the sum over B in (11.3) to NB ≤ 2CNTNA−1. Thus by (11.3)

Z∗(Λ∗(A), SF (T )) =
∑

B
NB≤2CN TNA−1

µK(B)Z∗(Λ(AB), SF (T ))

and by (11.6) we get for the latter

∑
B

NB≤2CN TNA−1

µK(B)
Vol SF (1)T 2

det Λ(AB)
+O

 ∑
B

NB≤2CN TNA−1

ARKT

NAB

∑
g∈G

δg(K/k)−µg

 .

Here G = {1} and δg = 1. Now in order to get the main term as in the case
(n, d) 6= (1, 1) we let the sum run over all non-zero B in OK and correct by an
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additional error term

∑
B

µK(B)
Vol SF (1)T 2

det Λ(AB)
+O

 ∑
B

NB>2CN TNA−1

Vol SF (1)T 2

det Λ(AB)


+O

 ∑
B

NB≤2CN TNA−1

ARKT

NAB

 .

We set T = XNA and by Lemma 11.1 we see that this quantity has to be summed
over a set R of ideal class representatives A and divided by the number wK of roots
of unity. But here K = Q so R consists just of a single class, wK = 2 and RK = 1.
Thus

ZN (Pn(K/k), X) =2−1
∑
B

µK(B)
Vol SF (1)(XNA)2

det Λ(AB)

+O

 ∑
B

NB>2CNX

Vol SF (1)(XNA)2

det Λ(AB)

+O

 ∑
B

NB≤2CNX

AX

NB

 .

As in the previous case the first term leads exactly to the predicted main term.
For the first error term we appeal once more to (8.13) to get Vol SF (1)� (CinfN )2.
Using inclusion (9.3) we get ΛN (AB) ⊆ (σC−1

0 AB)2 and therefore

det ΛN (AB) ≥ det(σC−1
0 AB)2 = (CfinN )−2(NANB)2.

So the first error term is reduced to

C2
NX

2
∑

B
NB>2CNX

NB−2

and so is

O(CNX) = O(AXL).

The second error term is even easier; namely∑
B

NB≤2CNX

AX

NB
≤ AX max{0, 1 + log(2CNX)} = O(AXL).

This completes the proof of Theorem 3.1.

Appendix A. Proof of Lemma 7.1.

Using the notation of Section 6 let us first recall the statement of the lemma.

Lemma A.1. Suppose q ≥ 1 and let F be a set in Σ such that ∂F is in Lip(q +
1, 2,M ′, L′) and moreover assume F lies in B0(rF ). Then ∂SF (1) is in Lip(D, 1, M̃ , L̃)
where one can choose

M̃ = (M ′ + 1)Mq+1

L̃ = 3
√
D(L′ + rF + 1) exp(

√
q(L′ + rF ))(L+ CinfN ).
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Proof. For 1 ≤ i ≤M ′ let

ψ(i) : [0, 1]q−1 −→ Rq+1

be the parameterizing maps of ∂F with Lipschitz constants L′. Choose an or-
thonormal basis e1, ..., eq of Σ. The affine map ν : [0, 1]q −→ Σ defined by

ν(t) = (1− 2t1)rF e1 + ...+ (1− 2tq)rF eq(A.1)

is a Lipschitz parameterization covering the topological closure F with Lipschitz
constant 2rF . Since δ is not in Σ the boundary ∂F (1) consists of two parts

∂(F (1)) = (∂(F ) + (−∞, 0]δ) ∪ F .

So we see that ∂(F (1)) is parameterized by M ′ + 1 maps. Here the parameter
domain is not compact anymore but this problem can easily be eliminated as we
shall see in a moment. Since F is bounded we may use (6.1) to get

∂(exp(F (1))) = exp(∂(F (1))) ∪ {0}
= exp(∂(F ) + (−∞, 0]δ) ∪ exp(F ) ∪ {0}.(A.2)

With a ψ = (ψ1, ..., ψq+1) = ψ(i) as above, the first part is covered by

Φ = exp(ψ + tδ) = (eψ1+td1 , ..., eψq+1+tdq+1) = (eψ1ud1 , ..., eψq+1udq+1)(A.3)

with parameter domain [0, 1]q−1 × (−∞, 0] and u = et in (0, 1]. Now we simply
choose u as parameter instead of t and extend its parameter range from (0, 1] to
[0, 1] to cover the origin. The remaining part of (A.2) is covered by

Φ = exp(ν).(A.4)

We use t for the parameter variables in [0, 1]q, not just for (A.4) as in (A.1) but
also for (A.3). So until now we have M ′ + 1 maps. We denote them by Φ(i) for
1 ≤ i ≤ M ′ + 1 or more simply Φ. The Ni are continuous functions and therefore
∂SF (1) consists of these (z1, ..., zq+1) in

∏q+1
i=1 Rdi(n+1) = Rd(n+1) such that

(N1(z1)d1 , ..., Nq+1(zq+1)dq+1) ∈ ∂(exp(F (1))).

By our assumptions on N there are maps

η
(j)
i : [0, 1]di(n+1)−1 −→ Rdi(n+1)(A.5)

for 1 ≤ i ≤ q+ 1 and 1 ≤ j ≤M satisfying a Lipschitz condition and whose images
cover the sets

{z ∈ Rdi(n+1);Ni(z) = 1}.(A.6)

We write more simply ηi. For real ζ ≥ 0 the images of ζηi cover the sets {z ∈
Rdi(n+1);Ni(z) = ζ} and with Φ = (Φ1, ...,Φq+1) we obtain a parameterization of
∂SF (1) by maps

(Φ1(t)
1
d1 η1(t(1)), ...,Φq+1(t)

1
dq+1 ηq+1(t(q+1))).(A.7)

We have M ′ + 1 possibilities for Φ and M possibilities for each ηi. Hence the total
number of parameterization maps is (M ′ + 1)Mq+1 and the number of parameters
is q +

∑q+1
i=1 (di(n+ 1)− 1) = d(n+ 1)− 1 = D − 1 as desired.

To verify the Lipschitz conditions and to compute a Lipschitz constant we make
use of the following assertions.
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(1) Suppose fi : [0, 1]D−1 −→ Rni have Lipschitz constants Li (1 ≤ i ≤ q + 1).
Then f = (f1, ..., fq+1) : [0, 1]D−1 −→ Rn1+...+nq+1 has a Lipschitz constant√
L2

1 + ...+ L2
q+1.

(2) Suppose f : [0, 1]E−1 −→ Rn has a Lipschitz constant L. Then for any
D > E the function f ′ : [0, 1]D−1 −→ Rn defined by f ′(x,x′) = f(x) also
has a Lipschitz constant L.

(3) Assume f : [0, 1]E −→ R, f ′ : [0, 1]E
′ −→ Rn are functions with Lipschitz

constants L,L′. Then
√

2 max{‖f ′‖∞L, ‖f‖∞L′} is a Lipschitz constant
of the function g : [0, 1]E+E′ −→ Rn defined by g(x,x′) = f(x)f ′(x′),
where ‖f‖∞ = sup |f |, ‖f ′‖∞ = sup |f ′| for the euclidean norms |f |, |f ′|.

Here (1) and (2) are clear. To prove (3) we write f ′ = (f ′1, ..., f
′
n) so that

|g(x,x′)− g(y,y′)|2 =
n∑
i=1

(f(x)f ′i(x
′)− f(y)f ′i(y

′))2

which because of

(aa′ − bb′)2 = (a′(a− b) + b(a′ − b′))2 ≤ 2(a′2(a− b)2 + b2(a′ − b′)2)

is at most

2
n∑
i=1

(f ′i(x
′)2(f(x)− f(y))2 + (f(y)2(f ′i(x

′)− f ′i(y′))2)

≤2(‖f ′‖2∞L2|x− y|2 + ‖f‖2∞L′2|x′ − y′|2).

Now (3) follows because the squared distance between (x,x′) and (y,y′) is |x −
y|2 + |x′ − y′|2.

Back to (A.7). First we will apply (3) to compute Lipschitz constants of the
single components in (A.7) and then we will make use of (2) and (1) to establish
the final Lipschitz constant. According to (A.3) and (A.4) respectively two cases
for Φ may arise. For the first case we have

‖Φ
1
di
i ‖∞ = ‖e

ψi
di u‖∞ ≤ ‖e

ψi
di ‖∞ ≤ e‖

ψi
di
‖∞ = Ei,(A.8)

say. We may assume that the image Imψ of ψ meets ∂F in a point P (for if not
then we can omit ψ) and so by assumption |P | ≤ rF . Let P ′ be an arbitrary
point in Imψ. Using the Lipschitz condition and the triangle inequality yields
|P ′| ≤ rF +

√
q − 1L′ and therefore

‖ψi‖∞ ≤
√
q − 1L′ + rF .(A.9)

If we plug this in (A.8) we obtain

‖Φ
1
di
i ‖∞ ≤ Ei ≤ exp

(√
q − 1L′

di
+
rF
di

)
≤ exp

(√
q

di
(L′ + rF )

)
.(A.10)

Now notice that ‖ν‖∞ =
√
qrF and therefore ‖ exp(ν/di)‖∞ ≤ exp(

√
qrF /di). This

shows that the estimate (A.10) holds also in the second case (A.4).
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Next let us compute a Lipschitz constant Li of Φ
1
di
i . We proceed by distinguishing

the cases (A.3) and (A.4). For the first case we observe that 1 is a Lipschitz constant

of f = u and furthermore ‖u‖∞ = 1. Also for f ′ = e
ψi
di we have ‖f ′‖∞ ≤ Ei, and

the Mean Value Theorem leads to a Lipschitz constant for f ′ of the form EiL
′/di.

So by (3) we get a Lipschitz constant for Φi
1
di = ff ′ of the form

√
2
(
L′

di
+ 1
)
Ei ≤

√
2(L′ + 1) exp

(√
q

di
(L′ + rF )

)
using (A.10).
Similarly we recover the Lipschitz constant

2rF
di

exp
(√

qrF

di

)
for Φ

1
di
i in the second case (A.4). We choose

Li = 2(L′ + rF + 1) exp
(√

q

di
(L′ + rF )

)
(A.11)

to cover both cases at once.

Back to (A.7) again. We intend to apply (3) to Φi(t)
1
di ηi(t(i)) = ff ′. We may

assume that (A.6) and the image of ηi have a common point, say Q. Hence by (2.6)
and (2.8) we get |Q| ≤

√
n+ 1CinfN . Since L is a Lipschitz constant of ηi we see as

in (A.9) that

‖ηi‖∞ ≤
√
di(n+ 1)− 1L+

√
n+ 1CinfN ≤

√
di(n+ 1)(L+ CinfN ).(A.12)

Now using (3) with (A.10), (A.11) and (A.12) yields the Lipschitz constant

3
√
di(n+ 1)(L′ + rF + 1) exp

(√
q

di
(L′ + rF )

)
(L+ CinfN )

for the component functions in (A.7). Finally we extend the component functions
as in (2) on [0, 1]d(n+1)−1 to use (1). This leads to the final Lipschitz constant

3
√
D(L′ + rF + 1) exp(

√
q(L′ + rF ))(L+ CinfN ).

�
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