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Abstract. We establish upper bounds for the smallest height of a generator
of a number field k over the rational field Q. Our first bound applies to all

number fields k having at least one real embedding. We also give a second
conditional result for all number fields k such that the Dedekind zeta-function

associated to the Galois closure of k/Q satisfies GRH. This provides a partial

answer to a question of W. Ruppert.

1. Introduction

Let Q denote an algebraic closure of the field Q of rational numbers, and for α
in Q let H(α) denote the absolute, multiplicative Weil height of α. If k ⊆ Q is an
algebraic number field, we consider the problem of showing that k = Q(α), where
the height of α can be estimated by invariants of k. In particular we are interested
in showing that k is generated over Q by an element α that has relatively small
height.

Let ∆k denote the discriminant of the number field k. In [5, Question 2]
W. Ruppert proposed the following more precise question.

Question 1.1. [Ruppert, 1998] Does there exist a positive constant B = B(d)
such that, if k is an algebraic number field of degree d over Q, then there exists an
element α in k such that

(1.1) k = Q(α), and H(α) ≤ B
∣∣∆k

∣∣1/2d
?

In fact Ruppert stated this question using the naive height of α, but elementary
inequalities between the two heights imply that (1.1) is equivalent to the bound
that Ruppert proposed. Ruppert himself gave a positive answer to Question 1.1
for d = 2 ([5, Proposition 2]), and also for totally real number fields k of prime
degree ([5, Proposition 3]). The analogous question for function fields in positive
characteristic has been answered positively by the second author in [8]. In this note
we give a positive answer for all number fields k having at least one embedding into
R, and with a constant B ≤ 1 for all such k. Our argument is a simple application
of Minkowski’s first theorem in the geometry of numbers over the adele space kA
associated to k.
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Theorem 1.2. Let k be an algebraic number field with degree d over Q and
assume that k has at least one embedding into R. Then there exists an element α
in k such that

(1.2) k = Q(α), and H(α) ≤
( 2

π

)s/d∣∣∆k

∣∣1/2d
,

where s is the number of complex places of k.

If all the embeddings of k into C are complex then the situation is more compli-
cated. In this case an alternative application of Minkowski’s first theorem over kA
leads to a bound that depends on the existence of certain rational prime numbers
p such that the principal ideal 〈p〉 in Ok has a prime ideal factor with residue class
degree equal to 1. It is also necessary that a finite product of such rational primes
be slightly larger than |∆k|

1
2 . In order to establish the existence of such rational

primes, we must assume that the Dedekind zeta-function ζl(s) associated with the
Galois closure l of the extension k/Q satisfies the Generalized Riemann Hypothesis.
This leads to a bound for the height of a generator as anticipated by Ruppert in
(1.1), and with B = B(d) depending effectively on the degree d.

Theorem 1.3. For each integer d ≥ 2 there exists an effectively computable
positive number B = B(d) having the following property. Let k be an algebraic
number field with degree d over Q, let l be the Galois closure of the extension
k/Q, and assume that the Dedekind zeta-function ζl(s) associated to l satisfies the
Generalized Riemann Hypothesis. Then there exists an element α in k such that

(1.3) k = Q(α), and H(α) ≤ B
∣∣∆k

∣∣1/2d
.

We obtain this conditional result by applying an effective version of the Cheb-
otarev density theorem proved by Lagarias and Odlyzko in [3].

A lower bound for the height of a generator, somewhat analogous to the upper
bounds (1.2) and (1.3), can be derived from a result of Silverman. More precisely, it
follows from [6, Theorem 2] that for 2 ≤ d there exists a positive constant b = b(d)
such that if k/Q is an extension of degree d and α is an element of k with k = Q(α),
then

(1.4) b
∣∣∆k

∣∣1/2d(d−1) ≤ H(α).

A related problem concerning the existence of a vector space basis for the
extension k/Q of relatively small projective height has been treated by Roy and
Thunder [4].

2. Preliminaries

We suppose that r is the number of real places of k and s is the number of
complex places of k, so that r + 2s = d. Then we define the field constant

(2.1) ck =
( 2

π

)s/d∣∣∆k

∣∣1/2d
.

We have ( 2

π

) 1
2 ≤

( 2

π

)s/d
≤ 1,

so that this factor is of no significance for our purposes here. However, the constant
ck occurs naturally in a basic formula for the Haar measure of certain subsets of the
adele ring kA associated to k. At each place v of k we let kv denote the completion of
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k with respect to an absolute value from v, and we write dv = dv(k/Q) = [kv : Qv]
for the local degree at v. Let ‖ ‖v be the unique absolute value at the place v
which extends either the usual Euclidean absolute value on Q, or the usual p-adic
absolute value on Q. We also define a second absolute value | |v from the place v
by setting

| |v = ‖ ‖dv/d
v .

At each place v we define Ov ⊆ kv by

Ov =

{
{ξ ∈ kv : |ξ|v < 1} if v|∞,
{ξ ∈ kv : |ξ|v ≤ 1} if v -∞.

It follows that ∏
v

Ov ⊆ kA,

and from the product formula we get

k ∩
∏
v

Ov = {0}.

At each place v of k we select a Haar measure βv defined on the Borel subsets
of kv and normalized as follows. If v is a real place then βv is the ordinary Lebesgue
measure, and if v is a complex place then βv is the Lebesgue measure on C multiplied
by 2. If v is a non-archimedean place then we require that

βv(Ov) = |Dv|d/2
v ,

where Dv is the local different of k at v. Now let S be a finite subset of places of k
containing all the archimedean places, and let

kA(S) =
∏
v∈S

kv ×
∏
v/∈S

Ov

be the corresponding open subgroup of the additive group of kA. We write β for
the unique Haar measure on the Borel subsets of kA such that the restriction of β
to each open subgroup kA(S) is the product measure∏

v

βv.

The Haar measure β, normalized in this way, has the property that it induces a
Haar measure β′ on the Borel subsets of the compact quotient group kA/k such
that

β′
(
kA/k

)
= 1.

Using the basic identity

(2.2)
∏
v-∞

|Dv|−dv = |∆k|,

we find that

(2.3) β
(∏

v

Ov

)
= 2d

(π
2

)s∣∣∆k

∣∣−1/2
= 2dc−dk .
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Suppose more generally that γ = (γv) is an element of the multiplicative group
k×A of ideles associated to k. Then at each place v of k we have

γvOv =

{
{ξ ∈ kv : |ξ|v < |γv|v} if v|∞,
{ξ ∈ kv : |ξ|v ≤ |γv|v} if v -∞.

It follows that ∏
v

γvOv ⊆ kA,

and

β
(∏

v

γvOv

)
=
∏
v

βv(γvOv)

=
∏
v

(
‖γv‖dv

v βv(Ov)
)

= 2dc−dk

(∏
v

|γv|v
)d
.

(2.4)

If ∏
v

|γv|v ≤ 1,

then from the product formula we get

k ∩
∏
v

γvOv = {0}.

On the other hand, if

(2.5) ck <
∏
v

|γv|v,

then there exists a nonzero point α in

k ∩
∏
v

γvOv.

That is, α 6= 0 belongs to k and satisfies the system of inequalities

(2.6) |α|v < |γv|v if v|∞,
and

(2.7) |α|v ≤ |γv|v if v -∞.
The existence of α follows immediately from the adelic version of Minkowski’s first
theorem, (see [2, Theorem 3] for a more detailed account of geometry of numbers
over adeles spaces.)

3. Proof of Theorem 1.2

If the number field k has an embedding into R, then there exists an archimedean
place w of k such that kw = R and [kw : Q∞] = 1. Let ρ be a real parameter such
that ck < ρ. We select γ = (γv) in k×A so that

|γv|v =


1 if v|∞ and v 6= w,

ρ if v = w,

1 if v -∞.
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Because ck < ρ we have

ck < ρ =
∏
v

|γv|v,

and this verifies (2.5). Hence there exists a point α 6= 0 in

(3.1) k ∩
∏
v

γvOv.

If w is the only archimedean place of k then

[k : Q] = [kw : Q∞] = 1,

and the statement of the theorem is trivial. Hence we may assume that k has
at least two archimedean places. Then (2.6) and (2.7) imply that α satisfies the
inequalities

(3.2) 1 < |α|w < ρ, and H(α) ≤
∏
v

max{1, |γv|v} = ρ.

Let Q(α) = k′ ⊆ k, and let u be an infinite place of k′ such that w|u. Because α
belongs to k′, the map v 7→ ‖α‖v is constant on the set of places v of k such that
v|u. It follows from our choice of γ = (γv) that w is the only place of k that lies
over u. Then we have

[k : k′] = [kw : k′u] ≤ [kw : Q∞] = 1,

and therefore k = k′ = Q(α). The inequality on the right of (3.2) shows that
H(α) ≤ ρ must hold for every positive number ρ such that ck < ρ. Since the
set of points in k with height bounded by a constant is finite, we conclude that
H(α) ≤ ck. This proves Theorem 1.2.

We note that for the collection of algebraic number fields k having an embedding
into R, Ruppert’s Question 1.1 has a positive answer with B = 1. In particular,
for this collection of number fields the constant B is independent of the degree of
k over Q.

4. A general strategy

In this section we consider an alternative argument using Minkowski’s first
theorem, but with a different choice of γ = (γv). In view of Theorem 1.2 we are
mainly interested in the case where k has no real embedding, but the argument we
develop here applies to all number fields k. Let P be a finite set of rational prime
numbers. Assume that for each prime p in P there exists a place v of k such that

(4.1) v|p and fv(k/Q) = 1,

where fv(k/Q) is the residue class degree of the place v (or alternatively, the residue
class degree of the associated prime ideal

p = {ξ ∈ Ok : |ξ|v < 1},
where Ok is the ring of algebraic integers in k.) Then let S be a set of non-
archimedean places of k selected so that S contains exactly one place v of k for
each prime number p in P , and the places v in S satisfy (4.1). Obviously we have
|P | = |S|.

Recall that if v is a finite place, then the positive integer dv(k/Q) factors as

(4.2) dv(k/Q) = ev(k/Q)fv(k/Q),
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where ev = ev(k/Q) is the index of ramification and fv = fv(k/Q) is the local
residue class degree. If v|p then we write πv for an element that generates the
unique maximal ideal in the integral domain Ov. We find that

(4.3) ‖πv‖evv = p−1, and |πv|v = p−fv/d.

Next we select γ = (γv) in k×A so that

(4.4) γv =

{
π−1
v if v belongs to S,

1 if v does not belong to S.

Using (2.4) and (4.3) we find that

(4.5) β
(∏

v

γvOv

)
=
(

2c−1
k

∏
v∈S
|π−1

v |v
)d

=
(
2c−1

k

)d ∏
p∈P

p.

We now assume that P is selected so that

(4.6) ck <
(∏
p∈P

p
)1/d

.

By the adelic form of Minkowski’s first theorem there exists a nonzero point α in
the set

(4.7) k ∩
∏
v

γvOv.

Theorem 4.1. Let P be a finite set of rational primes satisfying the above
conditions, and in particular satisfying the inequality (4.6). Then for each nonzero
point α contained in the set (4.7), we have

(4.8) Q(α) = k, and H(α) ≤
(∏
p∈P

p
)1/d

.

Proof. A nonzero point α contained in the set (4.7) satisfies the inequality

|α|v < 1

at each infinite place v of k. Hence it must satisfy

(4.9) 1 < |α|w ≤ |πw|−1
w

for at least one place w from the set S. Because the multiplicative value group of
| |w on k× is given by {

|πw|mw : m ∈ Z
}
,

the inequality (4.9) implies that

(4.10) |α|w = |πw|−1
w = q1/d,

where q is the unique prime number in P such that w|q. Also, the height of α
satisfies the bound

H(α) =
∏
v

max{1, |α|v} ≤
∏
v∈S

max{1, |πv|−1
v } =

(∏
p∈P

p
)1/d

.(4.11)

This verifies the inequality on the right of (4.8).
Next we assume that Q(α) = k′ ⊆ k. Let u be a place of k′ such that u|q and

w|u. Then the ramification indices satisfy the identity

(4.12) ew(k/Q) = ew(k/k′)eu(k′/Q).
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And we can write (4.10) as

(4.13) log ‖α‖w =
log q

ew(k/Q)
.

As α belongs to k′, we also get

(4.14) log ‖α‖w = log ‖α‖u =
m log q

eu(k′/Q)

for some positive integer m. Combining (4.13) and (4.14) leads to the identity

(4.15) mew(k/Q) = eu(k′/Q).

Then (4.12) and (4.15) imply that m = 1 and

(4.16) ew(k/k′) = 1.

Again because α belongs to the subfield k′, the map v 7→ ‖α‖v is constant on
the collection of places v of k such that v|u. By our construction of S there is only
one place v in S such that v|q and 1 < |α|v. Hence the collection of places v of k
such that v|u consists of exactly the place w. Using the hypothesis

(4.17) fw(k/Q) = fw(k/k′)fu(k′/Q) = 1

and (4.16), this implies that

[k : k′] = [kw : k′u] = ew(k/k′)fw(k/k′) = 1.

We have shown that Q(α) = k′ = k. �

5. Application of Chebotarev’s density theorem and GRH

Let L/K be a normal extension of algebraic number fields, and let C denote a
conjugacy class in the Galois group Aut(L/K). Let p denote a prime ideal in the
ring OK of algebraic integers in K. If p is unramified in L, we use the Artin symbol[

L/K

p

]
attached to p to denote the conjugacy class of Frobenius automorphisms that corre-
spond to prime ideals P in OL such that P|p. Then for 2 ≤ x we write πC(x;L/K)
for the cardinality of the set of prime ideals p in OK such that p is unramified in L,[

L/K

p

]
= C,

and
NormK/Q(p) ≤ x.

In its most basic form the Chebotarev density theorem (see [7]) asserts that

(5.1) lim
x→∞

πC(x;L/K)

Li(x)
=
|C|

[L : K]
,

where |C| is the cardinality of the conjugacy class C, and

Li(x) =

∫ x

2

1

log t
dt

is the logarithmic integral.
For our purposes it is useful to have an explicit estimate for the rate of con-

vergence in (5.1). And it is important that the estimate apply for relatively small
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values of the parameter x. Such an explicit, but conditional, estimate is given
by a well known result of Lagarias and Odlyzko [3, Theorem 1.1], which we now
describe. Let ζL(s) denote the Dedekind zeta-function associated to the number
field L, where s = σ + it. We assume that ζL(s) satisfies the Generalized Rie-
mann Hypothesis. Then [3, Theorem 1.1] implies that there exists an absolute and
effectively computable constant c1 ≥ 1, such that, if 2 ≤ x then

(5.2)

∣∣∣∣πC(x;L/K)− |C|
[L : K]

Li(x)

∣∣∣∣ ≤ c1x 1
2

(
log |∆L|+ [L : Q] log x

)
.

Let k be an algebraic number field of degree d over Q. We apply the estimate
(5.2) with L equal to the Galois closure of the extension k/Q, and with K = Q.
Using the conjugacy class C = {1}, this will establish the existence of a rational
prime number p that can be used to satisfy the hypotheses of Theorem 4.1.

Lemma 5.1. Let k be an algebraic number field of degree d ≥ 2 over Q, and let l
be the Galois closure of the extension k/Q. Assume that the Dedekind zeta-function
ζl(s) associated to l satisfies the Generalized Riemann Hypothesis, and let C be a
conjugacy class in the Galois group Aut(l/Q). If

(5.3) (15)20c20
1 (d!)60 ≤ |∆k|,

then we have

(5.4) 1 ≤ πC
(
2|∆k|

1
2 ; l/Q

)
− πC

(
|∆k|

1
2 ; l/Q

)
.

Proof. As l is the Galois closure of k/Q we find that [l : Q] ≤ d!, and

(5.5) log |∆l| ≤ 2(d!)2 log |∆k|.

The inequality (5.5) follows because a rational prime that ramifies in l must also
ramify in k. Then by [1, Theorem B.2.12.] the order to which a rational prime
divides ∆l is bounded from above by 2[l : Q]2. We apply these observations to the
inequality (5.2) with L = l and K = Q. It follows that for 2 ≤ x we have

(5.6)

∣∣∣∣πC(x; l/Q)− |C|
[l : Q]

Li(x)

∣∣∣∣ ≤ 2c1(d!)2x
1
2

(
log |∆k|+ log x

)
.

If the nonnegative integer on the right of (5.4) is zero, then (5.6) implies that

(5.7) Li
(
2|∆k|

1
2

)
− Li

(
|∆k|

1
2

)
≤ 10c1(d!)3|∆k|

1
4 log |∆k|.

Therefore we get

2|∆k|
1
2

3 log |∆k|
≤ |∆k|

1
2

log 2|∆k|
1
2

≤
∫ 2|∆k|

1
2

|∆k|
1
2

1

log t
dt ≤ 10c1(d!)3|∆k|

1
4 log |∆k|,

and then

(5.8) |∆k|
1
2 ≤ 15c1(d!)3|∆k|

1
4

(
log |∆k|

)2
.

It is now obvious that (5.8) is false if |∆k| is sufficiently large. An elementary
calculation shows that (5.8) is false if |∆k| satisfies the inequality (5.3). Therefore
(5.3) implies that the nonnegative integer on the right of (5.4) is positive. �
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6. Proof of Theorem 1.3

We assume that the number field k satisfies the hypotheses of Theorem 1.3,
and we also assume that

(15)20c20
1 (d!)60 ≤ |∆k|.

We apply Lemma 5.1 with the conjugacy class C = {1}. It follows that there exists
a rational prime number p such that 〈p〉 splits completely in Ol and

|∆k|
1
2 < p ≤ 2|∆k|

1
2 .

Then 〈p〉 splits completely in Ok, and therefore the residue class degrees of all prime
ideal factors of 〈p〉 in Ok are equal to 1. As each prime ideal factor corresponds
to a non-archimedean place of k, we find that the hypotheses of Theorem 4.1 are
satisfied with P = {p}. We conclude that there exists an element α in k such that
k = Q(α), and

(6.1) H(α) ≤ p1/d ≤ 2|∆k|1/2d.

By Hermite’s theorem there are only finitely many algebraic number fields k
having degree d and satisfying the inequality

(6.2) |∆k| < (15)20c20
1 (d!)60.

As these can be effectively determined, there exists an effectively computable pos-
itive number B = B(d) ≥ 2 such that the conclusion (1.3) holds for each field k
having degree d and satisfying (6.2). In view of (6.1), the conclusion (1.3) holds for
all fields k of degree d.

7. The field Q
(√
−163

)
Theorem 4.1 can be used to establish the existence of a generator α of k/Q with

relatively small height. The bound obviously depends on identifying a finite set P
of rational prime numbers that satisfies the hypotheses of that result. It may be of
interest to observe that there are nontrivial examples where the bound obtained by
applying Theorem 4.1 is sharp. In particular this is so for the imaginary quadratic
field Q

(√
−163

)
.

Lemma 7.1. Let d ≤ −1 be a square free integer, let

f(x) = ax2 + bx+ c

be a polynomial in Z[x] with

1 ≤ a, 1 ≤ c, gcd(a, b, c) = 1, and b2 − 4ac = de2,

where e is a nonzero integer. If α is a root of f , then Q(α) = Q(
√
d) and

(7.1) H(α) = max{a, c} 1
2 .

Proof. That Q(α) = Q(
√
d) is obvious. For the remainder of the proof we

work in Q(
√
d) embedded in C. Then complex conjugation is the unique nontrivial

automorphism of Q(
√
d), and the distinct roots of f are α and α. Hence the Mahler

measure of f is

M(f) = amax{1, |α|}max{1, |α|} = amax{1, αα} = max{a, c}.
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Because f is the unique irreducible polynomial in Z[x] with positive leading coeffi-
cient and a root at α, the Mahler measure is also given by

M(f) = H(α)H(α) = H(α)2.

The result follows by combining these identities. �

A rational prime p will satisfy the hypotheses (4.1) for the field Q(
√
−163) if

and only if either p is odd and −163 is a quadratic residue modulo p, or p = 163.
The smallest odd prime number p such that −163 is a quadratic residue modulo p
is 41. We have ∆k = −163 and therefore

ck = 2.850 · · · <
√

41 = 6.403 · · · .
We conclude that Theorem 4.1 applies with P = {41}, and asserts that Q(

√
−163)

has a generator α such that

H(α) ≤
√

41.

Now let α′ be a root of the polynomial x2 + x + 41, which has discriminant
−163. Clearly α′ generates the imaginary quadratic field Q

(√
−163

)
. Then by

Lemma 7.1 we have
H
(
α′
)

=
√

41.

The set of polynomials f(x) = ax2 + bx+ c in Z[x] such that

1 ≤ a, 1 ≤ c, gcd(a, b, c) = 1, and b2 − 4ac = (−163)e2,

where e is a nonzero integer, and

(7.2) max{a, c} ≤ 41,

is obviously finite. It is then a simple matter, using Lemma 7.1, to check that the
the field Q

(√
−163

)
does not have a generator with height strictly smaller than√

41. Therefore the inequality obtained in Theorem 4.1 for this field is sharp.
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