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Abstract. We prove a counting theorem concerning the number of lattice points for the dual
lattices of weakly admissible lattices in an inhomogeneously expanding box. The error term is
expressed in terms of a certain function ν(Γ⊥, ·) of the dual lattice Γ⊥, and we carefully analyse
the relation of this quantity with ν(Γ, ·). In particular, we show that ν(Γ⊥, ·) = ν(Γ, ·) for any
unimodular lattice of rank 2, but that for higher ranks it is in general not possible to bound
one function in terms of the other. This result relies on Beresnevich’s recent breakthrough on
Davenport’s problem regarding badly approximable points on submanifolds of Rn. Finally, we
apply our counting theorem to establish asymptotics for the number of Diophantine approximations
with bounded denominator as the denominator bound gets large.

Introduction

In the present article, we are mainly concerned with three objectives. Firstly, we prove a counting
result for lattice points of unimodular weakly admissible lattices in inhomogeneously expanding,
aligned boxes. A similar result for homogeneously expanding boxes was proven by Skriganov [22,
Thm. 6.1] in 1998. Secondly, we carefully investigate the relation between ν(Γ, ·) (see (0.1) for the
definition) and ν(Γ⊥, ·) of the dual lattice Γ⊥ which captures the dependency on the lattice in these
error terms. And thirdly, we apply our counting result to count Diophantine approximations.

To state our first result, we need to introduce some notation. By writing f � g (or f � g) for
functions f, g, we mean that there is a constant c > 0 such that f(x) ≤ cg(x) (or cf(x) ≥ g(x))
holds for all admissible values of x; if the implied constant depends on certain parameters, then this
dependency will be indicated by an appropriate subscript. Let Γ ⊆ Rn be a unimodular lattice, and
let Γ⊥ := {w ∈ Rn : 〈v, w〉 ∈ Z ∀v∈Γ} be its dual lattice with respect to the standard inner product
〈·, ·〉. Let γn denote the Hermite constant, and for ρ > γ

1/2
n set

ν(Γ, ρ) := min
{
|x1 · · ·xn| : x := (x1, . . . , xn)T ∈ Γ, 0 < ‖x‖2 < ρ

}
(0.1)

where ‖·‖2 denotes the Euclidean norm. We say Γ is weakly admissible if ν(Γ, ρ) > 0 for all ρ > γ
1/2
n .

Note that this happens if and only if Γ has trivial intersection with every coordinate subspace. It
is also worthwhile mentioning that the function ν(Γ, ρ) controls the rate of escape of the lattice Γ
under the action of the diagonal subgroup of SLn(R) (cf. (1.6)).

Furthermore, let T := diag(t1, . . . , tn) for ti > 0 be the diagonal matrix with diagonal entries
t1, . . . , tn, and let y ∈ Rn. We set

B := T [0, 1]
n

+ y,
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and we call such a set an aligned box. Moreover, we define

T := (det T )
1/n · ‖T −1‖2 =

(t1 · · · tn)1/n

min{t1, . . . , tn}
≥ 1

where ‖ · ‖2 denotes the operator norm induced by the Euclidean norm.

Theorem 1. Let n ≥ 2, let Γ ⊆ Rn be a unimodular lattice, and let B ⊆ Rn be as above. Suppose
Γ⊥ is weakly admissible, and ρ > γ

1/2
n . Then,

|#(Γ ∩B)− vol(B)| �
n

1

ν
(
Γ⊥, T ?

)( (vol(B))1−1/n

√
ρ

+
Rn−1

ν(Γ⊥, 2RT )

)
(0.2)

where x? := max {γn, x}, and R := n2 + log ρn

ν(Γ⊥,ρT )
.

Note that ρn/ν(Γ⊥, ρ) ≥ nn/2 by the inequality between arithmetic and geometric mean. Since
T ≥ 1 and (cf. [15, Theorem 2.1.1])

γn ≤ (4/3)(n−1)/2, (0.3)

we have (2RT )? = 2RT , and hence, the far right hand-side in (0.2) is well-defined.
The lattice Γ is called admissible if Nm (Γ) := limρ→∞ ν(Γ, ρ) > 0. It is easy to show that

if Γ is admissible then also Γ⊥ is admissible (see [21, Lemma 3.1]). In this case we can choose
ρ = (volB)2−2/n, provided the latter is greater than γ

1/2
n , to recover the following impressive result

of Skriganov ([21, Theorem 1.1 (1.11)])

|#(Γ ∩B)− vol(B)| �
n,Nm (Γ⊥)

(log(vol(B))n−1. (0.4)

However, if Γ is only weakly admissible, then it can happen that Γ⊥ is not weakly admissible;
see Example 4. But this is a rather special situation and typically, e.g., if the entries of A are
algebraically independent, see Lemma 4, then Γ = AZn and its dual are both weakly admissible.
This raises the question whether, or under which conditions, one can control ν(Γ⊥, ·) by ν(Γ, ·). We
have the following result where we use the convention that for an integral domain I the group of all
matrices in In×n with inverse in In×n is denoted by GLn(I).

Proposition 1. Let Γ = AZn, and suppose there exist S,W both in GLn(Z) such that

ATSA = W,

and suppose S has exactly one non-zero entry in each column and in each row. Then, we have

ν(Γ⊥, ·) = ν(Γ, ·). (0.5)

A special case of Proposition 1 shows that ν(Γ⊥, ·) = ν(Γ, ·) whenever Γ = AZn with a symplectic
matrix A, in particular, whenever1 Γ is a unimodular lattice in R2. In these cases, one can directly
compare Theorem 1 with a recent result [24, Theorem 1.1] of the second author, and we refer to
[24] for more on that. On the other hand, our next result shows that in general ν(Γ, ·) can decay
arbitrarily quickly even if we control ν(Γ⊥, ·).

1Let us write Sp2m(R) for the symplectic subgroup of GL2m(R) and SLn(R) for the special linear subgroup of
GLn(R). The fact Sp2(R) = SL2(R) can be checked directly.
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Theorem 2. Let n ≥ 3, and let ψ : (0,∞) → (0, 1) be non-increasing. Then, there exists a
unimodular, weakly admissible lattice Γ ⊆ Rn, and a sequence {ρl} ⊆ (γ

1/2
n ,∞) tending to ∞, as

l→∞, such that
ν(Γ⊥, ρ)� ρ−n

2

,

and
ν(Γ, ρl) ≤ ψ(ρl)

for all l ∈ N = {1, 2, 3, . . .} and for all ρ > γ
1/2
n .

In the case where exactly one of the functions ν(Γ, ·), and ν(Γ⊥, ·) is controllable while the other
one decays very quickly either Theorem 1 or [24, Theorem 1.1] provides a reasonable error term,
but certainly not both. This highlights the complementary aspects of Theorem 1, and [24, Theorem
1.1]. Theorem 2 is deeper than Proposition 1, and relies on Beresnevich’s recent breakthrough on
Davenport’s longstanding question about the distribution of badly approximable points on certain
submanifolds of Rn. Going even beyond Davenport’s original question, Beresnevich proved that the
sets of these points have full Hausdorff-dimension, and it is the full power of this result that we
require to prove Theorem 2.

Recently German [14] considered the so-called lattice exponent ω(Γ) which is a coarse measure
for the rate of decay of the function ν(Γ, ρ); it can be expressed as

ω(Γ) = lim sup
ρ→∞

− log ν(Γ, ρ)

n log ρ
, (0.6)

where for non-weakly admissible lattices this is interpreted as ω(Γ) = ∞. German proposes the
problem of studying the spectrum of the pairs (ω(Γ), ω(Γ⊥)) as Γ runs over all unimodular lattices
in Rn. He constructs a non-weakly admissible lattice Γ with ω(Γ⊥) = 1/(n(n − 2)) and hence,
(ω(Γ), ω(Γ⊥)) = (∞, 1/(n(n − 2)). If we insist that Γ be also weakly admissible then we can use
Theorem 2 but at the expense that we have only an estimate for ω(Γ⊥). More precisely, there exists
a weakly admissible lattice Γ such that (ω(Γ), ω(Γ⊥)) ∈ {∞} × [0, n].

Next, we apply Theorem 1 to deduce counting results for Diophantine approximations. We start
with a bit of historical background on this, and related problems. Let α ∈ R, let ι : [1,∞) → (0, 1]
be a positive decreasing function, and let N loc

α (ι, t) be the number of integer pairs (p, q) satisfying
|p+ qα| < ι(q), 1 ≤ q ≤ t. In a series of papers, starting in 1959, Erdős [13], Schmidt [19, 20], Lang
[9, 17, 18], Adams [1, 2, 3, 4, 5, 6, 7, 8], Sweet [23], and others, considered the problem of finding
the asymptotics for N loc

α (ι, t) as t gets large.
Schmidt [19] has shown that for almost every2 α ∈ R the asymptotics are given by the volume of

the corresponding subset of R2, provided the latter tends to infinity. This is false for quadratic α;
there with ι(q) = 1/q the volume is 2 log(t) +O(1), and by Lang’s result N loc

α (1/q, t) ∼ cα log(t) but
Adams [5] has shown that cα 6= 2.

Opposed to the above “non-uniform” setting, where the bound on |p + qα| is expressed as a
function of q, we consider the “uniform” situation, where the bound is expressed as a function of t.
Furthermore, we shall consider the more general asymmetric inhomogeneous setting. Let α ∈ (0, 1)
be irrational, ε, t ∈ (0,∞), and let y ∈ R. We define the counting function

Nα,y(ε, t) = #

{
(p, q) ∈ Z× N :

0 ≤ p+ qα− y ≤ ε,
0 ≤ q ≤ t

}
. (0.7)

2Here “almost every” refers always to the Lebesgue measure.
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If the underlying set is not too stretched, then Nα,y(ε, t) is roughly the volume εt of the set in
which we are counting lattice points. If we let ε = ε(t) be a function of t with t = o(tε) we have, by
simple standard estimates,

Nα,y(ε, t) ∼ εt (0.8)

for any pair (α, y) ∈ ((0, 1) \ Q) × R whatsoever. To get non-trivial estimates for our counting
function, we need information on the Diophantine properties of α. Let φ : (0,∞) → (0, 1) be a
non-increasing function such that

q
∣∣p+ qα

∣∣ ≥ φ (q) (0.9)

holds for all (p, q) ∈ Z× N. Then [24, Theorem 1.1] implies that

|Nα,y(ε, t)− εt| �α

√
εt

φ(t)
. (0.10)

Hence, unlike in the non-uniform setting, for badly approximable α the asymptotics are given by
the volume as long as the volume tends to infinity.

Our next result significantly improves the error term in (0.10), provided α is “sufficiently” badly
approximable, i.e., provided φ(t) decays slowly enough. We assume that

εt > 4 and 0 < ε <
√
α. (0.11)

Corollary 1. Put E := εt
φ(4t
√
εt)

, and E′ := 168
√
εt3E. Then, we have

|Nα,y(ε, t)− εt| �
α

logE

φ2(E′)
. (0.12)

In particular, if α is badly approximable then

|Nα,y(ε, t)− εt| �
α

log(εt). (0.13)

The latter should be compared to a classical result of Ostrowski, cf. [16, p. 125, Thm. 3.4] which
bounds the discrepancy of the sequence (〈qα〉)q of fractional parts3 of qα from above in terms of the
continued fraction expansion of α ∈ (0, 1) \Q. Thus for y ∈ Z Ostrowski’s result implies that

|Nα,y(ε, t)− εt| �
α

log t (0.14)

for each badly approximable α ∈ (0, 1) and all ε ∈ (0, 1). If, on the other hand, y /∈ Z and
ε < 〈−y〉, then it is easy to check that 〈qα− y〉 ∈ [0, ε] if and only if 〈qα〉 ∈ [1− 〈−y〉, 1− 〈−y〉+ ε].
Thus, Ostrowski’s result implies that (0.14) remains valid for any non-integral y ∈ R, provided
ε ∈ (0, 〈−y〉).

1. Proof of Theorem 1 and Corollary 1

In the proof of Theorem 1, it is crucial for us to estimate the error in the lattice point counting
problem for homogeneously expanding boxes such that the dependence on the Diophantine properties
of the lattice is explicitly stated. To this end, we use an explicit version of Skriganov’s result which
is described in the next subsection.

3For x ∈ R we write 〈x〉 = x− bxc for the fractional part of x.
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1.1. An explicit version of Skriganov’s counting theorem. Let Γ ⊆ Rn be a lattice, and let
λi(Γ) denote the i-th successive minimum of Γ with respect to the Euclidean norm (1 ≤ i ≤ n). For
r > 0 we introduce a special set of diagonal matrices

∆r :=
{
δ := diag(2m1 , . . . , 2mn) : m = (m1, . . . ,mn)T ∈ Zn, ‖m‖2 < r, det δ = 1

}
,

and we put
S(Γ, r) :=

∑
δ∈∆r

(λ1(δΓ))−n.

Now we can state Skriganov’s result. In fact, his result is more general, and applies to any convex,
compact polyhedron. On the other hand, the dependency on B and Γ in the error term is not
explicitly stated in his counting result [22, Thm. 6.1]. By carefully following his reasoning we find
the following explicit version of his result. Recall that γn denotes the Hermite constant.

Theorem 3 (Skriganov, 1998). Let n ≥ 2 be an integer, let Γ ⊆ Rn be a unimodular lattice, and let
B ⊆ Rn be an aligned box of volume 1. Suppose Γ⊥ is weakly admissible, and ρ > γ

1/2
n . Then, for

t > 0,
|#(Γ ∩ tB)− tn| �

n
(|∂B|λn(Γ))n · (tn−1ρ−

1/2 + S(Γ⊥, r)) (1.1)

where r := n2 + log ρn

ν(Γ⊥,ρ)
, and |∂B| denotes the surface area of B.

1.2. Proof of Theorem 1. For proving Theorem 1, we want to exploit Theorem 3. To this end let
t := (det T )1/n, and let

U := tT −1. (1.2)
Thus,

#(Γ ∩B) = #(UΓ ∩ U(T [0, 1]
n

+ y)) = #(Λ ∩ t([0, 1]
n

+ T −1(y)))

where Λ := UΓ. Moreover, we conclude by Theorem 3 that

|#(Γ ∩B)− vol(B)| �
n
λnn(Λ)

(
t
n−1

√
ρ

+ S(Λ⊥, r)

)
. (1.3)

For controlling the quantities on the right hand side in terms of Γ, t, ρ, and ν(Γ⊥, ·), we need two
lemmata. Their proofs use, in parts, arguments which are contained in the proof of [22, Lem. 4.1];
however, unlike in [22], we require to bound ν(Λ, ·) in terms of ν(Γ, ·). We will frequently use the
fact that if Γ = AZn is unimodular then Γ⊥ = (A−1)TZn. As usual, we let SLn(R) denote the group
of all Rn×n matrices with determinant 1.

Lemma 1. Let D := diag(d1, . . . , dn) be in SLn(R), and ρ > γ
1/2
n . Then,

ν((DΓ)⊥, ρ) ≥ ν(Γ⊥, ‖D‖2 ρ), (1.4)

and
λn1 (DΓ)�

n
ν(Γ,

∥∥D−1
∥∥?

2
). (1.5)

Proof. For v := (v1, . . . , vn)T ∈ Rn define Nm(v) := |v1 · · · vn|. We remark that

ν((DΓ)⊥, ρ) = ν(D−1Γ⊥, ρ)

= min
{

Nm(D−1v) : v ∈ Γ⊥, 0 <
∥∥D−1v

∥∥
2
< ρ
}

= min
{

Nm (v) : v ∈ Γ⊥, 0 <
∥∥D−1v

∥∥
2
< ρ
}
.
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If ‖D−1v‖2 < ρ, then ‖v‖2 < ‖D‖2ρ. Thus, (1.4) follows. Now let Q > 0, and v ∈ Γ with
0 < ‖v‖2 ≤ Q. By the inequality of arithmetic and geometric mean, we have

‖Dv‖n2 ≥ n
n/2 ·Nm(Dv)�

n
ν(Γ, Q?).

Now suppose ‖v‖2 > Q. Since ‖v‖2 =
∥∥D−1Dv

∥∥
2
≤
∥∥D−1

∥∥
2
‖Dv‖2, we conclude that

‖Dv‖2 >
∥∥D−1

∥∥−1

2
Q.

Hence, we have
‖Dv‖2 �n min

{
(ν(Γ, Q?))

1/n,
∥∥D−1

∥∥−1

2
Q
}
.

Specialising Q :=
∥∥D−1

∥∥
2
, and noticing that by the inequality of arithmetic and geometric mean,

ν(Γ, γn)�
n

1, we get (1.5). �

Note that
∥∥D−1

∥∥
2
≤ ‖D‖n−1

2 , and hence by Lemma 1 that

λn1 (DΓ)�
n
ν(Γ, ‖D‖n−1

2 ), (1.6)

at least if ‖D‖n−1
2 > γ

1/2
n . Therefore, the function ν(Γ, ρ) controls the rate of escape of the lattice Γ

under the action of the diagonal subgroup of SLn(R).

Lemma 2. Let U be as in (1.2), and let s ≥ 1. Then, we have

S(Λ⊥, s)�
n

sn−1

ν(Γ⊥, (2s ‖U‖2)?)
.

Proof. Since Λ⊥ = U−1Γ⊥, we conclude by (1.5) that

S(Λ⊥, s) =
∑
δ∈∆s

1

λn1 (δU−1Γ⊥)
�
n

∑
δ∈∆s

1

ν(Γ⊥, ‖Uδ−1‖?2)
.

Since #∆s �
n
sn−1, and since ν(Γ⊥, ·) is non-increasing, we get

S(Λ⊥, s)�
n

sn−1

ν(Γ⊥, (2s ‖U‖2)?)
. �

We can now easily complete the proof of Theorem 1. By (1.4), we conclude

r = n2 + log
ρn

ν(Λ⊥, ρ)
≤ n2 + log

ρn

ν(Γ⊥, ‖U‖2 ρ)
= R

Since ν(Λ⊥, ·) is non-increasing, and since (2R ‖U‖2)? = 2R ‖U‖2 Lemma 2 yields

S(Λ⊥, r)�
n

Rn−1

ν(Γ⊥, 2R ‖U‖2)
. (1.7)

By using Mahler’s relation 1 ≤ λi(Γ⊥)λn+1−i(Γ) ≤ n!, where i = 1, . . . , n, and Lemma 1, we obtain

λnn(Λ)�
n

1

λn1 (U−1Γ⊥)
�
n

1

ν(Γ⊥, ‖U‖?2)
. (1.8)

Taking (1.7) and (1.8) in (1.3) into account, it follows that

|#(Γ ∩B)− vol(B)| �
n

1

ν
(
Γ⊥, ‖U‖?2

)( tn−1

√
ρ

+
Rn−1

ν(Γ⊥, 2R ‖U‖2)

)
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which is (0.2).

1.3. An Application — Proof of Corollary 1. Throughout this subsection we fix the unimodular
lattice Γ = AZ2 where

A :=
1√
α

(
1 α
1 2α

)
,

and we consider the aligned box

B :=
1√
α

([
y, y + ε

]
×
[
y, y + αt

])
. (1.9)

Then, the following relation holds

#(B ∩ Γ) = #

{
(p, q) ∈ Z2 :

0 ≤ p+ αq − y ≤ ε,
0 ≤ p+ 2αq − y ≤ αt

}
.

Because of (0.11), we conclude that

|Nα,y(ε, t)−#(B ∩ Γ)| �
α

1. (1.10)

In order to use Theorem 1, we need to control the characteristic quantity ν(Γ, ·) of the lattice Γ.
This is where the Diophantine properties of α come into play.

Lemma 3. Let φ be as in (0.9), and suppose ρ > γ
1/2
2 . Then, we have

ν(Γ⊥, ρ) = ν(Γ, ρ) ≥ φ(4ρ/
√
α)

4
.

Proof. The claimed equality follows immediately from Proposition 1, and the remark thereafter. A
vector v ∈ Γ is of the shape

v =
1√
α

(
z
z′

)
where z := p + qα, z′ := z + qα, and p, q denote integers. Assume that ‖v‖2 ∈ (0, ρ). Observe that
q = 0 implies Nm(v) ≥ 1 > 4−1φ(4ρ/

√
α). Therefore, we may assume q 6= 0. Since z′ − z = qα, one

of the numbers |z|, |z′| is at least 1
2α|q|, and both are bounded from below by 1

2|q|φ(2|q|). Hence,

Nm (v) ≥ α|q|
2
√
α
· φ(2|q|)

2|q|
√
α
≥ φ(4ρ/

√
α)

4

where in the last step we used that 1
2

√
α|q| ≤ 1√

α
min{|z|, |z′|} ≤ ‖v‖2 < ρ. �

Proof of Corollary 1. Let B be given by (1.9). Thus, B has sidelengths t1 = α−1/2ε, and t2 =
√
αt.

By (0.3) and (0.11), we are entitled to take ρ := εt > γ
1/2
2 in Theorem 1. Moreover, (0.11) implies

t1 < 1 < t2, and thus

T =

√
α
t

ε
>
√
εt > 2 > γ2.

Hence, T ? = T . By combining relation (1.10) and Theorem 1 with these specifications, it follows
that

|Nα,y(ε, t)− εt| �
α

1

ν(Γ⊥, T )

(
1 +

R

ν(Γ⊥, 2RT )

)
. (1.11)
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By Lemma 3, the right hand side above is � R(φ(4T/
√
α)φ(2R+2T/

√
α))−1. The first factor in the

round brackets is larger than the second one, since φ is non-increasing. Hence, we conclude that the
right hand-side of (1.11) is bounded by

� R(φ(2R+2T/
√
α))−2. (1.12)

Furthermore, Lemma 3 yields

R ≤ 4 + log
4(εt)2

φ(4t
√
εt)
� log

εt

φ(4t
√
εt)

. (1.13)

By using the first estimate from (1.13), we get

2R ≤ 24

(
4(εt)2

φ(4t
√
εt)

)log 2

< 24+2 log 2 (εt)2

φ(4t
√
εt)

.

Hence, (1.12) is bounded from above by

�
log εt

φ(4t
√
εt)

φ2
(

26+2 log 2 (εt)2

φ(4t
√
εt)

√
t
ε

) ≤ logE

φ2(E′)
.

This completes the proof of Corollary 1. �

2. Proof of Theorem 2 and Proposition 1

2.1. Comparing ν(Γ, ·) and ν(Γ⊥, ·) and Proof of Proposition 1. A natural question is whether
one can state Theorem 1 in a way that is intrinsic in Γ, i.e. expressing ν(Γ⊥, ·) in terms of ν(Γ, ·).
However, for n > 2 there are weakly admissible lattices Γ ⊆ Rn such that Γ⊥ is not weakly admissible
as the following example shows.

Example 4. Let n ≥ 3, and let A′0 ∈ GLn−1(R) be such that the elements of each row of A′0 are
Q-linearly independent. Choose real x1, . . . , xn−1, y outside of the Q-span of the entries of A′0, and
suppose y 6= xn−1. Let x = (x1, . . . , xn−1)T and let rn−1 be the last row of A′0. Then, the matrix

A0 :=

(
A′0 x
rn−1 y

)
satisfies

(i) A0 ∈ GLn(R), and
(ii) the elements in each row of A0 are Q-linearly independent.

The second assertion is clear and for the first suppose a linear combination of the rows vanishes.
Using that the rows of A′0 are linearly independent over R and that y 6= xn−1, the first claim follows
at once. We now let A be the matrix we get from A0 by swapping the first and the last row, and
scaling each entry with |detA0|−1/n. Clearly, (i) and (ii) remain valid for A, and the (n, n)-minor
of A vanishes. We conclude that Γ := AZn is a unimodular, and weakly admissible lattice; moreover,
Cramer’s rule implies that

(A−1)T =


? ? . . . ?

?
. . . . . .

...
...

. . . ? ?
? . . . ? 0


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where an asterisk denotes some arbitrary real number, possibly a different number each time. Hence,
Γ⊥ contains a non-zero lattice point with a zero coordinate, and thus is not weakly admissible.

Keeping Example 4 in mind, we now concern ourselves with finding large subclasses of lattices
Γ ⊆ Rn such that

(1) Γ and Γ⊥ are both weakly admissible,
(2) ν(Γ⊥, ·) = ν(Γ, ·).
It is easy to see that the first item holds for almost all lattices in the sense of the Haar-measure

on the space Ln = SLn(R)/SLn(Z) of unimodular lattices in Rn. Moreover, we have the following
criterion.

Lemma 4. Suppose A ∈ SLn(R), and suppose that the entries of A are algebraically independent
(over Q). Then, Γ := AZn and Γ⊥ are both weakly admissible.

Proof. First note that if K is a field and X1, . . . , XN are algebraically independent over K, then any
non-empty collection of pairwise distinct monomials Xa1

1 · · ·X
aN
N is linearly independent over K.

Next note that by Cramer’s rule, each entry of (A−1)T is a sum of pairwise distinct monomials (up
to sign) in the entries of A, and none of these monomials occurs in more than one entry of (A−1)T .
This shows that the entries of (A−1)T are linearly independent over Q, in particular, the entries of
any fixed row of (A−1)T are linearly independent over Q. Thus, Γ⊥ is weakly admissible. �

Next, we prove Proposition 1.

Proof (Proposition 1). Notice that S and S−1 are, up to signs of the entries, permutation matrices,
and thus for every w ∈ Rn

Nm (w) = Nm (Sw) = Nm (S−1w), (2.1)

‖w‖2 = ‖Sw‖2 =
∥∥S−1w

∥∥
2
. (2.2)

Now let Aw be an arbitrary lattice point in Γ = AZn. Then, since W ∈ Zn×n, we get (A−1)TWw ∈
Γ⊥. Since by hypothesisA = S−1((A−1)TW ), we conclude from (2.1) that Nm (Aw) = Nm ((A−1)TWw),
and from (2.2) that ‖Aw‖2 =

∥∥(A−1)TWw
∥∥

2
. This shows that ν(Γ⊥, ·) ≤ ν(Γ, ·).

Similarly, if (A−1)Tw ∈ Γ⊥ then, since W−1 ∈ Zn×n, we find that AW−1w ∈ Γ, and using that
(A−1)T = SAW−1 we conclude as above that ν(Γ, ·) ≤ ν(Γ⊥, ·). This proves Proposition 1. �

Remark 1. Let Im := diag(1, . . . , 1) be the identity matrix, and 0m the null matrix in Rm×m.
Specialising

S = W =

(
0m Im
−Im 0m

)
in Proposition 1, we conclude that if Γ = AZn with a symplectic matrix A, then

ν(Γ⊥, ·) = ν(Γ, ·). (2.3)

Moreover, it is easy to see that Sp2(R) = SL2(R), and hence (2.3) holds for any unimodular lattice
Γ ⊆ R2.
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2.2. Proof of Theorem 2. Recall that α := (α1, . . . , αn)T ∈ Rn is called badly approximable, if
there is a constant C = C(α) > 0 such that for any integer q ≥ 1 the inequality

max {‖qα1‖ , . . . , ‖qαn‖} ≥
C

q1/n
(2.4)

holds where ‖·‖ denotes the distance to the nearest integer. By a well-known transference principle,
cf. [12], assertion (2.4) is equivalent to saying that for all non-zero vectors q := (q1, . . . , qn)T ∈ Zn
the inequality

‖〈α, q〉‖ ≥ C̃

‖q‖n2
(2.5)

holds where C̃ = C̃(α) > 0 is a constant. LetBad(n) denote the set of all badly approximable vectors
in Rn. The crucial step for constructing matrices generating the lattices announced in Theorem 2 is
done by the following lemma.

Lemma 5. Let n ≥ 3 be an integer. Fix algebraically independent real numbers ci,j where i, j =
1, . . . , n and i 6= j. Then, there exist λ1, . . . , λn ∈ R such that the entries of each row of

A :=


λ1 c1,2 . . . c1,n

c2,1 λ2
. . .

...
...

. . . . . . cn−1,n

cn,1 . . . cn,n−1 λn

 (2.6)

are algebraically independent, A is invertible, and each row-vector of (A−1)T is badly approximable.

For proving this lemma, we shall use the following special case of a recent theorem of Beresnevich
concerning badly approximable vectors. We say that the map F := (f1, . . . , fn)T : B → Rn, where
B ( Rm is a non-empty ball andm,n ∈ N, is non-degenerate, if 1, f1, . . . , fn are linearly independent
functions (over R).

Theorem 5 ([10, Thm. 1]). Let n, m, k be positive integers. For each j = 1, . . . , k suppose that
Fj : B → Rn is a non-degenerate, analytic map defined on a non-empty ball B ( Rm. Then,

dimHaus

k⋂
j=1

F−1
j (Bad(n)) = m.

Proof of Lemma 5. We work in two steps. First, we set the scene to make use of Theorem 5.
(i) Let M ∈ Rn×n, and denote by (M)i,j the entry in the i-th row and j-th column of M .

Moreover, we define a map F̃ : Rn → Rn×n by

λ := (λ1, . . . , λn)T 7→


λ1 c1,2 . . . c1,n

c2,1 λ2
. . .

...
...

. . . . . . cn−1,n

c1,n . . . cn,n−1 λn

 .
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On a sufficiently small non-empty ball B ( Rn, centred at the origin, F̃ (λ) is invertible for every λ ∈
B.4 On this ball B, we define Fj , for j = 1, . . . , n, by mapping λ to the j-th row of (

(
F̃ (λ)

)−1
)T . We

claim that Fj is a non-degenerate, and analytic map. By Cramer’s rule, every entry of ((F̃ (λ))−1)T

is the quotient of polynomials in λ1, . . . , λn whereas the polynomial in the denominator does not
vanish on B. Hence, each Fj is an analytic function. Now we show that F1 is non-degenerate, the
argument for the other Fj being similar. The j-th component of F1 is (

(
F̃ (λ)

)−1
)j,1 and, using

Cramer’s rule, is hence of the shape

(det F̃ (λ))−1

(
Rj + (−1)1+j

n∏
k=2, k 6=j

λk

)
where the polynomial Rj ∈ R[λ2, . . . , λn] is of (total) degree < n− 1, if j = 1, and of (total) degree
< n − 2, if j = 2, . . . , n. Therefore, if a linear combination k0 +

∑n
j=1 kj((F̃ (λ))−1)j,1 with scalars

k0, . . . , kn ∈ R equals the zero-function 0 : B → R, then

0 = k0 · (det F̃ (λ)) +

n∑
j=1

kj(−1)1+j
n∏

k=2, k 6=j

λk +

n∑
j=1

kjRj .

Comparing coefficients, we conclude that k0 = 0 and thereafter k1 = k2 = · · · = kn = 0. Hence, F1

is non-degenerate.
(ii) By part (i), Theorem 5 implies that the set M of all λ ∈ B such that F1(λ), . . . , Fn(λ) are all

badly approximable, has full Hausdorff dimension. Moreover, we claim that there is a set M (1) ⊆M
of full Hausdorff dimension such that for every λ ∈ M (1) the entries of the first row of F̃ (λ) are
algebraically independent. Let M1 be the subset of M of all elements λ := (λ1, . . . , λn)T ∈ M
satisfying that {λ1, c1,j : j = 2, . . . , n} is algebraically dependent ; observe that the possible values
for λ1 are countable, since Z[c1,2, . . . , c1,n, x] is countable and every complex, non-zero, univariate
polynomial has only finitely many roots. Therefore, M1 is contained in a countable union of hy-
perplanes. It is well-known that if a sequence of sets {Ei} ⊆ Rn is given, then dimHaus

⋃
i≥1Ei =

supi≥1{dimHausEi}, cf. [11, p. 65]. Consequently,

n = dimHausM = max {dimHaus(M \M1), dimHausM1} = dimHaus(M \M1),

and we define M (1) := M \M1. Using the same argument, we conclude that there is a set M (2) ⊆
M (1) of full Hausdorff dimension such that each of the first two rows of F̃ (λ) has algebraically
independent entries for every λ ∈ M (2). Iterating this construction, we infer that there is a subset
M (n) ⊆M (n−1) ⊆ . . . ⊆M of full Hausdorff dimension such that for every λ ∈M (n) each row of the
matrix A := F̃ (λ) has algebraically independent entries, and (A−1)T has badly approximable row
vectors. Moreover, λ ∈M (n) ⊆ B implies that A is invertible.

�

We also need the following easy fact whose proof is left as an exercise.

4To see this, it suffices to show det F̃ ((0, . . . , 0)T ) 6= 0. However, by the Leibniz formula,

det F̃ (0, . . . , 0) =
∑
σ

sgn(σ)
n∏
i=1

ci,σ(i)

where the sum runs through all fixpoint-free permutations of {1, . . . , n}. Since {ci,j : i, j = 1, . . . , n, i 6= j} is algebra-
ically independent, the evaluation of the polynomial on the right hand side above cannot vanish, cf. proof of Lemma
4.
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Lemma 6. Let m ∈ N, and let α ∈ R be transcendental. Then, there are real numbers β1, . . . , βm
such that β1, αβ1, β2, . . . , βm are algebraically independent.

We are now in position to prove Theorem 2. First, we set ψ̃(x) = ψ(x2) such that for every c > 0

and x ≥ c we have ψ̃(x) ≤ ψ(cx). We may assume that ψ̃(q)� exp(−q). By writing down a suitable
decimal expansion, we conclude that there exists a number α ∈ (0, 1) such that∣∣∣α− p

q

∣∣∣ < ψ̃(q)

qn+1
(2.7)

has infinitely many coprime integer solutions p, q ∈ Z; observe that such an α is necessarily tran-
scendental. We apply Lemma 6 with m = n2 − n − 1 and we set c1,2 := β1, c1,3 := αβ1, and we
choose exactly one value βk (k ≥ 2) for each of the remaining ci,j (i 6= j). Thus, the real numbers
ci,j are algebraically independent. We use Lemma 5 with these specifications to find A as in (2.6).
For l ∈ N let pl, ql denote distinct solutions to (2.7), and put vl := (0,−pl, ql, 0, . . . , 0)T ∈ Zn. Set
Ã := |detA|−1/nA, and let us consider the unimodular, weakly admissible lattice Γ := ÃZn. Then,
the first coordinate of Ãvl equals

|detA|−1/n |−plc1,2 + qlc1,3| = |detA|−1/n |c1,2| |qlα− pl| �
A

ψ̃(ql)

qnl
.

Since α ∈ (0, 1), we may assume, by choosing l large enough, that pl ≤ ql. Hence, the j-th coordinate
for j = 2, . . . , n of Ãvl is �

A
ql. Thus, for l sufficiently large,

Nm(Ãvl)�
A

ψ̃(ql)

qnl
· qn−1
l =

ψ̃(ql)

ql
≤ ψ(2‖Ã‖2ql)

ql
≤ ψ(‖Ãvl‖2)

ql
.

Choosing ρl = ‖Ãvl‖2, we conclude that ν(Γ, ρl) ≤ ψ(ρl) for all l sufficiently large.
Because the rows of (A−1)T are badly approximable vectors by construction, Γ⊥ is weakly ad-

missible. Moreover, by (2.5), we conclude that Nm((A−1)T v)�
A
‖v‖−n

2

2 for every non-zero v ∈ Zn.

Also note that
∥∥(A−1)T v

∥∥
2
< ρ implies ‖v‖2 < ‖AT ‖2ρ. This implies that ν(Γ⊥, ρ)�

A
ρ−n

2

. Hence,

Γ has the desired properties.
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