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Abstract. Let D > 1 be an integer, and let b = b(D) > 1 be its smallest divisor.

We show that there are infinitely many number fields of degree D whose primitive
elements all have relatively large height in terms of b, D and the discriminant of the

number field. This provides a negative answer to a questions of W. Ruppert from

1998 in the case when D is composite. Conditional on a very weak form of a folk
conjecture about the distribution of number fields, we negatively answer Ruppert’s

question for all D > 3.

1. Introduction

Let L be a number field of degree D, and for α ∈ L let

H(α) =
∏
v∈ML

max{1, |α|v}
dv
D

be the absolute multiplicative Weil height of α. Here ML denotes the set of places of
L and for each place v we choose the unique representative | · |v that either extends
the usual Archimedean absolute value on Q or a usual p-adic absolute value on Q, and
dv = [Lv : Qv] denotes the local degree at v. As is well-known H(α) is independent of
the number field L containing α, and hence H(·) extends to a function on the algebraic
numbers Q.

From now on let L ⊂ Q be a number field of degree D > 1. We are interested
in bounds, expressed in terms of the degree D and the absolute discriminant ∆L of L,
for the smallest height of a generator. It is convenient to use the following invariant,
introduced by Roy and Thunder [7],

δ(L) = inf{H(α);L = Q(α)}.

By Northcott’s Theorem [6, Theorem 1] the infimum is attained, and hence, δ(L) denotes
the smallest height of a generator of the extension L over Q. Silverman [10, Theorem 1]
has shown that

δ(L) ≥ D−
1

2(D−1) |∆L|
1

2D(D−1) .(1.1)

The following example due to Ruppert [8, p.18] and Masser [7, Proposition 1]) shows
that in this general situation the exponent 1/(2D(D − 1)) cannot be improved. Let p
and q be primes that satisfy 0 < p < q < 2p. Let α = (p/q)1/D, and let L = Q(α). Then,
by the Eisenstein criterion, L has degree D, and p and q are both totally ramified in L.
Hence, (pq)D−1|∆L, and thus

H(α) = q
1
D ≤ (2pq)

1
2D ≤ 2

1
2D |∆L|

1
2D(D−1) .(1.2)

Ruppert [8, Question 1] asked whether the exponent is always sharp, more precisely he
proposed the following question.
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Question 1.1 (Ruppert, 1998). Is there a constant CD such that for all number fields
L of degree D

δ(L) ≤ CD|∆L|
1

2D(D−1) ?

In fact Ruppert used the naive height Hnaive(α) which is defined as the maximum
norm of the coefficient vector of the minimal polynomial of α over Z. It is well-known
[2, Lemma 1.6.7] that 2−1H(α) ≤ Hnaive(α)1/D ≤ 2H(α); here D denotes the degree of
α. This shows that Ruppert’s question is equivalent to the one stated above. Ruppert
[8, Proposition 2] himself answered this question in the affirmative for D = 2. The aim
of this note is to answer Ruppert’s question in the negative for all composite D.

Theorem 1.2. Let b = b(D) > 1 be the smallest divisor of D, and suppose γ is a real
number such that

γ <

{
1/(D(b+ 1)) : if b ≤ 3,
1/(2D(b+ 1)) + 1/(Db2(b+ 1)) : otherwise.

Then there exist infinitely many number fields L of degree D satisfying

δ(L) > |∆L|γ .

Note that for composite D > 4 we have

1

2D(b+ 1)
+

1

Db2(b+ 1)
>

1

2D(
√
D + 1)

>
1

2D(D − 1)
.

Thus, Theorem 1.2 provides a negative answer to Question 1.1 for all composite D. In
fact, we prove a stronger result, namely: let F be any number field of degree D/b; when
enumerated by the modulus of the discriminant, the subset of all degree b extensions
L of F , defined by δ(L) > |∆L|γ , has density 1 (for the precise statement we refer to
Corollary 4.1).

Our proof strategy requires a good lower bound for the number of degree D fields
with bounded modulus of the discriminant. Essentially optimal bounds are available
when D is even or divisible by 3, and if D is composite we still have some useful bounds.
However, a folk conjecture (sometimes attributed to Linnik) predicts the asymptotics
cDT as T goes to infinity, for some constant cD > 0. Unfortunately, the best general

lower bounds are only of order T 1/2+1/D2

which is just slightly weaker than what we
need. Therefore, our next result is conditional.

Theorem 1.3. Suppose that D > 3, and suppose that there exist constants cD > 0 and
νD > 1/2 + 1/(D− 1) such that the number of degree D fields L ⊂ Q with absolute value
of the discriminant no larger than T is at least cDT

νD for all T large enough. Then there
exists γ > 1/(2D(D − 1)) such that there are infinitely many number fields L of degree
D with

δ(L) > |∆L|γ .

Thanks to [1], the hypothesis of Theorem 1.3 is satisfied for D = 5, and hence we get
an unconditional negative answer to Question 1.1 for D = 5. Furthermore, Theorem 1.3
shows that most likely the answer to Question 1.1 is “no” for all D > 3. However, our
method sheds no light on the case D = 3.

In this article we use Vinogradov’s notation� and� at various places. The involved
constants are allowed to depend on all quantities except on the parameter T , which is
introduced in the next section.
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2. Enumerating fields: discriminant versus delta-invariant

Any number field is considered a subfield of the fixed algebraic closure Q. Let k be
a number field, let m = [k : Q], let L/k be a finite extension of degree d = [L : k] > 1,
and put D = [L : Q] = md. For the remainder of this paper we set

C = Cd(k) = {L ⊂ Q; [L : k] = d},(2.1)

and for a subset S ⊂ C, and γ ≥ 0 we set

Sγ = {L ∈ S; δ(L) > |∆L|γ}.(2.2)

We want to enumerate the fields in S in two different ways: once by the discriminant
(more precisely, the modulus thereof), and once by the delta invariant δ(·). Thus we
introduce the counting functions

N∆(S, T ) = |{L ∈ S; |∆L| ≤ T}|,
Nδ(S, T ) = |{L ∈ S; δ(L) ≤ T}|.

Note that both cardinalities are finite; the first one by Hermite’s Theorem, the second
one by Northcott’s Theorem. Next we introduce the set of generators of fields of S

PS = {α ∈ Q;Q(α) ∈ S},

and its counting function

NH(PS , T ) = |{α ∈ PS ;H(α) ≤ T}|.

Again, the above cardinality is finite by Northcott’s Theorem.
The proof of Theorem 1.2 is based on two simple observations, the first of which, is

presented as the following proposition.

Proposition 2.1. Suppose there are positive reals η, θ, and γ < η/θ such that N∆(S, T )�
T η and NH(PS , T )� T θ for all T large enough. Then

lim
T→∞

N∆(Sγ , T )

N∆(S, T )
= 1.

Proof. Directly from the definitions we get

N∆(S\Sγ , T ) ≤ Nδ(S\Sγ , T γ) ≤ Nδ(S, T γ).

The map α→ Q(α) yields a surjection from {α ∈ PS ;H(α) ≤ T γ} to {L ∈ S; δ(L) ≤ T γ}.
Hence, we have

Nδ(S, T
γ) ≤ NH(PS , T

γ).

On the other hand, by the hypothesis,

NH(PS , T
γ)� T γθ,

and

N∆(S, T )� T η,

provided T is large enough. We conclude

lim
T→∞

N∆(S\Sγ , T )

N∆(S, T )
= 0,

whenever γ < η
θ which proves the proposition. �
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3. Bounds for the counting functions

In view of Proposition 2.1 we want to find a set S ⊂ C that maximizes the ratio η/θ.
Taking S = Cb(F ) ⊂ C as the set of fields that contain a fixed extension F/k of degree d/b
does not affect η in a negative way as we shall see in Lemma 3.1, but it positively affects
θ as we shall see in Lemma 3.2. This is the second simple but important observation for
the proof of Theorem 1.2.

We start with lower bounds for η, that is, lower bounds for N∆(Cb(F ), T ).

Lemma 3.1. Let b = b(d) > 1 be the smallest divisor of d, and let F be an extension of
k of degree d/b. Then we have

N∆(Cb(F ), T )� T 1/2+1/b2(3.1)

for all T large enough. If d is even or divisible by 3 then we even have

N∆(Cb(F ), T )� T,(3.2)

for all T large enough.

Proof. First we recall that for L ∈ Cb(F ) we have |∆L| = |∆F |bNF/Q(DL/F ), where
NF/Q(·) is the absolute norm, and DL/F is the relative discriminant. Thus, counting
fields in Cb(F ) with |∆L| ≤ T is the same as counting fields in Cb(F ) with NF/Q(DL/F ) ≤
T/|∆F |b. Therefore, Ellenberg and Venkatesh’s [5, Theorem 1.1] shows that

N∆(Cb(F ), T ) ≥ c′T 1/2+1/b2

for some c′ = c′(b, F ) > 0 and all T large enough. This yields (3.1). For (3.2) we note
that the conjectured asymptotic formula

N∆(Cb(F ), T ) = cT + o(T ),

where c = c(b, F ) > 0, has been proven by Datskovsky and Wright for b = 2 [3, Theorem
4.2] (see also [4, Corollary 1.2]) and for b = 3 [3, Theorem 1.1]. This proves the lemma.

�

Next we establish an upper bound for NH(PCb(F ), T ). Recall that k is a number field
of degree m, and also recall the notation C = Cd(k) from (2.1).

Lemma 3.2. We have for all T > 0

NH(PC , T )� Tmd(d+1).(3.3)

With the notation of Lemma 3.1, in particular,

NH(PCb(F ), T )� Tmd(b+1).(3.4)

Proof. First we note that Q(α) ∈ C = Cd(k) implies [k(α) : k] = d. Therefore,

NH(PC , T ) ≤ |{α ∈ Q; [k(α) : k] = d,H(α) ≤ T}|.

Now Schmidt [9, Theorem] has shown that

|{α ∈ Q; [k(α) : k] = d,H(α) ≤ T}| ≤ C(m, d)Tmd(d+1).

Therefore NH(PC , T ) ≤ C(m, d)Tmd(d+1), which proves (3.3). �
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4. Density results

Recall the notation in (2.2).

Corollary 4.1. Let b = b(d) > 1 be the smallest divisor of d, and suppose γ is a real
number such that

γ <

{
1/(md(b+ 1)) : if b ≤ 3,
1/(2md(b+ 1)) + 1/(mdb2(b+ 1)) : otherwise.

Let F be an extension of k of degree d/b and let B = {L ∈ C;F ⊂ L}. Then

lim
T→∞

N∆(Bγ , T )

N∆(B, T )
= 1.

Proof. First note that B = Cb(F ). Thus (3.1) yields N∆(B, T ) � T 1/2+1/b2 for T large
enough. If d is even or divisible by 3 then by (3.2) we even have N∆(B, T )� T for T large
enough. On the other hand (3.4) gives NH(PB , T ) � Tmd(b+1). Applying Proposition
2.1 with S = B yields the statement. �

So almost all fields in B = Cb(F ) satisfy δ(L) > |∆|γ . Note that, of course, B is an
infinite set, and so Theorem 1.2 follows from Corollary 4.1 by taking k = Q.

Corollary 4.2. Suppose γ < 1/(md(d+ 1)) and suppose d is even or divisible by 3 then

lim
T→∞

N∆(Cγ , T )

N∆(C, T )
= 1.

Proof. Let F be an extension of k of degree d/2 if d is even, and of degree d/3 oth-
erwise. Hence, C ⊃ C2(F ) or C ⊃ C3(F ) respectively, and so we conclude from (3.2)
that N∆(C, T ) � T . Furthermore, by (3.3) we have NH(PC , T ) � Tmd(d+1). Applying
Proposition 2.1 with S = C yields the statement. �

Finally, to prove Theorem 1.3 we apply Proposition 2.1 with S = C, k = Q, η =
νD > 1/2 + 1/(D − 1) and θ = D(D + 1) (for the latter we have applied (3.3)). As
η/θ > 1/(2D(D − 1)) we conclude that there exists γ > 1/(2D(D − 1)) such that there
exist infinitely many number fields L of degree D that satisfy

δ(L) > |∆L|γ .

This proves Theorem 1.3.

5. Cluster points

We consider the set of values

log δ(L)

log |∆L|
as L runs over all number fields of fixed degree D > 1. What are the cluster points of
this set? Combining (1.1) and (1.2) gives the smallest cluster point

lim inf
[L:Q]=D

log δ(L)

log |∆L|
=

1

2D(D − 1)
.

What about the largest cluster point? With b = b(D) as in Theorem 1.2 the latter
implies that

lim sup
[L:Q]=D

log δ(L)

log |∆L|
≥
{

1/(D(b+ 1)) : if b ≤ 3,
1/(2D(b+ 1)) + 1/(b2(b+ 1)D) : otherwise.
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If D is odd [11, Theorem 1.2] or if the Dedekind zeta-function associated to the Galois
closure of L satisfies the Generalized Riemann Hypothesis for all number fields L of
degree D, then [11, Theorem 1.3]

lim sup
[L:Q]=D

log δ(L)

log |∆L|
≤ 1/(2D).

However, the best known unconditional general upper bound for the largest cluster point
is 1/D, see, e.g., [12, Lemma 4.5]. It might be an interesting problem to study the
distribution of the cluster points, and to locate new cluster points.
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