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Abstract. We generalise M. M. Skriganov’s notion of weak admissibility for lattices

to include standard lattices occurring in Diophantine approximation and algebraic

number theory, and we prove estimates for the number of lattice points in sets such
as aligned boxes. Our result improves on Skriganov’s celebrated counting result if

the box is sufficiently distorted, the lattice is not admissible, and, e.g., symplectic

or orthogonal. We establish a criterion under which our error term is sharp, and we
provide examples in dimensions 2 and 3 using continued fractions. We also establish

a similar counting result for primitive lattice points, and apply the latter to the

classical problem of Diophantine approximation with primitive points as studied by
Chalk, Erdős, and others. Finally, we use o-minimality to describe large classes of

sets to which our counting results apply.

1. Introduction

In this article we generalise Skriganov’s notion of (weak) admissibility for lattices to
include standard lattices occurring in Diophantine approximation and algebraic number
theory (e.g., ideal lattices), and we prove a sharp estimate for the number of lattice
points in sets such as aligned boxes. Our result applies when the lattice is weakly admis-
sible, whereas Skriganov’s result requires the dual lattice to be weakly admissible (in his
stronger sense). If the lattice is symplectic or orthogonal1 and weakly admissible then
both results apply, and our error term is better, provided the lattice is not admissible and
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1The lattice Λ is symplectic (or orthogonal) if Λ = AZN for some symplectic (or orthogonal) A ∈
GLN (R).
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the box is sufficiently distorted. Our error term also has a good dependence on the geom-
etry of the lattice which allows us to apply a Möbius inversion to get a similar estimate
for primitive lattice points. The motivation for this comes from a classical Diophantine
approximation result [4] due to Chalk and Erdős from 1959 for numbers; it appears that
our result is the first one in higher dimensions. We also make modest progress on a
conjecture of Dani, Laurent, and Nogueira [5, 10] on an inhomogeneous Khintchine Gro-
shev type result for primitive points. Finally, we use o-minimality, a notion from model
theory, to describe large classes of sets to which our counting results apply. The usage of
o-minimality to asymptotically count lattice points has been initiated by Barroero and
the author [3], and [3, Theorem 1.3] has already found various applications (see, e.g.,
[1, 2, 7, 8, 9, 6]). Here we further develop this idea but we use o-minimality in a different
way.

Next we shall state the simplest special case of Theorem 2.1, and compare it to Skrig-
anov’s result [17, Theorem 6.1] (more precisely, Technau and the authors generalisation
[19, Theorem 1] from uniformly to non-uniformly scaled boxes). Let Γ ⊂ RN . Follow-
ing Skriganov we define ν(Γ, %) := inf{|x1 · · ·xN |1/N ; x ∈ Γ\{0}, |x| < %}, and we say
a lattice Λ in RN is weakly admissible if ν(Λ, %) > 0 for all % > 0 and admissible if
lim%→∞ ν(Λ, %) > 0. Let ZQ be a translate of the box [−Q1, Q1]×· · ·× [−QN , QN ], and

write Qmax for the maximal Qi, and Q for their geometric mean. We set EΛ(ZQ) :=∣∣∣#(Λ ∩ ZQ)−VolZQ/ det Λ
∣∣∣.

Theorem 1.1. Suppose Λ is a weakly admissible lattice in RN . Then we have

EΛ(ZQ)�N inf
0<B≤Qmax

(
Q

ν(Λ, B)
+
Qmax
B

)N−1

.

Suppose Λ is unimodular. Skriganov [17, Theorem 6.1] proved error estimates for
uniformly scaled aligned boxes (and more generally certain polyhedrons), provided the
dual lattice Λ⊥ (with respect to the standard inner product) is weakly admissible (see
also [16, (1.11) Theorem 1.1] for a precursor of this result for admissible lattices). As
shown in [19, Theorem 1] his method also leads to results for non-uniformly scaled aligned
boxes (provided Λ⊥ is weakly admissible) of the form2

EΛ(ZQ)�N
1

ν(Λ⊥, (Q/Qmin)∗)N
inf

%>γ
1/2
N

(
Q
N−1

√
%

+
rN−1

ν(Λ⊥, 2rQ/Qmin)N

)
,(1.1)

where γN denotes the Hermite constant, r = N2 + N log(%/ν(Λ⊥, %Q/Qmin)), and
(Q/Qmin)∗ = max{Q/Qmin, γN}. If Λ is admissible (which implies that Λ⊥ is admissi-
ble) then Skriganov’s bound becomes �Λ (logQ)N−1 which conjecturally is sharp.

Let us now suppose that Λ is weakly admissible but not admissible. Technau and the
author [19, Theorem 2] have shown that in general, even if Λ and Λ⊥ are both weakly
admissible, there is no way to bound ν(Λ, ·) in terms of ν(Λ⊥, ·). This indicates the
complementary aspect of Theorem 1.1 and (1.1). However, if Λ = AZN with, e.g., a
symplectic or orthogonal matrix A then ν(Λ, ·) = ν(Λ⊥, ·) by [19, Proposition 1], and
we can directly compare our result with Skriganov’s; note also that for N = 2 every
unimodular lattice is symplectic (cf. [19, Remark after Proposition 1]). Using that
Q/Qmin ≥ (Qmax/Q)1/(N−1) =: Q and that r ≥ −N log(ν(Λ⊥,Q)) we find the following
crude lower bound3 for the right hand-side of (1.1)(

ν(Λ,Q)ν(Λ, (ν(Λ,Q)−N log 2Q)
)−N

.(1.2)

2In the above setting our definition of ν(·, ·) is the N -th root of Skriganov’s and the one in [19].
3We are only interested in “sufficiently distorted” boxes, and so we can assume Q > γ

1/2
N .



WEAK ADMISSIBILITY, PRIMITIVITY, O-MINIMALITY, AND DIOPHANTINE APPROXIMATION3

Choosing B = Qmax/Q = QN−1 we see that the error term in Theorem 1.1 is bounded
from above by

�N Q
N−1

ν(Λ,QN−1)−(N−1).(1.3)

In particular, if N = 2 then our error term is better whenever ν(Λ, Qmax/Q)−3 is larger
than a certain multiple of (VolZQ)1/2, so if the box is sufficiently distorted in terms of

ν(Λ, ·) and the volume of the box (note that for ν(Λ, Qmax/Q)−1 = o(Q) as Q tends to
infinity, we still get asymptotics). Also for arbitrary N our error term is better when the
box is sufficiently distorted in terms of ν(Λ, ·) and the volume of the box, and provided
ν(Λ, %) decays faster than %−1/ log 2 or sufficiently slowly, e.g., like a negative power of
log %. The latter happens for almost every unimodular lattice (cf. [17, Lemma 4.5]), and
with Λ = AZN also for almost every4 matrix A ∈ SON (R) (cf. [17, Lemma 4.3]), and,
as mentioned before, for these Λ we also have ν(Λ, ·) = ν(Λ⊥, ·).

Another significant difference between our and Skriganov’s error term concerns the
dependence on the lattice. If we replace ZQ by k−1ZQ (or equivalently replace Λ by

kΛ and fix ZQ) then the lower bound (1.2) of the error term in (1.1) remains the same.

On the other hand the upper bound (1.3) of the error term in Theorem 1.1 decreases by
a factor k−N+1. This improvement allows us to sieve for coprimality, and thus to prove
asymptotics for the number of primitive lattice points.

2. Generalisation of weak admissibility and statement of the results

2.1. Generalised weak admissibility. Let S = (m,β), where m = (m1, . . . ,mn) ∈
Nn, β = (β1, . . . , βn) ∈ (0,∞)n, and n ∈ N = {1, 2, 3, . . .}. We write xi for the elements
in Rmi and x = (x1, . . . ,xn) for the elements in Rm1 × · · · ×Rmn = RN , where

N :=

n∑
i=1

mi.

We will always assume that N > 1. We set

t :=

n∑
i=1

βi.

We use | · | to denote the Euclidean norm, and we write

Nmβ(x) :=

n∏
i=1

|xi|βi

for the multiplicative β-norm on RN induced by S. Let C ⊂ RN be a coordinate-tuple
subspace, i.e.,

C = CI := {x ∈ RN ; xi = 0 (for all i ∈ I)},

where I ⊂ {1, . . . , n}. We fix such a pair (S, C), and for Γ ⊂ RN and % > 0 we define
the quantities

ν(Γ, %) := inf{Nmβ(x)1/t; x ∈ Γ\C, |x| < %},
Nmβ(Γ) := lim

%→∞
ν(Γ, %).

As usual we always interpret inf ∅ =∞ and ∞ > x for all x ∈ R. The above quantities
in the special case when C = {0} and mi = βi = 1 (for all 1 ≤ i ≤ n) were introduced
by Skriganov in [16, 17]. By a lattice in RN we always mean a lattice of rank N .

4In the sense of the Haar measure on SON (R).
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Definition 1. Let Λ be a lattice in RN . We say Λ is weakly admissible for (S, C) if
ν(Λ, %) > 0 for all % > 0. We say Λ is admissible for (S, C) if Nmβ(Λ) > 0.

Note that weak admissibility for a lattice in RN depends only on the choice of C
and m whereas admissibility depends on C and S = (m,β). Also notice that a lattice
Λ in RN is weakly admissible (or admissible) in the sense of Skriganov [17] if and only
if Λ is weakly admissible (or admissible) for (S, C) with C = {0} and mi = βi = 1
(for all 1 ≤ i ≤ n). Let us give some examples to illustrate that our notion of weak
admissibility captures new interesting cases not covered by Skriganov’s notion of weak
admissibility.

Example 1. Let Θ ∈ Matr×s(R) be a matrix with r rows and s columns and consider5

Λ =

[
Ir Θ
0 Is

]
Zr+s = {(p + Θq,q); (p,q) ∈ Zr × Zs}.(2.1)

We take n = 2, m1 = r, m2 = s and C = {(x1,x2); x2 = 0}. Then the lattice Λ is weakly
admissible for (S, C) (for every choice of β) if p+Θq 6= 0 for every q 6= 0. If β = (1, β)
then Λ is admissible for (S, C) if we have

|p + Θq||q|β ≥ cΛ(2.2)

for every (p,q) with q 6= 0 and some fixed cΛ > 0. The above lattice Λ naturally
arises when considering Diophantine approximations for the matrix Θ (cf. Corollary
2.2). Recall that the matrix Θ is called badly approximable if (2.2) holds true with β =
s/r. W. M. Schmidt [14] has shown that the Hausdorff dimension of the set of badly
approximable matrices is full, i.e., rs.

Another example comes from the Minkowski-embedding of an ideal in a number field.

Example 2. Suppose K is a number field with r real and s pairs of complex conjugate
embeddings. Let σ : K → Rr × Cs be the Minkowski-embedding, and identify C in
the usual way with R2. Set n=r+s, C = {0}, mi = βi = 1 for 1 ≤ i ≤ r, and
mi = βi = 2 for r + 1 ≤ i ≤ r + s. Now let A ⊂ K be a free Z-module of rank
N = r + 2s. Then Λ = σA is admissible in (S, C). In particular, this generalises the
examples of Skriganov for totally real number fields to arbitrary number fields K. Unlike
in Skriganov’s setting we can also consider cartesian products of such modules Aj by
using the embedding σ : Kp → Rpr ×Cps that sends a tuple α to (σ1(α), . . . , σr+s(α)).
Now mi is p if σi is real and 2p otherwise while n and βi remain unchanged. Again we
get that Λ = σ(A1 × · · · × Ap) is an admissible lattice in (S, C).

2.2. Generalised aligned boxes. Now we introduce the sets in which we count the
lattice points. Essentially these are the sets that are distorted only in the directions of
the coordinate axes. Let (S, C) be given, and recall that C = CI .

For Q = (Q1, . . . , Qn) ∈ (0,∞)n we consider the β-weighted geometric mean

Q =

(
n∏
i=1

Qβii

)1/t

,

and we assume throughout this note that

Qi ≤ Q (for all i /∈ I).(2.3)

We set

Qmax := max
1≤i≤n

Qi,

Qmin := min
1≤i≤n

Qi.

5Despite the row notation we treat the vectors as column vectors.
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For κ > 0 and M ∈ N we introduce the family of sets

Fκ,M := {S ⊂ RN ; ∂(AS) ∈ Lip(N,M, κ · diam(AS)) ∀A ∈ GLN (R)}.

Here GLN (R) denotes the group of invertible N × N -matrices with real entries,
diam(·) denotes the diameter, ∂(·) denotes the topological boundary, and the notation
Lip(·, ·, ·) is explained in Definition 2 Section 3.

It is an immediate consequence of [22, Theorem 2.6] that every bounded convex set
in RN lies in Fκ,M for κ = 8N5/2 and M = 1. We will also show (Proposition 8.1) that if
Z ⊂ Rd+N is definable in an o-minimal structure (explained in Section 8) and each fiber
ZT = {x; (T,x) ∈ Z} ⊂ RN is bounded then each fiber ZT lies in FκZ ,MZ

for certain
constants κZ and MZ depending only on Z but not on T . This result provides another
rich source of interesting examples, and might be of independent interest.

For 1 ≤ i ≤ n let πi : RN → Rmi be the projection defined by πi(x) = xi. Except in
Theorem 2.2, we now no longer assume that ZQ is an aligned box; instead we impose the

following, less restrictive, conditions. We fix values κ and M , and we assume throughout
this article that ZQ ⊂ RN is such that for all 1 ≤ i ≤ n

(1) ZQ ∈ Fκ,M ,
(2) πi(ZQ) ⊂ Byi(Qi) for some yi ∈ Rmi .

Here Byi(Qi) denotes the closed Euclidean ball in Rmi about yi of radius Qi. As is well
known (see, e.g., [18]) ∂(ZQ) ∈ Lip(N,M,L) implies that ZQ is measurable.

2.3. Main results. Let (S, C) be given. For Γ ⊂ RN we introduce the quantities

λ1(Γ) := inf{|x|; x ∈ Γ\{0}},

and

µ(Γ, %) := min{λ1(Γ ∩ C), ν(Γ, %)}.

If µ(Γ, %) = ∞ then we interpret 1/µ(Γ, %) as 0. Finally, for a lattice Λ ⊂ RN we
introduce the error term

EΛ(ZQ) :=

∣∣∣∣∣#(ZQ ∩ Λ)−
VolZQ

det Λ

∣∣∣∣∣ .
Our first result is a sharp upper bound for EΛ(ZQ).

Theorem 2.1. Suppose Λ is a weakly admissible lattice for (S, C), and define c1 :=
M((1 + κ)N2N )N . Then we have

EΛ(ZQ) ≤ c1 inf
0<B≤Qmax

(
Q

µ(Λ, B)
+
Qmax
B

)N−1

.

By considering suitable uniformly scaled parallelepipeds it is clear that the error term
cannot be improved in this generality. However, the situation becomes much more inter-
esting when we restrict the sets ZQ to aligned boxes. In this case Skriganov conjectured

[16, Remark 1.1] that his error term [16, (1.11) Theorem 1.1] for admissible lattices (in
his sense) is sharp. Skriganov’s conjecture would follow from the expected sharp lower
bound for the extremal discrepancy of sequences in the unit cube in RN (see [16, Re-
mark 2.2]); however, this is a major open problem in uniform distribution theory, proved
only for N = 2 by Schmidt [15]. Therefore, the sharpness of Skriganov’s error term for
admissible lattices is known only for N = 2. Here we are able to show that for weakly
admissible lattices (in our sense) the error term in Theorem 2.1 is sharp for N = 2 and
N = 3.
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Theorem 2.2. Suppose 2 ≤ n ≤ 3, mi = βi = 1 (1 ≤ i ≤ n) (hence N = n) and
C = {x; xn = 0}. Then there exists an absolute constant cabs > 0, a unimodular, weakly
admissible lattice Λ for (S, C), and a sequence of increasingly distorted (i.e., Q/Qmax
tends to zero), aligned boxes ZQ = [−Q1, Q1]× · · · × [−Qn, Qn], satisfying (2.3), whose

volume (2Q)N tends to infinity, such that for each box ZQ

EΛ(ZQ) ≥ cabs inf
0<B≤Qmax

(
Q

µ(Λ, B)
+
Qmax
B

)N−1

.

Thanks to the good dependence on the lattice of the error term in Theorem 2.1 we
are also able to prove asymptotics for the number of primitive lattice points.

Let Λ be a lattice in RN . We say x ∈ Λ is primitive if x is not of the form ky for
some y ∈ Λ and some integer k > 1. We write

Λ∗ := {x ∈ Λ; x is primitive}.

To state our next result let T : [0,∞) → [1,∞) be monotonic increasing, and an upper
bound for the divisor function, i.e.,

T (k) ≥
∑
d|k

1

for all k ∈ N. Finally, ζ(·) denotes the Riemann zeta function.

Theorem 2.3. Suppose Λ is a weakly admissible lattice for (S, C). Then there exists a
constant c2 = c2(N,κ,M) such that∣∣∣∣∣#(ZQ ∩ Λ∗)−

VolZQ

ζ(N) det Λ

∣∣∣∣∣ ≤ c2
((

Q

µ
+ 1

)N−1

+

(
Q

µ
+ 1

)
T (H)

)
,

where

H = N2N+2(Q+ |φ(y)|)
(

1

µ
+

1

Q

)
,

µ = µ(Λ, Qmax), |φ(y)| is the Euclidean norm of (Qy1/Q1, . . . , Qyn/Qn) ∈ RN , and the
vectors yi are those in (2) Subsection 2.2.

Note that for every a > 2 there is a b = b(a) ≥ exp(exp(1)) such that for x ≥ b we

can take T (x) = a
log x

log log x . We use Q + |φ(y)| ≤ Q(1 + |y|/Qmin) and 1/µ + 1/Q ≤ 2/µ
to obtain the following corollary.

Corollary 2.1. Suppose Λ is a weakly admissible lattice for (S, C) and a > 2. Then
there exist constants c3 = c3(a,N, κ,M, |y|) and b = b(a) such that for all Q ≥ bµ we
have ∣∣∣∣∣#(ZQ ∩ Λ∗)−

VolZQ

ζ(N) det Λ

∣∣∣∣∣ ≤ c3
((

Q

µ

)N−1

+ a
log(ηQ/µ)

log log(ηQ/µ)

(
Q

µ

))
,

where µ = µ(Λ, Qmax) and η = 1 + |y|/Qmin.

Next we consider applications to Diophantine approximation. Let Θ ∈ Matr×s(R)
be a matrix with r rows and s columns and suppose that ϕ : [1,∞) → (0, 1] is a non-
increasing function such that

|p + Θq||q|β ≥ ϕ(|q|)(2.4)
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for every (p,q) with q 6= 0. Let y be in Rr, Q ≥ 1, and let 0 < ε ≤ 1. We consider the
system

p + Θq− y ∈ [0, ε]r(2.5)

q ∈ [0, Q]s.(2.6)

Let N∗Θ,y(ε,Q) be the number of (p,q) ∈ Zr+s that satisfy the above system and have

coprime coordinates, i.e., gcd(p1, . . . , pr, q1, . . . , qs) = 1. In the one-dimensional case
r = s = 1 Chalk and Erdős [4] proved in 1959 that if Θ is an irrational number and
ε = ε(q) = (1/q)(log q/ log log q)2 then (2.5) has infinitely many coprime solutions, i.e.,
N∗Θ,y(ε,Q) is unbounded as Q tends to infinity. No improvements or generalisations have
been obtained since.

The following corollary follows straightforwardly from Corollary 2.1, and we leave the
proof to the reader. We suppose ε = ε(Q) is a function of Q, and that ε · Qβ tends to
infinity as Q tends to infinity.

Corollary 2.2. Suppose a > 2. Then, as Q tends to infinity, we have

N∗Θ,y(ε,Q) =
εrQs

ζ(r + s)
+O(ur+s−1 + ua

log δ
log log δ ),

where u =
(
εQβ

ϕ(Q)

)1/(1+β)

, and δ =

(
1

ϕ(Q)

(
Q
ε

)β)1/(1+β)

.

Corollary 2.2 also implies new results on how quickly ε can decay so that (2.5) still
has infinitely many coprime solutions. As an example let us suppose that Θ is a badly
approximable matrix so that in (2.4) we can choose β = s/r and ϕ(·) to be constant.

A straightforward computation shows that if c > 2(rs+s2)/(r2(r+s−1)) and ε = ε(Q) =
Q−s/rclogQ/ log logQ then N∗Θ,y(ε,Q) tends to infinity as Q does. In particular, if ε =

ε(|q|∞) = |q|−s/r∞ clog |q|∞/ log log |q|∞ then (2.5) has infinitely many coprime solutions6.
To the best of the author’s knowledge this is the first such result in arbitrary dimensions.

A similar simple calculation shows that Corollary 2.2 in conjunction with the clas-
sical Khintchine Groshev Theorem implies that the same holds true not only for badly
approximable matrices Θ but for almost7 every Θ ∈ Matr×s(R).

Finally, we mention a connection to a question of Dani, Laurent and Nogueira [5,
10]. Suppose ε : [1,∞) → (0, 1] and Qs−1ε(Q)r is non-increasing. Dani, Laurent and
Nogueira conjecture8 [5, 2. paragraph after Theorem 1.1] that if

∑
j∈N js−1ε(j)r = ∞

then for almost every Θ ∈ Matr×s(R) there exist infinitely many coprime solutions of
(2.5), where again we interpret ε = ε(|q|∞) as a function evaluated at |q|∞. We cannot
prove this conjecture but, as mentioned before, our result shows at least that we have
infinitely many such solutions for almost every Θ if ε(Q) � Q−s/rclogQ/ log logQ and

c > 2(rs+s2)/(r2(r+s−1)).

3. Basic counting principle

Let D ≥ 2 be an integer. Let Λ be a lattice of rank D in RD. Recall that BP (R)
denotes the closed Euclidean ball about P of radius R. We define the successive minima
λ1(Λ), . . . , λD(Λ) of Λ as the successive minima in the sense of Minkowski with respect
to the Euclidean unit ball. That is

λi = inf{λ;B0(λ) ∩ Λ contains i linearly independent vectors}.

6Here | · |∞ denotes the maximum norm.
7With respect to the Lebesgue measure.
8In fact their conjecture is more general but the mentioned special case is probably the most natural

case.
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Definition 2. Let M be a positive integer, and let L be a non-negative real number. We
say that a set S is in Lip(D,M,L) if S is a subset of RD, and if there are M maps
φ1, . . . , φM : [0, 1]D−1 −→ RD satisfying a Lipschitz condition

|φi(x)− φi(y)| ≤ L|x− y| for x,y ∈ [0, 1]D−1, i = 1, . . . ,M

such that S is covered by the images of the maps φi.

For any set S we write

1∗(S) =

{
1 if S 6= ∅,
0 if S = ∅.

We will apply the following basic counting principle.

Lemma 3.1. Let Λ be a lattice in RD with successive minima λ1, . . . , λD. Let S be a
set in RD such that the boundary ∂S of S is in Lip(D,M,L), and suppose S ⊂ BP (L)
for some point P . Then S is measurable, and moreover,∣∣∣∣#(S ∩ Λ)− VolS

det Λ

∣∣∣∣ ≤ c4(D)M

((
L

λ1

)D−1

+ 1∗(S ∩ Λ)

)
,

where c4(D) = D3D2/2.

Proof. By [21, Theorem 5.4] the set S is measurable, and moreover,∣∣∣∣#(S ∩ Λ)− VolS

det Λ

∣∣∣∣ ≤ D3D2/2M max
1≤j<D

{
1,

Lj

λ1 · · ·λj

}
.(3.1)

First suppose L ≥ λ1. Then the lemma follows immediately from (3.1). Next we assume
L < λ1. We distinguish two subcases. First suppose S ∩ Λ 6= ∅. Then

max
1≤j<D

{
1,

Lj

λ1 · · ·λj

}
= 1 = 1∗(S ∩ Λ) ≤

(
L

λ1

)D−1

+ 1∗(S ∩ Λ).

Now suppose S ∩ Λ = ∅. As L < λ1 we get, using Minkowski’s second Theorem,∣∣∣∣#(S ∩ Λ)− VolS

det Λ

∣∣∣∣ =
VolS

det Λ
≤ (2L)D

λ1 · · ·λD
≤ 2D

(
L

λ1

)D−1

.

This proves the lemma. �

4. Proof of Theorem 2.1

Let θi = Q/Qi (1 ≤ i ≤ n), and let φ be the automorphism of RN defined by

φ(x) := (θ1x1, . . . , θnxn).

Set

θmin := min
1≤i≤n

θi = Q/Qmax.

Note that by (2.3) we have

θi ≥ 1 (for all i /∈ I).(4.1)

Moreover,
n∏
i=1

θβii = 1,

and hence,

Nmβ(φx) = Nmβ(x).(4.2)

Lemma 4.1. We have ∂φ(ZQ) ∈ Lip(N,M,L) for L = 2n1/2κQ.
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Proof. We have

φ(ZQ) ⊂ φ(By1
(Q1)× · · · ×Byn(Qn)) = Bθ1y1

(Q)× · · · ×Bθnyn(Q),

and hence, φ(ZQ) ⊂ Bφy(n1/2Q). As ZQ ∈ Fκ,M the claim follows. �

Lemma 4.2. The set ZQ is measurable and∣∣∣∣∣#(ZQ ∩ Λ)−
VolZQ

det Λ

∣∣∣∣∣ ≤ c5
((

Q

λ1(φΛ)

)N−1

+ 1∗(φZQ ∩ φΛ)

)
,

where c5 = (1 + 2n1/2κ)N−1Mc4(N).

Proof. Since #(ZQ ∩ Λ) = #(φZQ ∩ φΛ) and VolZQ/det Λ = VolφZQ/detφΛ this

follows immediately from Lemma 3.1 and Lemma 4.1. �

Lemma 4.3. Let B > 0. Then we have

λ1(φΛ) ≥ min{λ1(Λ ∩ CI), ν(Λ, B), θminB}.

Proof. By (4.1) we have θi ≥ 1 (for all i /∈ I). Moreover, if x ∈ Λ ∩ CI then xi = 0 (for
all i ∈ I), and thus

|φ(x)|2 =
∑

1≤i≤n
i/∈I

|θixi|2 ≥
∑

1≤i≤n
i/∈I

|xi|2 = |x|2.

Hence, if x ∈ Λ ∩ CI and x 6= 0 then |φ(x)| ≥ λ1(Λ ∩ CI).
Now suppose that x ∈ Λ\CI . If z is an arbitrary point in RN then, by the weighted

arithmetic geometric mean inequality, we have

|z|2 =

n∑
i=1

|zi|2 ≥
1

maxi βi

n∑
i=1

βi|zi|2 ≥
t

maxi βi

(
n∏
i=1

|zi|2βi
) 1

t

≥ Nmβ(z)2/t,

and thus

|z| ≥ Nmβ(z)1/t.(4.3)

Using (4.3) and (4.2) we conclude that

|φ(x)| ≥ Nmβ(φx)1/t = Nmβ(x)1/t.

First suppose that |x| < B. Then we have by the definition of ν(·, ·)

Nmβ(x)1/t ≥ ν(Λ, B),

and hence |φ(x)| ≥ ν(Λ, B). Now suppose |x| ≥ B. Then we have

|φ(x)| = θmin|(θ1x1/θmin, . . . , θnxn/θmin)| ≥ θmin|(x1, . . . ,xn)| = θmin|x| ≥ θminB.

This proves the lemma. �

We can now easily finish the proof of Theorem 2.1. Since, θminQmax = Q we conclude
λ1(φΛ) ≥ min{µ(Λ, B), BQ/Qmax}. Thus, we have

Q

λ1(φΛ)
≤ Q

µ(Λ, B)
+
Qmax
B

.(4.4)

The latter in conjunction with Lemma 4.2 and the fact c5+1 = (1+2n1/2κ)N−1MN3N2/2+
1 ≤M((1 + κ)N2N )N = c1 proves the theorem.
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5. Preparations for the Möbius inversion

Recall that T : [0,∞) → [1,∞) is a monotonic increasing function that is an upper
bound for the divisor function, i.e., T (k) ≥

∑
d|k 1 for all k ∈ N. In this section D is a

positive integer. For A ∈ GLD(R) we write ‖A‖ for the (Euclidean) operator norm.

Lemma 5.1. Let Λ be a lattice in RD, and let A be in GLD(R) with AZD = Λ. Then

#{k ∈ N;BP (R)\{0} ∩ kΛ 6= ∅} ≤ T ((R+ |P |)‖A−1‖)(2R‖A−1‖+ 1).

Proof. First assume A = ID so that Λ = ZD. Suppose v = (a1, . . . , aD) ∈ ZD is non-
zero, kv ∈ BP (R) and P = (x1, . . . , xD). Then kai lies in [xi −R, xi +R] for 1 ≤ i ≤ D.
As v 6= 0 there exists an i with ai 6= 0. We conclude that k is a divisor of some non-
zero integer in [xi − R, xi + R]. There are at most 2R + 1 integers in this interval,
each of which of modulus at most R + |P |. Hence the number of possibilities for k is
≤ T (R+ |P |)(2R+ 1). This proves the lemma for A = ID. Next note that

#(BP (R)\{0} ∩ kΛ) = #(A−1BP (R)\{0} ∩ kZD).

Hence, the general case follows from the case A = ID upon noticing A−1BP (R) ⊂
BA−1(P )(R‖A−1‖), and |A−1(P )| ≤ ‖A−1‖|P |. �

Next we estimate the operator norm ‖A−1‖ for a suitable choice of A.

Lemma 5.2. Let Λ be a lattice in RD. There exists A ∈ GLD(R) with AZD = Λ and

‖A−1‖ ≤ c6(D)

λ1
,

where c6(D) = D2D+1.

Proof. Any lattice Λ in RD has a basis v1, . . . , vD with |v1|···|vD|
| det[v1...vD]| ≤ D

2D, see, e.g., [21,

Lemma 4.4]. Let A be the matrix that sends the canonical basis e1, . . . , eD to v1, . . . , vD.
Now suppose A−1 sends ei to (%1, . . . , %D) then by Cramer’s rule

|%j | =
∣∣∣∣ det[v1 . . . ei . . . vD]

det[v1 . . . vj . . . vD]

∣∣∣∣ ≤ |det[v1 . . . ei . . . vD]|
|v1| · · · |vj | · · · |vD|

D2D.

Now we apply Hadamard’s inequality to obtain

|det[v1 . . . ei . . . vD]|
|v1| · · · |vj | · · · |vD|

≤ |v1| · · · |ej | · · · |vD|
|v1| · · · |vi| · · · |vD|

=
1

|vi|
≤ 1

λ1
.

Next we use that for a D×D matrix [aij ] with real entries we have ‖[aij ]‖ ≤ Dmaxij |aij |,
and this proves the lemma. �

We combine the previous two lemmas.

Lemma 5.3. Let Λ be a lattice in RD, and let λ1 = λ1(Λ). Then

∞∑
k=1

1∗(BP (R)\{0} ∩ kΛ) ≤ T
(
c6(D)

(
R+ |P |
λ1

))(
2c6(D)R

λ1
+ 1

)
.

Proof. Note that
∑∞
k=1 1∗(BP (R)\{0}∩ kΛ) = #{k ∈ N;BP (R)\{0}∩ kΛ 6= ∅}. Hence,

the lemma follows immediately from Lemma 5.1 and Lemma 5.2. �
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6. Proof of Theorem 2.3

Set

Z∗Q := ZQ\{0},

and

R := n1/2Q.

Lemma 6.1. We have∣∣∣∣∣#(Z∗Q ∩ Λ)−
VolZQ

det Λ

∣∣∣∣∣ ≤ c7
((

Q

λ1(φΛ)

)N−1

+ 1∗(Bφ(y)(R)\{0} ∩ φΛ)

)
,

where c7 = (1 + 2n1/2κ)N−1(M + 1)c4(N).

Proof. Lemma 4.1 implies that ∂Z∗Q ∈ Lip(N,M + 1, L) with L = 2n1/2κQ. As noted in

the proof of the latter lemma we have φ(Z∗Q) ⊂ Bφy(R)\{0}. We conclude as in Lemma

4.2. �

For x ∈ Λ\{0} we define gcd(x) := d if x = dx′ for some x′ ∈ Λ but x 6= kx′ for
all integers k > d and all x′ ∈ Λ. (An equivalent definition is gcd(Az) := gcd(z), where
z ∈ ZN , gcd(z) := gcd(z1, . . . , zN ), and Λ = AZN .) Next we define

F (d) = {x ∈ Λ ∩ Z∗Q; gcd(x) = d}.

In particular, Λ∗ ∩ ZQ = F (1). Then for k ∈ N we have the disjoint union⋃
k|d

F (d) = kΛ ∩ Z∗Q.

If x = kx′ lies in kΛ ∩ Z∗Q then kφx′ lies in kφΛ ∩Bφ(y)(R), and hence

k ≤
R+ |φ(y)|
λ1(φΛ)

≤
R+ |φ(y)|
µ(Λ, Qmax)

+
R+ |φ(y)|

Q
=: G,

where for the second inequality we have applied Lemma 4.3 with B = Qmax. We use the
Möbius function µ(·) and the Möbius inversion formula to get

#(Λ∗ ∩ ZQ) = #F (1) =

∞∑
k=1

µ(k)
∑
d
k|d

#F (d) =

[G]∑
k=1

µ(k)
∑
d
k|d

#F (d) =

[G]∑
k=1

µ(k)#(kΛ ∩ Z∗Q).

For the rest of this section we will write g � h to mean there exists a constant c =
c(N,M, κ) such that g ≤ ch. Applying Lemma 6.1 with Λ replaced by kΛ yields∣∣∣∣∣#(ZQ ∩ Λ∗)−

VolZQ

ζ(N) det Λ

∣∣∣∣∣�
[G]∑
k=1

(
Q

kλ1(φΛ)

)N−1

+

[G]∑
k=1

1∗(Bφ(y)(R)\{0} ∩ kφΛ) +
∑
k>G

VolZQ

kN det Λ
.

First we note that∑
k>G

k−N ≤
∑

k≥max{G,1}

k−N � max{G, 1}1−N ≤ max

{
R

λ1(φΛ)
, 1

}1−N

,

and moreover,

VolZQ

det Λ
=

VolφZQ

detφΛ
≤

VolB0(R)

detφΛ
� RN

λ1(φΛ)N
.
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Combining both with (4.4) yields∑
k>G

VolZQ

kN det Λ
� R

λ1(φΛ)
� Q

λ1(φΛ)
≤ Q

µ(Λ, Qmax)
+ 1.

Next we note that by Lemma 5.3

[G]∑
k=1

1∗(Bφ(y)(R)\{0} ∩ kφΛ) ≤ T
(
c6(N)

R+ |φ(y)|
λ1(φ(Λ))

)(
2c6(N)R

λ1(φ(Λ))
+ 1

)
.

Moreover, (
2c6(N)R

λ1(φ(Λ))
+ 1

)
� Q

µ(Λ, Qmax)
+ 1,

and

R+ |φ(y)|
λ1(φ(Λ))

≤
R+ |φ(y)|
µ(Λ, Qmax)

+
R+ |φ(y)|

Q
= G.

Since c6(N)G < H we conclude that

[G]∑
k=1

1∗(Bφ(y)(R)\{0} ∩ kφΛ)� T (H)

(
Q

µ(Λ, Qmax)
+ 1

)
.

Finally,

[G]∑
k=1

(
Q

kλ1(φΛ)

)N−1

�
(

Q

µ(Λ, Qmax)
+ 1

)N−1 [G]∑
k=1

k1−N �
(

Q

µ(Λ, Qmax)
+ 1

)N−1

L∗,

where

L∗ =

{
max{log(G), 1} if N = 2,

1 if N > 2.

If N > 2 then L∗ = 1 and we are done. So suppose N = 2. Hence c6(N) = 32. By
assumption T (x) ≥ 1 so that L∗ ≤ T (c6(N)G) for G ≤ exp(1). Now suppose G >
exp(1). Since T is monotonic and 2[log2[32G]] ≤ 32G we have T (32G) ≥ [log2[32G]] + 1 ≥
log2(32G− 1) ≥ logG. Thus, L∗ ≤ T (c6(N)G) ≤ T (H). This finishes the proof.

7. Lower bounds for the error term

The main goal of this section is to prove Theorem 2.2. Throughout this section we
assume that mi = βi = 1 (1 ≤ i ≤ n), so that N = n = t ≥ 2, and that Λ is a unimodular
weakly admissible for (S, C) but not admissible for (S, C). To simplify the notation we
write Nm(·) := Nmβ(·) and ν(·) := ν(Λ, ·).

Let k ≥ 1 be a constant, and {xj}∞j=1 = {(xj1, . . . , xjn)}∞j=1 be a sequence of pairwise
distinct elements in Λ\C satisfying

Nm(xj) ≤ kν(|xj |)n.

We define

Nj := aν(|xj |)−n,
ZQj

:= NjBxj
,

cj := λn−1(Λ, Bxj
),

where a > 0 is a constant which will be specified later, Bxj
denotes the 0-centered box

Bxj
:= [−|xj1|, |xj1|]× · · · × [−|xjn|, |xjn|],
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and λi(Λ, Bxj
) are the corresponding successive minima. For 1 ≤ i ≤ n we choose the

values9 Qi = Nj |xji| for the set ZQj
, so that the condition (2) from Subsection 2.2 holds,

and moreover,

Q ≤ (ak)
1
nN

n−1
n

j .(7.1)

We also assume that our sets ZQj
satisfy the condition (2.3), i.e.,

Qi ≤ Q (for all i /∈ I).

Lemma 7.1. We have

#(ZQj
∩ Λ)−VolZQj

≥ (Nj/(cjn))n−1 − 2nakNn−1
j .

Moreover, Nj tends to infinity and Q/Qmax tends to zero.

Proof. Let v1, . . . , vn−1 be linearly independent lattice points in λn−1(Λ, Bxj
)Bxj

. Then

the lattice points
∑n−1
l=1 mlvl with −Nj/(cjn) ≤ ml ≤ Nj/(cjn) are all distinct and lie

all in ZQj
. Since 2[Nj/(cjn)] + 1 ≥ Nj/(cjn) and VolZQj

= (2Q)n ≤ 2nakNn−1
j the

claimed inequality follows at once. Recall that Λ is not admissible. Therefore, Nm(xj)

and Q/Qmax = Nm(xj)
1/n/maxi{|xji|} both tend to 0, and Nj tends to infinity. �

We now make the crucial assumption that the n − 1-th successive minimum cj is
uniformly bounded10 in j.

Lemma 7.2. Suppose there exists a constant cΛ ≥ 1 such that

cj ≤ cΛ(7.2)

for all j, and take a := 1/(4k(2cΛn)n−1). Then we have

EΛ(ZQj
) ≥ #(ZQj

∩ Λ)−VolZQj
≥ (cΛn)−nNn−1

j .(7.3)

Proof. This follows immediately from Lemma 7.1. �

Next we prove a general criterion for Λ under which we have

#(ZQj
∩ Λ)−VolZQj

≥ c inf
0<B≤Qmax

(
Q

µ(Λ, B)
+
Qmax
B

)N−1

(7.4)

with a certain constant c > 0.

Proposition 7.1. Suppose that the condition (7.2) and

ν

( |xj |
ν(|xj |)n

)
≥ γν(|xj |)(7.5)

for some constant γ > 0 hold true. Then there exists c = c(k, cΛ, n, γ) > 0 such that
(7.4) holds true for all j large enough.

Proof. We have Qmax ≤ Nj |xj |, and so ignoring the first few members of the sequence
xj , we can assume that

µ(Λ, Qmax) ≥ ν(Nj |xj |) = ν(a|xj |/ν(|xj |)n) ≥ ν(|xj |/ν(|xj |)n) ≥ γν(|xj |).
Hence,

inf
0<B≤Qmax

(
Q

µ(Λ, B)
+
Qmax
B

)
≤
(

Q

µ(Λ, Qmax)
+ 1

)
≤
(

Q

γν(|xj |)
+ 1

)
≤ (2k1/n/γ)Nj

for all j large enough. This, in conjunction with (7.3), shows that (7.4) holds true. �

9To simplify the notation we suppress the dependence on j and we simply write Qi and Q.
10Note that λ1(Λ, Bxj ) ≤ 1 by definition of the box Bxj . On the other hand VolBxj tends to zero, so

that by Minkowski’s second Theorem λn(Λ, Bxj )→∞ as j tends to infinity.
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For the rest of this section we assume that

C = {x; xn = 0}.(7.6)

We now apply Proposition 7.1 to prove the case n = 2 in Theorem 2.2.

Proposition 7.2. Suppose n = 2. Then there exists a unimodular, weakly admissible
lattice Λ for (S, C), and a sequence of increasingly distorted (i.e., Q/Qmax tends to zero),
aligned boxes ZQ = [−Q1, Q1] × [−Q2, Q2] whose volume (2Q)2 tends to infinity such

that

EΛ(ZQ) ≥ cabs inf
0<B≤Qmax

(
Q

µ(Λ, B)
+
Qmax
B

)
,

where cabs > 0 is an absolute constant.

Proof. Let α be an irrational real number, and consider the lattice Λ given by the vectors
(p − qα, q) with p, q ∈ Z. Then Λ is unimodular and weakly admissible for (S, C). To
choose an appropriate α we consider its continued fraction expansion α = [a0, a1, a2, . . .].
Using the recurrence relation qj+1 = aj+1qj + qj−1 for the denominator qj of the j-th
convergent pj/qj (in lowest terms) we can define α by setting a0 = a1 = 1 (so that
q0 = q1 = 1) and aj+1 = [log qj ]+1. Next we note that aj+1 = [log(ajqj−1 + qj−2)]+1 ≤
log((aj+1)qj−1)+1 ≤ log(aj+1)+aj+1 ≤ 3aj . Similarly we find aj+log aj−1 ≤ aj+1,
and hence,

aj + log aj − 1 ≤ aj+1 ≤ 3aj .

Put xj = (pj − qjα, qj) ∈ Λ\C so that |xj | > |xj−1|, at least for j large enough. From
the theory of continued fractions we know that for x ∈ Λ\C the inequality Nm(x) < 1/2
implies that x = cxj for some non-zero integer c and j ∈ N. We conclude that for all

sufficiently large % we have ν(%)2 = Nm(xj) for some j. Also by the theory of continued
fractions we know that

1/(aj+1 + 2) < Nm(xj) < 1/aj+1.

Since, for j sufficiently large, aj > aj−1 + 2, we conclude Nm(xj−1) < Nm(xj−2) and
thus

Nm(xj−1) = ν(|xj |)2

for j large enough; so we can take k = 1. We also easily find that |xj |/ν(|xj |)2 ≤ |xj+1|
for j large enough. It is now straightforward to verify (7.5). Moreover, for j large
enough, (2.3) holds true, and so ZQj

is an eligible set. Since n = 2 we automatically

have (7.2) with cΛ = 1. Hence we can apply Proposition 7.1. Finally, we note that
VolZQj

= 4N2
j Nm(xj) = (2a)2Nm(xj−1)−2Nm(xj) ≥ 2−6a2

j/(aj+1 + 2) which tends to

infinity, and moreover, that the boxes ZQj
are increasingly distorted by Lemma 7.1.

This completes the proof. �

Next we prove the case n = 3 in Theorem 2.2. This case does not rely on Proposition
7.1.

Proposition 7.3. Suppose n = 3. Then there exists a unimodular, weakly admissi-
ble lattice Λ for (S, C), and a sequence of increasingly distorted, aligned boxes ZQ =

[−Q1, Q1]× [−Q2, Q2]× [−Q3, Q3] whose volume (2Q)3 tends to infinity such that

EΛ(ZQ) ≥ cabs inf
0<B≤Qmax

(
Q

µ(Λ, B)
+
Qmax
B

)2

,

where cabs > 0 is an absolute constant.
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Proof. Let α = [a0, a1, a2, . . .] be a badly approximable real number, so that the partial
quotients ai are bounded. We set aM = max ai, and we consider the lattice

Λ = {(p1 − qα, p2 − qα, q); p1, p2, q ∈ Z}.(7.7)

The lattice Λ is unimodular and weakly admissible for (S, C). In this proof we write
h � g to mean h ≤ cg for a constant c = c(aM ) depending only on aM . First we note
that

Nm(x)� |x|−1

for every x ∈ Λ\C. Hence,

ν(%)� %−1/3.(7.8)

Now suppose pj/qj is the j-th convergent of α, and put xj = (pj−qjα, pj−qjα, qj) ∈ Λ\C.
Then, for j large enough, (2.3) holds true, and so ZQj

is an eligible set. Since

Nm(xj)� |xj |−1,

we also conclude that there exists k = k(aM ) ≥ 1 such that

Nm(xj) ≤ kν(|xj |)3.

Since qj+1 = aj+1qj + qj−1 we get qj+1 � qj and, as is wellknown, |pj+1 − qj+1α| <
|pj − qjα|. Furthermore, (pj , qj) and (pj+1, qj+1) are linearly independent, and thus xj
and xj+1 are linearly independent. Hence, we conclude

cj := λ2(Λ, Bxj
)� 1,

and thus, by Lemma 7.2, we get EΛ(ZQj
) � N2

j . Moreover, for j sufficiently large, we

have

|xj−1| < |xj | � |xj−1|,(7.9)

and thus

ν(|xj |) ≤ Nm(xj−1)1/3 � |xj−1|−1/3 � |xj |−1/3.(7.10)

Combining (7.8), (7.9) and (7.10) implies that

%−1/3 � ν(%)� %−1/3.

Therefore, we have

Nj � ν(|xj |)−3 � |xj | � qj ≤ |xj | � ν(|xj |)−3 � Nj .

Thus, N2
j � Qmax = Njqj � N2

j , and due to (7.1), Q� N
2/3
j . Hence, with B = Nj we

have

Q

ν(B)
� Qmax

B
,

and thus for all j large enough

inf
0<B≤Qmax

(
Q

µ(Λ, B)
+
Qmax
B

)2

�
(
Qmax
B

)2

� N2
j � EΛ(ZQj

).

Hence, we have shown that (7.4) holds true. Finally, we observe that VolZQj
=

8N3
j Nm(xj)� N2

j which, due to Lemma 7.1, completes the proof. �
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8. Fκ,M - Families via o-minimality

In this section let d ≥ 1 and D ≥ 2 both be integers. For Z ⊂ Rd+D and T ∈ Rd we
write ZT = {x ∈ RD; (T, x) ∈ Z} and call this the fiber of Z above T . For the convenience
of the reader we quickly recall the definition of an o-minimal structure following [11]. For
more details we refer to [23, 11] and [20].

Definition 3. A structure (over R) is a sequence S = (Sn)n∈N of families of subsets in
Rn such that for each n:

(1) Sn is a boolean algebra of subsets of Rn (under the usual set-theoretic operations).
(2) Sn contains every semi-algebraic subset of Rn.
(3) If A ∈ Sn and B ∈ Sm then A×B ∈ Sn+m.
(4) If π : Rn+m → Rn is the projection map onto the first n coordinates and A ∈
Sn+m then π(A) ∈ Sn.

An o-minimal structure (over R) is a structure (over R) that additionally satisfies:

(5) The boundary of every set in S1 is finite.

The archetypical example of an o-minimal structure is the family of all semi-algebraic
sets.

Following the usual convention, we say a set A is definable (in S) if it lies in some
Sn. A map f : A → B is called definable if its graph Γ(f) := {(x, f(x));x ∈ A} is a
definable set.

Proposition 8.1. Suppose Z ⊂ Rd+D is definable in an o-minimal structure over R,
and assume further that all fibers ZT are bounded sets. Then there exist constants κZ and
MZ depending only on Z (but independent of T ) such that the fibers ZT lie in FκZ ,MZ

for all T ∈ Rd.

Suppose the set Z is defined by the inequalities

f1(T, x) ≤ 0, . . . , fk(T, x) ≤ 0,(8.1)

where the fi are certain real valued functions on Rd+D. If all these functions fi are defin-
able in a common o-minimal structure then Z is definable in an o-minimal structure. This
happens for instance if the fi(T, x) = fi(T1, . . . , Td, x1, . . . , xD) are restricted analytic
functions11 or polynomials in z1, . . . , zd+D and each zi ∈ {Tm, exp(Tm), xl, exp(xl); 1 ≤
m ≤ d, 1 ≤ l ≤ D}. For more details and examples we refer to [23, 12, 13].

For the proof of Proposition 8.1 we shall need the following lemma. The author is
grateful to Fabrizio Barroero for alerting him to Pila and Wilkie’s Reparameterization
Lemma for definable families and its relevance for the lemma.

Lemma 8.1. Suppose Z ⊂ Rd+D is definable in an o-minimal structure over R, and
assume further that all fibers ZT are bounded sets. Then there exist constants κZ and
MZ depending only on Z such that the boundary ∂ZT lies in Lip(D,MZ , κZ · diam(ZT ))
for every T ∈ Rd.

Proof. First note that if #ZT ≤ 1 then ∂ZT lies in Lip(D, 1, 0). Hence, it suffices to
prove the claim for those T with #ZT ≥ 2. By replacing Z with the definable set
{(T, x) ∈ Z; (∃x, y ∈ ZT )(x 6= y)} we can assume that #ZT ≥ 2 for all T ∈ π(Z), where
π is the projection onto the first d coordinates. We use the existence of definable Skolem
functions. By [20, Ch.6, (1.2) Proposition] there exists a definable map f : π(Z)→ RD

whose graph Γ(f) ⊂ Z. The proof of said (1.2) Proposition actually shows that there

11By a restricted analytic function we mean a real valued function on Rn, which is zero outside of
[−1, 1]n, and is the restriction to [−1, 1]n of a function, which is real analytic on an open neighbourhood

of [−1, 1]n.
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is an algorithmic way to construct the Skolem function f. We will use the fact that this
choice of f is determined by Z and π, and hence can be seen as part of the data of Z.

Now we consider the set Z ′ = {(T, y); (T, x) ∈ Z, y = x − f(T )}. This set is again
definable, and each non-empty fiber contains the origin, i.e., 0 ∈ Z ′T for all T ∈ π(Z).
Next we scale the fibers and translate by the point y0 = (−1/2)(1, . . . , 1) ∈ RD to get
a new definable set whose fibers all lie in (0, 1)D. We put Z ′′ = {(T, z); (T, y) ∈ Z ′, z =
(3 ·diam(Z ′T ))−1y−y0} (recall that diam(Z ′T ) = diam(ZT ) > 0 since ZT has at least two
points). We note that the graph of the function T → diam(ZT ) from π(Z) to R is given
by

{(T, t) ∈ π(Z)×R;φ(T, t) ∧ ¬((∃u ∈ R)(φ(T, u) ∧ u < t)},
where φ(T, t) stands for (∀x, y ∈ ZT )(|x − y| ≤ t). This shows that the aforementioned
map is definable and hence, so is Z ′′. Also we have Z ′′T ⊂ (0, 1)D for all T . By [3, Lemma
3.15] the set Z ′′′ = {(T,w);w ∈ ∂Z ′′T } is also definable. The fibers of a definable set are
again definable (cf. [3, Lemma 3.1]), and hence by [20, Ch.4, (1.10) Corollary] we have
dim(∂Z ′′T ) ≤ D − 1. From Pila and Wilkie’s Reparameterization Lemma for definable
families [11, 5.2. Corollary] we conclude12 that ∂Z ′′T lies in Lip(D,MZ′′′ , κZ′′′) for all
T ∈ Rd with certain constants κZ′′′ and MZ′′′ . Rescaling and retranslating gives ∂ZT ∈
Lip(D,MZ′′′ , κZ′′′ ·diam(ZT )). Finally, we note that Z ′′′ depends only on Z and f which
itself can be seen as part of the data of Z, so that the constants κZ′′′ and MZ′′′ may be
chosen to depend only on Z. This completes the proof of the lemma. �

We can now prove Proposition 8.1. Consider the set

Z ′′′′ := {(ϕ, T, x);ϕ ∈ GLD(R), x ∈ ϕ(ZT )}.
This set is definable in the given o-minimal structure, and we have Z ′′′′(ϕ,T ) = ϕ(ZT ).

Applying Lemma 8.1 to the fibers Z ′′′′(ϕ,T ) we conclude that there exist constants κZ′′′′

and MZ′′′′ such that ∂ϕ(ZT ) lies in Lip(D,MZ′′′′ , κZ′′′′ · diam(ϕ(ZT ))) for all (ϕ, T ) ∈
GLD(R) × Rd. Note that Z ′′′′ depends only on Z so that MZ′′′′ , κZ′′′′ are depending
only on Z, and this completes the proof of Proposition 8.1.
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