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Abstract

This paper derives the mean squared length of vectors in a lattice relevant to
the Approximate GCD problem and the related fully homomorphic encryp-
tion scheme.

1 Introduction

The Approzimate GCD problem is loosely speaking to find an integer p given
a collection of noisy multiples of p. A fully homomorphic encryption scheme
based on the Approzimate GCD problem is given in [2] based on the difficulty
of the Approximate GCD problem for certain parameter sizes. One suggested
method of solving the Approximate GCD problem is to set up a particular
lattice and find short vectors in this lattice. We give a rigourous derivation
for the mean square length of vectors in this lattice and briefly consider some
implications relevant to the security analysis given for the fully homomorphic
encryption scheme of [2].

2 The Approximate GCD Problem

We give the following formulation of Approzrimate GCD or AGCD problem.
We suppose that we have (¢ + 1) noisy multiples of the odd integer p, where
the multipliers of p have integer mean y and variance k2. We can model this
situation statistically in the following way. We let Qg, 1, . .., @; be indepen-
dent and identically distributed integer-valued random variables with mean
p, variance k? and distribution function Fyy. Similarly, we let Zy, Z1, ..., Z,
be independent and identically distributed integer-valued random variables
with zero mean, variance o? and distribution function F;, where Q; and
Z; are independent (i,j = 0,1,...,t). We then define the noisy multiples
Xo, Xq,...,X; of p by

Xz:pQZ—i-ZZ [z’zO,l,...,t],

so we have E(X;) = pu and Var(X;) = p?x* + 2.

For fairly obvious reasons, p can be described as an Approzimate GCD
(AGCD) of the integers Xy, Xi,...,X;. The notation X' = (X, ... ,Xt)T
denotes the t-dimensional vector obtained by deleting the first component
of (t + 1)-dimensional vector X and so on. In some discussions of the AGCD
problem, X is taken to be the maximum of Xy, Xy, ..., X;, though this does
not materially affect the conclusions of our analysis. The AGCD problem is
loosely speaking to find p given the noisy multiples Xg, Xi,..., X; of p.
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2.1 The AGCD Lattice

The AGCD problem is often analysed by constructing a particular lattice based
on the noisy observations X. The LLL algorithm is then applied to this lattice
in order to find short vectors in the lattice. Under certain circumstances such
a short vector can directly give the vector of multiples (), so immediately
giving p as the Approximate GCD or AGCD of Xy, X1,...,X;.

The usual lattice used to analyse the AGCD problem is constructed in the
following. Firstly, a bound ac on the error size of the X; is given, that is to
say a small multiple a of the standard deviation o of the errors and we may
typically take a = 1. The AGCD lattice is then defined by the AGCD lattice
basis matriz A given by

ao X1 X2 Xt
0 -X, 0 ... 0
A=l 0 0o -Xx, ... 0
0 0 0 ... —X,

The high-level rationale usually for the use of the AGCD lattice is that
in many circumstances the so-called target vector QT A is a short vector in
the AGCD lattice and may even be the shortest. Short vectors in a lattice
can often be identified by applying the LLL algorithm to the AGCD lattice
basis matrix A. The LLL algorithm finds a unimodular matrix L and an
alternative basis matrix B = LA for the lattice in which the basis vectors
are loosely speaking short vectors and roughly orthogonal. In terms of the
LLL-reduced basis matrix B, the target vector QT A = (QTLA) B. If the
short target vector Q7 A is the short first vector in the LLL-reduced basis for
example, then QT L~! = (1,0,...,0),s0 QT = (1,0,...,0)L. In this case, the
vector of multipliers Q7 is given as the first row of the unimodular matrix L
calculated by the LLL algorithm.

If U is a generic integer random vector, then a generic vector in the
AGCD lattice is the random vector U7 A with squared length given by the
random variable |[UTA|? = UT(AAT)U. A generic random vector in this
AGCD lattice is therefore given by the random vector

UTA = (acUy | UpX™" = XoU™),
which has squared length given by the random variable

UTA|* = ?02U2 + U X' — XoU'|”.



3 Random AGCD Lattice Vectors

The random vectors in the AGCD lattice we consider are those that arise
from random vectors of the form U = I() + v, where [ is an integer and v
is an integer vector. Thus we consider those random vectors of the form
UTA = (IQ + v)T A in the AGCD lattice. In order to calculate the squared
length of such a lattice vector (1Q + v)T A, we need to consider the vector
Up X' — XoU', whose i*" component is given by

UoXi — XoUs = (I1Qo + o) (pQi + Zs) — (pQo + Zo)(1Q; + v5)
= (pvo —12o)Qi + (IQo + vo) Z; — vi(pQo + Zo)
= o(Zy)Qi + B(Qov)Z; — Uﬁ(@m Zo),

where a(Zy) = pvg — 1 Zy, 5(Qo) = IQo + vo and v(Qo, Zo) = pQo + Zo. Thus
we have

|(1Q + U)TA{2 = a*a*B(Q Z (Z0)Qi + B(Qo) Zi — viv(Qo, Zo))°

3.1 Conditional Mean Squared Length

In order to calculate the mean squared length E <‘ (1Q + U)TA}2> of a generic

vector in the standard lattice, we first calculate this quantity conditional on
the joint value of (Qo, Zy). Thus if we write

U(qo,20) = E (‘(ZQ + U)TA|2 ’ Qo = qo, Zo = Zo>

for this conditional expectation, then we can obtain

¥(qo, 20) = a’0” 2+ Z E ((a(20)Q; + 5(90)Z: — v1(90, 20))") -

If we write

Wi(qo, 20) = a(20)Qi + B(q0) Zi — viv(qo; 20)
for a generic random variable in the above summand expectation, then the
conditional expectation is given as

U(qo, 20) = a*a*f(qo +ZE i(90,20)%) -

We note that
E (W;(q0, 20)*) = Var (Wi(qo, 20)) + E (W;(qo, 20))* ,
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where the mean and variance of W;(qo, z9) are given by

E (Wi, %)) = a(20)E(Q:) + 8(90)E(Z;) — viv(qo, 20)
M@(Zo) UH(QmZO),
and Var (W;(qo, 20)) = a(z0)?*Var(Q;) + 5(qo)*Var(Z;)
= K2a(z29)? + 0?B(q0)>.

Thus the conditional expectation is given by

t

U(qo, 20) = (a® +)0°B(a0)* + tr2ar(z0)* + ) (pa(z0) — vy (4o, 20))”

=1

3.2 Mean Squared Length of a AGCD Lattice Vector

The (unconditional) mean squared length of the random AGCD lattice vector
(IQ +v)T A is given by

/R/RE (‘(ZQ + U)TA|2‘ Qo = qo, Zo = Zo) dFz(20)dFo(qo),
so we have
E (|(ZQ+U)TA\2) - /R/R\I/(qo,zo) dFy(20)dFo(qo).
However, this integral is itself an expectation, so we obtain

E (](JQ n U)TA\Q) — E(V(Qo, Z0)),
where this expectation is given by
(a” + 1)0”E (8(Q0)*) + t’E (a(Z0)?) + Y E (el Zo) — viy(Qo, Zo))°) -
=1

We now evaluate each term in this expression. The random variable
B(Qo) = Qo+ vy has mean I+ vy and variance [x?, and the random variable
a(Zy) = pvg — 1 Zy has mean pvy and variance 202, so

E(8(Q0)?) = Var(8(Qo)+E(B(Q)" = P&+ (lp+ ),
E(a(Z)?) = Var(a(Z)) +E(a(Z)) = Po®+p*l.

The other random variable in the above expression is
pa(Zo)—viy(Qo, Zo) = p(pro—12o)—vi(pQo+Zo) = ppve—pviQo—(lp+v;) Zo,
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so has mean pu(vy — v;) and variance p?v?x% + (I + v;)*0%, which gives
E ((pa(Zo) — viv(Qo, Z0))°) = poiw” + (lp+ v)*0” + p* 1 (vo — vi)*.
Thus the mean squared length of the lattice vector (Q + v)T A is given by
E (| 1Q + U)TAF) = (a2 +1)0? (1262 + (I + v0)?) + tr? (1202 + p*2)
+ 30 P02+ (L + )20 + pPud(vg — i),
If we now define the function
n(l,vo) = 1*(a* + 2t)0k* + tp*k*v3 + (a® + )0 (I + vo)?,

then the mean squared length of the lattice vector (IQ + v)T A is given by

E (‘(ZQ + U)TA|2> =n(l,v0) + p*R2|V' |2 + o[V + Lud|? + pP v’ — vl .

3.3 Mean Squared Length of the Target Vector

The mean squared length Q7 A of the target vector is given by taking [ = 1
and v = 0 in the above expression for the mean of |(lQ + ’U)TA’2. We note
that

n(1,0) + o*|ul)? = (a® + 2t)0°K* + (a* + t)ou® + oty

so the mean squared length of the target vector QT A is given by

E(|Q"A[") = (a® +20)0° (1® + 2) .

4 Fully Homomorphic Encryption and AGCD

The AGCD problem is used as the basis of the fully homomorphic encryption
process given in [2]. We base our discussion of this encryption process and
the corresponding AGCD problem on the version of this process given in Sec-
tion 3.1 of [2]. In this AGCD problem, the AGCD p is an 7-bit odd integer. If
we let m = L%J for some integer v > 7, then m is a positive integer of length

(v —n) bits. Furthermore, the multipliers Qg, @1, ...,Q; are independent
and identically distributed integer random variables, where

QU:Ql)"'aQtNUni({()?"'am})'

The noise random variables Zy, 71, ..., Z; are independent and identically
distributed integer random variables, where

Zoy L1y Zy ~ Uni({—2°,...,2°})  [p<<n).
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The noisy multiples X; = pQ; + Z; (i = 0,1,...,t) are therefore positive
integers of length at most ~ bits.

We now give the parameters of our discussion for the AGCD problem used
by [2]. The mean and variance of the multipliers are given by

m m(m+2) m?
Thus we have p? ~ 32, so p? and k? are comparable quantities. Similarly,
the noise random variables have mean and variance given by

2%
E(Zl) =0 and 0'2 = Var(Zl) = ?

4.1 Target Vector in Full Homomorphic Encryption

The security analysis of the fully homomorphic encryption scheme of [2]
considers the AGCD lattice basis matrix denoted by M in Section 5.2 of [2].
We first note that the top-left entry in the matrix M of Section 5.2 of [2] is
2P = \/50, so we need to take a &~ v/3 in the AGCD lattice basis matrix A
of Section 2.1 to obtain this matrix M.

We can now calculate the mean squared length of the target vector used
in the AGCD lattice basis matrix M of [2], or equivalently A with a ~ /3
so ao = 2°. The mean squared length of this target vector Q7 A is given by

2 2 2
E( TA2>:3 otyo? (2 + I8} = (2t + 3)02
QTA") = B+20)0° -+ 45 | = (2t +3)0°
Extensive simultations have demonstrated the accuracy of the above result.
It is asserted in Section 5.2 of [2] that this target vector QT A has length
roughly
(t + 1)% Lt

We now express this true length of the target vector QT A in terms of the
parameters of [2], where we have 0% = 2% and m < 277". The mean squared
length of the target vector QT A is essentially bounded by %(t 4 1)22p 4=
for large t. Thus the root mean squared length of the target vector Q7 A is
essentially bounded for large ¢ by

% (t+1)z 20477,

In summary, the length of the target vector asserted by [2] is essentially more
than double the true root mean squared length of the target vector Q7 A.



5 Conclusions

The treatment of this paper for the mean square length of an AGCD lat-
tice vector illustrates the need for rigourous rather than ad hoc analysis of
statistical quantities deriving from random lattices. For example, the anal-
ysis of the length of the target vector given by [2] at no point refers to the
variability of the multipliers (Qo, @1, - - ., @¢), even though the expression in
Section 3.3 clearly shows that this variablilty (given by k) is potentially a
major component of the mean square length.

The rigourous derivation of the mean square length of AGCD lattice
vectors also raises questions about the heuristic security analysis of the cor-
responding fully homomorphic encryption scheme given by [2] in respect of
using the LLL algorithm [1] to find small vectors in this lattice. It is asserted
in Section 5.2 of [2] that the LLL algorithm cannot efficiently find the target
vector QT A for large t. However, the mean square length of the target vector
is of the order of to?u? (Section 3.3), whereas the mean square length of the
non-target vector (IQ +v)T A is generally of the order of tp?u? (Section 3.2).
Loosely speaking, a non-target vector is therefore generally of the order of 2
larger than the target vector. However, the ratio £ is essentially the “security
parameter” A of the fully homomorphic encryption scheme of [2], which can
be made arbitrarily large. It would therefore seem that the target vector is
generally an isolated vector in the lattice, of the order of A=! of the length
of the shortest non-target vectors. In such a situation with a large security
parameter A, the LLL algorithm would be guarenteed to find this single very
short target vector [1].

The heuristic security analysis of the fully homomorphic AGCD encryp-
tion scheme of Section 5.2 of [2] in respect of AGCD lattice seems incomplete
as it lacks a rigourous discussion of lattice vector lengths. In particular, the
claim that (for large t) “known lattice reduction algorithms will not be able
to find [the target vector] efficiently” cannot be regarded as having been
substantiated.
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