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Abstract. Let Bt(n) be the number of set partitions of a set of size t

into at most n parts and let B′t(n) be the number of set partitions

of {1, . . . , t} into at most n parts such that no part contains both 1

and t or both i and i + 1 for any i ∈ {1, . . . , t − 1}. We give two new

combinatorial interpretations of the numbers Bt(n) and B′t(n) using

sequences of random-to-top shuffles, and sequences of box moves on the

Young diagrams of partitions. Using these ideas we obtain a very short

proof of a generalization of a result of Phatarfod on the eigenvalues of

the random-to-top shuffle. We also prove analogous results for random-

to-top shuffles that may flip certain cards. The proofs use the Solomon

descent algebras of Types A, B and D. We give generating functions

and asymptotic results for all the combinatorial quantities studied in

this paper.

1. Introduction

For t, n ∈ N0, let Bt(n) be the number of set partitions of {1, . . . , t} into

at most n parts. If n ≥ t then Bt(n) is the Bell number Bt; the difference

Bt(n)−Bt(n− 1) is
{
t
n

}
, the Stirling number of the second kind. Let B′t(n)

be the number of set partitions of {1, . . . , t} into at most n parts such that

no part contains both 1 and t or both i and i+ 1 for any i ∈ {1, . . . , t− 1}.
The first object of this paper is to give two combinatorial interpretations of

the numbers Bt(n) and B′t(n), one involving certain sequences of random-to-

top shuffles, and another involving sequences of box removals and additions

on the Young diagrams of partitions. The first of these interpretation is

justified by means of an explicit bijection. The second interpretation is

considerably deeper, and its justification is less direct: our argument requires

the Branching Rule for representations of the symmetric group Symn, and

a basic result from the theory of Solomon’s descent algebra. Using these

ideas we obtain a very short proof of a generalization of a result due to

Phatarfod [19] on the eigenvalues of the random-to-top shuffle.
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We also state and prove analogous results for random-to-top shuffles that

may flip the moved card from face-up to face-down, using the descent al-

gebras associated to the Coxeter groups of Type B and D. In doing so, we

introduce analogues of the Bell numbers corresponding to these types; these

appear not to have been studied previously. We give generating functions,

asymptotic formulae and numerical relationships between these numbers,

and the associated Stirling numbers, in §6 below.

We now define the quantities which we shall show are equal to either

Bt(n) or B′t(n).

Definition. For m ∈ N, let σm denote the m-cycle (1, 2, . . . ,m). A random-

to-top shuffle of {1, . . . , n} is one of the n permutations σ1, . . . , σn. Let St(n)

be the number of sequences of t random-to-top shuffles whose product is

the identity permutation. Define S′t(n) analogously, excluding the identity

permutation σ1.

We think of the permutations σ1, . . . , σn as acting on the n positions in a

deck of n cards; thus σm is the permutation moving the card in position m

to position 1 at the top of the deck. If the cards are labelled by a set C and

the card in position m is labelled by c ∈ C then we say that σm lifts card c.

We represent partitions by Young diagrams. Motivated by the Branching

Rule for irreducible representations of symmetric groups, we say that a box

in a Young diagram is removable if removing it leaves the Young diagram

of a partition; a position to which a box may be added to give a Young

diagram of a partition is said to be addable.

Definition. A move on a partition consists of the removal of a removable

box and then addition in an addable position of a single box. A move is

exceptional if it consists of the removal and then addition in the same place

of the lowest removable box. Given partitions λ and µ of the same size, let

Mt(λ, µ) be the number of sequences of t moves that start at λ and finish

at µ. Let M ′t(λ, µ) be defined analogously, considering only non-exceptional

moves. For n ∈ N0, let Mt(n) = Mt

(
(n), (n)

)
and let M ′t(n) = M ′t

(
(n), (n)

)
.

We note that if the Young diagram of λ has exactly r ∈ N removable

boxes then M1(λ, λ) = r and M ′1(λ, λ) = r − 1. For example, (2, 1) has

moves to (2, 1), in two ways, and also to (3), (13).

Our first main result, proved in §2 below, is as follows.

Theorem 1.1. For all t, n ∈ N0 we have Bt(n) = St(n) = Mt(n) and

B′t(n) = S′t(n) = M ′t(n).

The first equality in Theorem 1.1 is a special case of [20, Theorem 15].

The authors thank an anonymous referee for this reference.

In §3 we generalize random-to-top shuffles to k-shuffles for k ∈ N and use

our methods to give a short proof of Theorem 4.1 in [8] on the eigenvalues
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of the associated Markov chain. Theorem 1.1 and this result have analogues

for Types B and D. We state and prove these results in §4 and §5, obtaining

Theorem 4.3, Proposition 4.9, Theorem 5.1 and Proposition 5.5. In §6 we

give generating functions, asymptotic formulae and numerical relationships

between the numbers studied in this paper.

The sequences of partition moves counted by M ′t
(
λ, µ

)
are in bijection

with the Kronecker tableaux KT tλ,µ defined in [10, Definition 2]. In §7 we

show that, when n ≥ t, the equality B′t(n) = M ′t(n) is a corollary of a special

case of Lemma 1 in [10]. The proof of this lemma depends on results on the

RSK correspondence for oscillating tableaux, as developed in [7] and [22].

Our proof, which goes via the numbers S′t(n), is different and significantly

shorter. In §7 we also make some remarks on the connections with earlier

work of Bernhart [1] and Fulman [9] and show an unexpected obstacle to a

purely bijective proof of Theorem 1.1: this line of argument is motivated by

[9] and [10].

The numbers studied in this paper have been submitted to the Online

Encyclopedia of Integer Sequences [17]. We end in §8 by discussing their

appearances prior to this submission. With the expected exception of Bt(n)

and
{
t
n

}
these are few, and occur for particular choices of the parameters t

and n. References are given to the new sequences arising from this work.

2. Proof of Theorem 1.1

We prove the first equality in Theorem 1.1 using an explicit bijection.

This is a special case of the bijection in the proof of Theorem 15 of [20].

Lemma 2.1. If t, n ∈ N0 then Bt(n) = St(n) and B′t(n) = S′t(n).

Proof. Suppose that τ1, . . . , τt is a sequence of random-to-top shuffles such

that τ1 . . . τt = idSymn . Take a deck of cards labelled by {1, . . . , n}, so that

card c starts in position c, and apply the shuffles so that at time s ∈ {1, . . . , t}
we permute the positions of the deck by τs. For each c ∈ {1, . . . , n} let Ac
be the set of s ∈ {1, . . . , t} such that τs lifts card c. Removing any empty

sets from the list A1, . . . , An we obtain a set partition of {1, . . . , t} into at

most n sets.

Conversely, given a set partition of {1, . . . , t} into m parts where m ≤ n,

we claim that there is a unique way to label its parts A1, . . . , Am, and

a unique sequence of t random-to-top shuffles leaving the deck invariant,

such that Ac is the set of times when card c is lifted by the shuffles in

this sequence. If such a labelling exists, then for each c ∈ {1, . . . ,m}, the

set Ac must contain the greatest element of {1, . . . , t}\(A1 ∪ · · · ∪ Ac−1),
since otherwise a card c′ with c′ > c is lifted after the final time when card c

is lifted, and from this time onwards, cards c and c′ are in the wrong order.

Using this condition to fix A1, . . . , Am determines the card lifted at each
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time, and so determines a unique sequence of random-to-top shuffles that

clearly leaves the deck invariant. It follows that Bt(n) = St(n).

A set partition corresponds to a sequence of non-identity shuffles if and

only if the same card is never lifted at consecutive times, and the first card

lifted is not card 1. Therefore the bijection just defined restricts to give

B′t(n) = S′t(n). �

The second half of the proof is algebraic. Let Cl(Symn) denote the ring

of class functions of Symn. Let π ∈ Cl(Symn) be the natural permutation

character of Symn, defined by π(τ) = |Fix τ | for τ ∈ Symn. Let χλ denote

the irreducible character of Symn canonically labelled by the partition λ

of n. Let ϑ = π − 1Symn where 1Symn is the trivial character of Symn; note

that ϑ = χ(n−1,1). The main idea in the following lemma is well known: it

appears in [2, Lemma 4.1], and the special case for M ′t
(
(n), µ

)
is proved in

[10, Proposition 1].

Lemma 2.2. Let t ∈ N0. If λ and µ are partitions of n ∈ N then Mt(λ, µ) =

〈χλπt, χµ〉 and M ′t(λ, µ) = 〈χλϑt, χµ〉.

Proof. We have

(1) χλπ = χλ
(
1
xSymn
Symn−1

)
=
(
χλ
y
Symn−1

)xSymn .

By the Branching Rule for Symn (see [15, Chapter 9]) we have χλ↓Symn−1
=∑

ν χ
ν where the sum is over all partitions ν whose Young diagram is ob-

tained from λ by removing a single box. By Frobenius reciprocity we have

〈χµ, χν↑Symn〉 = 〈χµ↓Symn−1
, χν〉. Hence χν ↑Symn=

∑
µ χ

µ where the sum is

over all partitions µ whose Young diagram is obtained from ν by adding a

single box. Therefore the right-hand side of (1) is
∑

µM1(λ, µ)χµ, where the

sum is over all partitions µ of n. This proves the case t = 1 of the first part of

the lemma; the general case follows by induction. The second part is proved

similarly, using that χλϑ = χλ(π − 1Symn) =
(
χλ ↓Symn−1

)
↑Symn−χλ. �

In [21, Theorem 1], Solomon considers an arbitrary Coxeter group G and

defines an associated descent algebra Des(G) inside the rational group al-

gebra QG. In the special case of Symn, a simpler definition is possible.

(See also [4, page 7] for an equivalent presentation.) Recall that a permu-

tation σ ∈ Symn has a descent in position k if kσ > (k + 1)σ. For each

I ⊆ {1, . . . , n − 1}, let ΞI =
∑

σ σ ∈ QSymn where the sum is over all

σ ∈ Symn such that the descents of σ occur in a subset of the positions I.

Then Des(Symn) = 〈ΞI : I ⊆ {1, . . . , n − 1}〉Q is an algebra with unit

element Ξ∅ = idSymn . This fact is proved in [21] in the general setting

of Coxeter groups; an elegant alternative proof due to Bidigare [3] in the

special case of symmetric groups is presented in [4, Appendix B].

Let I = {i1, . . . , i`} and let SymI = Symi1 ×Symi2−i1 × · · ·×Symi`−i`−1
≤

Symn. By a special case of [21, Theorem 1], there is an algebra epimorphism



BELL NUMBERS 5

Des(Symn) → Cl(Symn) defined by ΞI 7→ πI , where πI is the permutation

character of Symn acting on cosets of SymI . We refer to this map as the

canonical epimorphism. Define a bilinear form on QSymn by (g, h) = 1 if

g = h−1 and (g, h) = 0 if g 6= h−1. By [4, Theorem 1.2], the canonical

epimorphism is an isometry with respect to the bilinear form on Des(Symn)

defined by restriction of (−,−) and the usual inner product on Cl(Symn),

defined by 〈χ, φ〉 = 1
n!

∑
σ∈Symn χ(σ)φ(σ) for χ, φ ∈ Cl(Symn).

Let Ξ =
∑n

m=1 σ
−1
m and let ∆ = Ξ − idSymn . Note that τ ∈ Symn is a

summand of ∆ if and only if

1τ > 2τ < 3τ < . . . < nτ.

Thus ∆ is the sum of all τ ∈ Symn such that the unique descent of τ is in

position 1. Hence Ξ = Ξ{1} and ∆ = Ξ{1} − idSymn in the notation above.

Since π = π{1}, under the canonical algebra epimorphism Des(Symn) →
Cl(Symn), we have Ξ 7→ π, idSymn 7→ 1Symn and ∆ 7→ ϑ.

Lemma 2.3. If t, n ∈ N0 then St(n) = Mt(n) and S′t(n) = M ′t(n).

Proof. If n = 0 then clearly St(0) = Mt(0) = S′t(0) = M ′t(0); the common

value is 0 if t ∈ N and 1 if t = 0. Suppose that n ∈ N. By Lemma 2.2

it is sufficient to prove that 〈πt, 1Symn〉 = St(n) and 〈ϑt, 1Symn〉 = S′t(n).

Write [idSymn ] for the coefficient of the identity permutation in an element

of Q Symn. By the remark before this lemma, if Γ ∈ Des(Symn) maps to

φ ∈ Cl(Symn) under the epimorphism Des(Symn)→ Cl(Symn), then

(2) [idSymn ]Γ = (Γ, idSymn) = 〈φ, 1Symn〉.

The two required results now follow from Lemma 2.2 using the obvious

equalities [idSymn ]Ξt = St(n) and [idSymn ]∆t = S′t(n). �

Theorem 1.1 now follows from Lemmas 2.1 and 2.3.

3. Eigenvalues of the k-shuffle

Fix n, k ∈ N with k ≤ n. A k-shuffle of a deck of n cards takes any k

cards in the deck and moves them to the top of the deck, preserving their

relative order. Note that a 1-shuffle is a random-to-top shuffle as already

defined and that the inverse of a k-shuffle is a riffle shuffle in which the pack

is first split into the top k cards and the remaining n − k cards. Let P (k)

be the transition matrix of the Markov chain on Symn in which each step

is given by multiplication by one of the
(
n
k

)
k-shuffles, chosen uniformly at

random. Thus for σ, τ ∈ Symn we have

P (k)στ =

{(
n
k

)−1
if σ−1τ is a k-shuffle

0 otherwise.

It was proved by Phatarfod in [19] that the eigenvalues of P (1) are exactly

the numbers |Fix τ |/n for τ ∈ Symn. More generally, it follows from a
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statement by Diaconis, Fill and Pitman [8, (6.1)] that if πk(τ) is the number

of fixed points of τ ∈ Symn in its action on k-subsets of {1, . . . , n}, then the

eigenvalues of P (k) are exactly the numbers πk(τ)/
(
n
k

)
for τ ∈ Symn. The

proof of this statement in [8] refers to unpublished work of Diaconis, Hanlon

and Rockmore. We provide a short proof here.

Observe that TrP (k)t/n! is the probability that t sequential k-shuffles

leave the deck invariant. It is easily seen that τ−1 is a k-shuffle if and only if

1τ < . . . < kτ and (k+1)τ < . . . < nτ . Hence the sum of the inverses of the

k-shuffles is the basis element Ξ(k,n−k) ∈ Des(Symn) defined in [4, page 7],

which maps to πk = 1Symk × Symn−k↑
Symn under the canonical epimorphism

Des(Symn) → Cl(Symn). Therefore (2) in the proof of Lemma 2.3 implies

that

TrP (k)t

n!
= [idSymn ]

(
n

k

)−t
Ξ(k,n−k)t

=

(
n

k

)−t
〈πtk, 1Symn〉

=

(
n

k

)−t 1

n!

∑
τ∈Symn

πk(τ)t

for all t ∈ N0. It follows that if ε1, . . . , εn! are the eigenvalues of P (k),

then
∑n!

i=1 ε
t
i =

∑
τ∈Symn πk(τ)t/

(
n
k

)t
for all t ∈ N0. Thus the multisets

{εi : 1 ≤ i ≤ n!} and {πk(τ)/
(
n
k

)
: τ ∈ Symn} are equal, as required.

The analogous result for the k-shuffle with the identity permutation ex-

cluded is stated below.

Proposition 3.1. Let n ≥ 2 and let P ′(k) be the transition matrix of the

k-shuffle, modified so that at each time one of the
(
n
k

)
− 1 non-identity

k-shuffles is chosen uniformly at random. The eigenvalues of P ′(k) are

(πk(τ)− 1)/(
(
n
k

)
− 1) for τ ∈ Symn.

Proof. The proposition may be proved by adapting our proof of the result of

Diaconis, Fill and Pitman. Alternatively, it may be obtained as a straight-

forward corollary to that result, by observing that((n
k

)
− 1
)
P ′(k) =

(
n

k

)
P (k)− In. �

We note that the eigenvalues of the k-top-to-random shuffles considered

in Theorem 4.1 and the following Remark 1 in [8] may be determined by a

similar short argument using the element Ξ{1,...,k} ∈ Des(Symn).

4. Oriented random-to-top shuffles: Type B

In this section we state and prove the analogue of Theorem 1.1 for the

Coxeter group of Type B. Henceforth we shall always use the symbol † to

indicate quantities relevant to this type.
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4.1. Type B set partitions, shuffles and partition moves. We begin

by defining the three quantities that we shall show are equal. Let t, n ∈ N0.

Let B†t (n) be the number of set partitions of {1, . . . , t} into at most n

parts with an even number of elements in each part distinguished by marks.

Let B†′t (n) be defined similarly, counting only those set partitions such that

if 1 and t are in the same part then 1 is marked, and if both i and i+ 1 are

in the same part then i+ 1 is marked.

We define the Coxeter group BSymn to be the maximal subgroup of

the symmetric group on the set {−1, . . . ,−n} ∪ {1, . . . , n} that permutes

{−1, 1}, . . . , {−n, n} as blocks for its action. Let σ ∈ BSymn. We inter-

pret σ as the shuffle of a deck of n cards, each oriented either face-up or

face-down, that moves a card in position i ∈ {1, . . . , n} to position |iσ|,
changing the orientation of the card if and only if iσ ∈ {−1, . . . ,−n}.

Definition. For m ∈ N let

ρm = (−1, . . . ,−m)(1, . . . ,m),

ρ̄m = (−1, . . . ,−m, 1, . . . ,m).

We say that ρm and ρ̄m are oriented random-to-top shuffles. Let S†t (n) be the

number of sequences of t oriented random-to-top shuffles whose product is

the identity permutation. Define S†′t (n) analogously, excluding the identity

permutation ρ1.

Observe that, under our card shuffling interpretation, ρ̄m lifts the card in

position m to the top of the deck and then flips it.

A pair (λ, λ?) of partitions such that the sum of the sizes of λ and λ?

is n ∈ N0 will be called a double partition of n. By [16, Theorem 4.3.34] the

irreducible characters of BSymn are canonically labelled by double partitions

of n. Since this theorem is considerably more general than we need, we give

an independent proof. For r ∈ N, let Hr ≤ BSymr be the index 2 subgroup

of permutations that, in our card shuffling interpretation, flip evenly many

cards. Let ζr : BSymr → {1,−1} be the non-trivial linear character of

BSymr with kernel Hr. Given a character χ of Symr, we define the inflation

of χ to BSymr by Inf
BSymr
Symr

χ(σ) = χ(σ), where σ ∈ Symr is the image of

σ ∈ BSymr under the canonical quotient map BSymr → Symr with kernel

〈(1,−1), . . . , (r,−r)〉. Given a double partition (λ, λ?) of n such that |λ| = `

and |λ?| = `?, we define

χ(λ,λ?) =
(
Inf

BSym`
Sym`

χλ × ζ`? Inf
BSym`?
Sym`?

χλ
?)xBSymn .

Lemma 4.1. The characters χ(λ,λ?) for (λ, λ?) a double partition of n are

exactly the irreducible characters of BSymn.

Proof. We outline a proof using the Clifford theory presented in [14, Chap-

ter 6]. Let η : C2 → {±1} be the non-trivial character of C2 and let B =
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〈(1,−1), . . . , (n,−n)〉�BSymn. Let φ(λ,λ
?) = Inf

BSym`
Sym`

χλ × ζ`? Inf
BSym`?
Sym`?

χλ
?
.

By the definition of inflation, the kernel of Inf
BSym`
Sym`

χλ contains C`2, and the

kernel of Inf
BSym`?
Sym`?

χλ
?

contains C`
?

2 . Hence

φ(λ,λ
?)
y
B

= φ(1)1C`2
× ηC`?2 .

The character 1C`2
×ηC`?2 of B has inertial group BSym`×BSym`? ≤ BSymn.

Since the φ(λ,λ
?) are distinct irreducible characters of BSym`×BSym`? , it

follows from [14, Theorem 6.11] that the characters χ(λ,λ?) are distinct and

irreducible.

The sum of the squares of the degrees of the irreducible characters of a

finite group is equal to its order. The degree of χ(λ,λ?) is
(
n
`

)
χλ(1)χλ

?
(1), so∑

`+`?=n
λ∈Par(`)
λ?∈Par(`?)

(
n

`

)2

χλ(1)2χλ
?
(1)2 =

n∑
`=0

(
n

`

)2

`!(n− `)! = n!
n∑
`=0

(
n

`

)
= n!2n,

which is the order of BSymn. Therefore we have constructed all irreducible

characters of BSymn. �

For use in the proof of Lemma 4.4, we record a branching rule for BSymn.

Lemma 4.2. If (λ, λ?) is a double partition of n then χ(λ,λ?)↓BSymn−1
=∑

χ(ν,ν?) where the sum is over all double partitions (ν, ν?) of n−1 obtained

by removing a single box from either the Young diagram of λ or the Young

diagram of λ?.

Proof. Let φ = Inf
BSym`
Sym`

χλ × ζ`? Inf
BSym`?
Sym`?

χλ
?
. Let K = BSym`×BSym`? ,

where the factors act on {1, . . . , `} and {` + 1, . . . , n}, respectively. Iden-

tifying BSymn /BSymn−1 with {−1, . . . ,−n} ∪ {1, . . . , n}, we see that K

has two orbits on BSymn /BSymn−1, with representatives ` and n. The

corresponding double cosets are KBSymn−1 and K(`, n)BSymn−1. Define

G = K ∩ BSymn−1 = BSym{1,...,`}×BSym{`+1,...,n−1},

H = K(`,n) ∩ BSymn−1 = BSym{1,...,`−1}×BSym{`,`+1,...,n−1} .

By Mackey’s Theorem (see for instance [14, Problem 5.6]), χ(λ,λ?) ↓BSymn−1
=

φ ↑BSymn↓BSymn−1
= φ ↓G↑BSymn−1 +φ(`,n) ↓H↑BSymn−1 . By the definition of

inflation and the Branching Rule for symmetric groups, as stated after (1),

we have

φ
y
G

= Inf
BSym`
Sym`

χλ × ζ`?−1
∑
ν?

Inf
BSym`?−1

Sym`?−1
χν

?
,

φ(`,n)
y
H

=
∑
ν

Inf
BSym`−1

Sym`−1
χν × ζ`? Inf

BSym`?
Sym`?

χλ
?
,

where ν? and ν vary as in the statement of this lemma. The lemma therefore

follows from Mackey’s Theorem. �
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Definition. Let (λ, λ?) be a double partition. A double-move on (λ, λ?)

consists of the removal and then addition of a single box on the corresponding

Young diagrams. (The box need not be added to the diagram from which

it is removed.) A double-move is exceptional if it consists of the removal

and then addition in the same place of the lowest removable box in the

diagram of λ, or if λ is empty, of the lowest removable box in the diagram

of λ?. Let M †t
(
(λ, λ?), (µ, µ?)

)
be the number of sequences of t double-

moves that start at (λ, λ?) and finish at (µ, µ?). Let M †′t
(
(λ, λ?), (µ, µ?)

)
be defined analogously, considering only non-exceptional double-moves. Let

M †t (n) = M †t
(
((n),∅), ((n),∅)

)
and let M †′t (n) = M †′t

(
((n),∅), ((n),∅)

)
.

This definition of ‘exceptional’ is convenient for small examples, but can

be replaced with any other that always excludes exactly one double-move

from the set counted by M †1
(
(λ, λ?), (λ, λ?)

)
.

We can now state the analogue of Theorem 1.1 for Type B.

Theorem 4.3. For all t, n ∈ N0 we have B†t (n) = S†t (n) = M †t (n) and

B†′t (n) = S†′t (n) = M †′t (n).

The proof of this theorem follows the same general plan as the proof

of Theorem 1.1 so we shall present it quite briefly. The most important

difference is that we now make explicit use of the root system.

4.2. Proof of Theorem 4.3. To prove Lemma 2.1 we used a bijection

between the set partitions of {1, . . . , t} into at most n parts and sequences

of t random-to-top shuffles leaving a deck of n cards invariant. This bijection

can be modified to give a bijection between the marked set partitions counted

by B†t (n) and the shuffle sequences counted by S†t (n): given a marked set

partition P, the corresponding shuffle flips the orientation of the card lifted

at time s ∈ {1, . . . , t} if and only if s is a marked element of P. This

map restricts to a bijection between the marked set partitions counted by

B†′t (n) and the shuffle sequences counted by S†′t (n). Thus B†t (n) = S†t (n)

and B†′t (n) = S†′t (n) for all t, n ∈ N0.

Let BSymn−1 = {σ ∈ BSymn : nσ = n} and let π† = 1BSymn−1
↑BSymn .

Inducing via the subgroup BSymn−1×〈(−n, n)〉 of BSymn one finds that

π† = χ((n),∅) + χ((n−1,1),∅) + χ((n−1),(1)).

Let ϑ† = π† − 1BSymn . The analogue of Lemma 2.2 is as follows.

Lemma 4.4. If (λ, λ?) and (µ, µ?) are double partitions of n ∈ N then

M †t
(
(λ, λ?), (µ, µ?)

)
= 〈χ(λ,λ?)πt, χ(µ,µ?)〉,

M †′t
(
(λ, λ?), (µ, µ?)

)
= 〈χ(λ,λ?)ϑt, χ(µ,µ?)〉.

Proof. By Lemma 4.2, we have χ(λ,λ?)↓BSymn−1
=
∑

(ν,ν?) χ
(ν,ν?) where the

sum is over all (ν, ν?) obtained from (λ, λ?) by removing a single box from the

Young diagram of either λ or λ?. By Frobenius reciprocity it follows that
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χ(ν,ν?)↑BSymn=
∑

(µ,µ?) χ
(µ,µ?), where the sum is over all (µ, µ?) obtained

from (ν, ν?) by adding a single box to the Young diagram of either ν or ν?.

This proves the case t = 1 of the first part of the lemma; the general case

then follows by induction on t. The second part is proved similarly, again

in the same way as Lemma 2.2. �

The group BSymn acts on the n-dimensional real vector space E =

〈e1, . . . , en〉 by eiσ = ±ej where j = |iσ| and the sign is the sign of iσ. Let

Φ+ = {ei− ej : 1 ≤ i < j ≤ n}∪{ei+ ej : 1 ≤ i < j ≤ n}∪{ek : 1 ≤ k ≤ n}.
Then Φ+ is the set of positive roots in a root system of type B, having

simple roots αi = ei − ei+1 for 1 ≤ i < n and β = en. Let Des(BSymn) be

the descent subalgebra of the rational group algebra QBSymn, as defined in

[21, Theorem 1], for this choice of simple roots. Thus Des(BSymn) has as a

basis the elements Ξ†I defined for each I ⊆ {α1, . . . , αn−1, β} by taking the

sum of all the permutations σ ∈ BSymn such that

{α ∈ Φ+ : ασ ∈ −Φ+} ⊆ I.

By [21, Theorem 1], there is an algebra epimorphism Des(BSymn) →
Cl(BSymn) under which Ξ†I maps to the permutation character of BSymn

acting on the cosets of the parabolic subgroup corresponding to I. By [13,

Theorem 3.1], this epimorphism is an isometry with respect to the bilinear

form on Des(BSymn) defined by restriction of the form (−,−) on QSym2n.

We need the following basic lemma describing descents in Type B for our

choice of simple roots.

Lemma 4.5. Let σ ∈ BSymn. If ` and m are such that α`σ, . . . , αm−1σ ∈
Φ+ then either `σ, . . . ,mσ all have the same sign and `σ < . . . < mσ, or

there exists a unique q ∈ {`, . . . ,m − 1} such that 1 ≤ `σ < . . . < qσ and

(q + 1)σ < . . . < mσ ≤ −1.

Proof. It is routine to check that αiσ ∈ Φ+ if and only if one of

(a) iσ ∈ {1, . . . , n}, (i+ 1)σ ∈ {1, . . . , n} and iσ < (i+ 1)σ;

(b) iσ ∈ {1, . . . , n}, (i+ 1)σ ∈ {−1, . . . ,−n};
(c) iσ ∈ {−1, . . . ,−n}, (i+ 1)σ ∈ {−1, . . . ,−n} and iσ < (i+ 1)σ.

The lemma now follows easily. �

Thus if iσ and (i + 1)σ have the same sign then αi is a descent of σ

(that is, αiσ ∈ −Φ+) if and only if iσ < (i + 1)σ. However, by (b), a

change from positive to negative is never a descent, and a change from

negative to positive is always a descent. We remark that in [5] and [18],

an alternative choice of simple roots is used under which ‘descent’ has its

expected numerical meaning in all cases. However, this choice corresponds

to random-to-bottom shuffles and so is not convenient for our purposes.

Let Ξ† =
∑n

m=1(ρ
−1
m + ρ̄−1m ) and let ∆† = Ξ− idBSymn .
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Lemma 4.6. Let n ≥ 2. Then Ξ†, ∆† ∈ Des(BSymn) and under the canon-

ical algebra epimorphism Des(BSymn)→ Cl(BSymn) we have Ξ† 7→ π† and

∆† 7→ π† − 1Symn.

Proof. By Lemma 4.5, if αiσ ∈ Φ+ for 2 ≤ i < n then there exists a unique

p ∈ {1, . . . , n} such that {2, . . . , p}σ ⊆ {1, . . . , n} and {p + 1, . . . , n}σ ⊆
{−1, . . . ,−n}. If in addition βσ ∈ Φ+, we must have p = n. Therefore α1

is the unique simple root δ such that δσ 6∈ Φ+ if and only if {2, . . . , n}σ ⊆
{1, . . . , n} and either

(1) 1σ ∈ {1, . . . , n} and 1σ > 2σ < . . . < nσ, or

(2) 1σ ∈ {−1, . . . ,−n} and 2σ < . . . < nσ.

The permutations in Case (1) are {ρ−12 , . . . , ρ−1n } and the permutations in

Case (2) are {ρ̄−11 , . . . , ρ̄−1n }. Hence Ξ† = Ξ†{α1}. This proves the first part

of the lemma.

The reflections in the simple roots α2, . . . , αn−1 and β are sαi = (i, i +

1)(−i,−(i + 1)) for 2 ≤ i ≤ n − 1 and sβ = (−n, n). These generate the

subgroup BSym{2,...,n} of BSymn. Hence BSym{2,...,n} is the parabolic sub-

group of BSymn corresponding to {α1} and, since BSym{2,...,n} is conjugate

to BSymn−1, the permutation character of BSymn acting on the cosets of

BSym{2,...,n} is π†. This proves the second part of the lemma. �

We are now ready to prove the second equality in Theorem 4.3.

Lemma 4.7. For t, n ∈ N0 we have S†t (n) = M †t (n) and S†′t (n) = M †′t (n).

Proof. If n = 0 the result is clear. When n = 1 the oriented top-to-random

shuffles are the identity and (−1, 1) and it is easily checked that S†0(1) =

M †0(1) = 1 and S†t (1) = M †t (1) = 2t−1 for all t ∈ N. Similarly S†′t (1) =

M †′t (1) = 1 if t is even and S†′t (1) = M †′t (1) = 0 if t is odd. When n ≥ 2

we follow the proof of Lemma 2.3, using that [idBSymn ]Ξ†t = S†t (n) and

[idBSymn ]∆†t = S†′t (n). �

This completes the proof of Theorem 4.3.

4.3. Eigenvalues of the oriented k-shuffle. The analogue for Type B

of the k-shuffle is most conveniently defined using our interpretation of ele-

ments of BSymn as shuffles (with flips) of a deck of n cards.

Definition. Let n, k ∈ N with k ≤ n. An oriented k-shuffle is performed

as follows. Remove k cards from the deck. Then choose any j ∈ {0, 1, . . . , k}
of the k cards and flip these j cards over as a block. Place the j flipped

cards on top of the deck, and then put the k − j unflipped cards on top of

them.

Thus there are 2k
(
n
k

)
oriented k-shuffles. After an oriented k-shuffle that

flips j cards, the newly flipped cards occupy positions k − j + 1, . . . , k, and

appear in the reverse of their order in the original deck.
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For k < n, let Ξ†k = Ξ†{αk} ∈ Des(BSymn) and let Ξ†n = Ξ†{β} ∈ Des(BSymn).

The following lemma is proved by extending the argument used in the proof

of Lemma 4.6.

Lemma 4.8. Let k ≤ n. Let σ ∈ BSymn. Then σ is in the support of Ξ†k if

and only if σ−1 is an oriented k-shuffle.

Proof. Let σ be in the support of Ξ†k. Lemma 4.5 implies that either 1 ≤
1σ < . . . < kσ or there exists a unique j ∈ {1, . . . , k} such that 1 ≤ 1σ <

. . . < (j − 1)σ and jσ < . . . < kσ ≤ −1. Moreover, if k < n, then since

βσ ∈ Φ+, Lemma 4.5 implies that 1 ≤ (k + 1)σ < . . . < nσ.

Thus in our card shuffling interpretation, σ takes the top k cards, flips

the bottom j of these cards as a block, for some j ∈ {0, 1, . . . , k}, and

then inserts the blocks of k− j unflipped cards and j flipped cards into the

deck, preserving the order within each block. These shuffles are exactly the

inverses of the oriented k-shuffles. �

Under the canonical epimorphism Des(BSymn)→ Cl(BSymn), the image

of Ξ†k is the permutation character π†k of BSymn acting on the cosets of the

parabolic subgroup Symk×(C2 oSymn−k) generated by the reflections in the

simple roots other than αk if k < n, or other than β if k = n.

Let P †(k) be the transition matrix of the Markov chain on BSymn in

which each step is given by choosing one of the 2k
(
n
k

)
oriented k-shuffles

uniformly at random. Let P †
′
(k) be the analogous transition matrix when

only non-identity shuffles are chosen. The same argument used in §3 now

proves the following proposition.

Proposition 4.9. The eigenvalues of P †(k) are π†k(τ)/2k
(
n
k

)
and the eigen-

values of P †
′
(k) are (π†k(τ)− 1)/(2k

(
n
k

)
− 1), both for τ ∈ BSymn. �

A convenient model for the cosets of Symk×(C2 o Symn−k) in BSymn is

the set Ωk of k-subsets of the short roots {±e1, . . . ,±en} that each contain

at most one element of each pair {ei,−ei}. The action of BSymn on Ωk is

inherited from its action on 〈e1, . . . , en〉. Using the notation for elements

of BSymn introduced immediately before (4.1.12) in [16], it is clear that a

k-subset A = {sjej : j ∈ J} ∈ Ωk is fixed by (u1, . . . , un; τ) ∈ BSymn if and

only if (i) J is fixed by τ and (ii) ujsj = sjτ for each j ∈ J .

Using this we make the two extreme cases in Proposition 4.9 more explicit.

It is clear that π†1(σ) = π†(σ) for σ ∈ BSymn; the model Ω1 shows that

π†
(
(u1, . . . , un; τ)

)
is the number of short roots ei such that ui = 1 and

iτ = i. An n-shuffle is the inverse of the shuffle performed by separating the

deck into two parts, flipping the part containing the bottom card, and then

riffle-shuffling the two parts. By (i) and (ii) we see that π†n
(
(u1, . . . , un; τ)

)
is

the number of sequences (s1, . . . , sn) such that sj ∈ {+1,−1} and ujsj = sjτ
for each j. Hence the corresponding eigenvalue is 2d−n, where d is the

number of orbits of τ on {1, . . . , n}.
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5. Cheating random-to-top shuffles: Type D

5.1. Type D shuffles and partition moves. For n ∈ N we define the

Coxeter group DSymn of Type D by

DSymn =
{
σ ∈ BSymn :

∣∣{1, . . . , n}σ ∩ {−1, . . . ,−n}
∣∣ is even

}
.

The shuffles and partition moves relevant to this case are defined as follows.

We shall use the superscript ‡ to denote quantities relevant to this type.

Definition. Let n ∈ N and let k ≤ n. Let σ ∈ DSymn. Then σ is

a cheating k-shuffle if and only if either σ or σ(−n, n) is an oriented k-

shuffle. A cheating 1-shuffle will be called a cheating random-to-top shuffle.

Let S‡t (n) be the number of sequences of t cheating random-to-top shuffles

whose product is idDSymn . Define S‡′t (n) analogously, excluding the identity

permutation ρ1.

Thus the cheating k-shuffles are obtained from the oriented k-shuffles

by composing with a ‘cheating’ flip of the bottom card, whenever this is

necessary to arrive in the group DSymn. It easily follows that the cheating

random-to-top shuffles are

{ρm : 1 ≤ m ≤ n} ∪ {ρ̄m(−n, n) : 1 ≤ m ≤ n}

where ρm and ρ̄m are as defined in §4.1. Note that a cheating random-to-top

shuffle either flips no cards, or flips both the lifted card and the (new, in the

case of ρ̄n) bottom card.

Definition. Let t, n ∈ N0. Let M ‡t (n) be the number of sequences of t

double-moves that start at ((n),∅) and finish at either ((n),∅) or (∅, (n)).

Define M ‡′t (n) analogously, considering only non-exceptional double-moves.

As in the case of Type B, the sequences of shuffles counted by S‡t (n) and

S‡′t (n) are in bijection with certain marked set partitions of {1, . . . , t} into at

most n parts, but it now seems impossible to give a more direct description

of these partitions. Our strongest analogue of Theorem 1.1 is as follows.

Theorem 5.1. For all t ∈ N0 and n ∈ N such that n ≥ 2 we have S‡t (n) =

M ‡t (n) and S‡′t (n) = M ‡′t (n).

We remark that since DSym1 is the trivial group we have S‡t (1) = 1

whereas M ‡t (1) = 2t for all t ∈ N0. Similarly S‡′0 (1) = 1 and S‡′t (1) = 0 for

all t ∈ N, whereas M ‡′t (1) = 1 for all t ∈ N0.

5.2. Proof of Theorem 5.1. We begin with the character-theoretic part

of the proof. Let π‡ = π†↓DSymn and let ϑ‡ = π‡ − 1DSymn .

Lemma 5.2. Let t ∈ N0 and let n ∈ N. Then M ‡t (n) = 〈π‡t, 1DSymn〉 and

M ‡′t (n) = 〈ϑ‡t, 1DSymn〉.
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Proof. Since 1DSymn↑
BSymn= χ((n),∅) + χ(∅,(n)), it follows from Frobenius

reciprocity that

〈π‡t, 1DSymn〉 = 〈π†t
y
DSymn

, 1DSymn〉 = 〈π†t, χ((n),∅) + χ(∅,(n))〉.

The first part of the lemma now follows from Lemma 4.4. The second part

is proved analogously. �

A root system for DSymn, constructed inside the span of the root system

for BSymn already defined, has positive roots Ψ+ = {ei − ej : 1 ≤ i <

j ≤ n} ∪ {ei + ej : 1 ≤ i < j ≤ n}, and simple roots α1, . . . , αn−1 and

γ, where γ = en−1 + en. Let Des(DSymn) be the descent subalgebra of

the rational group algebra QDSymn, as defined in [21, Theorem 1], for this

choice of simple roots. Let Ξ‡I for I ⊆ {α1, . . . , αn−1, γ} be the canonical

basis elements, defined in the same way as for Type B.

Let Ξ‡ =
∑n

m=1(ρ
−1
m + (−n, n)ρ̄−1m ) and let ∆‡ = Ξ‡ − idDSymn . The

following lemma is the analogue of Lemma 4.6 for Type D.

Lemma 5.3. Let n ∈ N be such that n ≥ 3. Then Ξ‡, ∆‡ ∈ Des(DSymn)

and under the canonical algebra epimorphism Des(DSymn) → Cl(DSymn)

we have Ξ‡ 7→ π‡ and ∆‡ 7→ π‡ − 1Symn.

Proof. Let σ ∈ DSymn. Suppose that α1 is the unique simple root δ such

that δσ 6∈ Ψ+. Observe that if nσ ∈ {−1, . . . ,−n} then, since γσ ∈ Ψ+,

we have (n − 1)σ ∈ {1, . . . , n} and (n − 1)σ < |nσ|. It therefore follows

from Lemma 4.5 that {2, . . . , n − 1}σ ⊆ {1, . . . , n}. Since
∣∣{1, . . . , n}σ ∩

{−1, . . . ,−n}
∣∣ is even, either {1, n}σ ⊆ {1, . . . , n} or {1, n}σ ⊆ {−1, . . . ,−n}.

Hence either

(1) 1σ, nσ ∈ {1, . . . , n} and 1σ > 2σ < . . . < nσ, or

(2) 1σ, nσ ∈ {−1, . . . ,−n} and 2σ < . . . < (n− 1)σ < |nσ|.
The permutations σ in Case (1) are {ρ−1m : 1 ≤ m ≤ n}. In Case (2) the

chain of inequalities implies that |nσ| ≥ n − 1 and (n − 1)σ ≥ n − 2. If

nσ = −(n− 1) then (n− 1)σ = n− 2 and the unique permutation is

(−n, n)ρ̄−1n = (n,−(n− 1), . . .− 1)(−n, (n− 1), . . . , 1).

The permutations such that nσ = −n are (−n, n)ρ̄−1m for 1 ≤ m ≤ n − 1.

Hence Ξ‡ = Ξ{α1} ∈ DSymn.

It is easily seen that π‡ = 1DSymn−1
↑DSymn , and that DSym{2,...,n} is

generated by the reflections in the simple roots αi for 2 ≤ i ≤ n− 1 and γ.

Therefore, by [21, Theorem 1], under the canonical algebra epimorphism

Des(DSymn)→ Cl(DSymn) we have Ξ‡ 7→ π‡. This completes the proof. �

We are now ready to prove Theorem 5.1. When n ≥ 3 the theorem

follows from Lemma 5.2 and Lemma 5.3 by the argument used to prove

Lemma 4.7. In the remaining case DSym2 = 〈(−1,−2)(1, 2), (−1, 1)(−2, 2)〉
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is the Klein 4-group and every permutation in DSym2 is a cheating top-

to-random shuffle. Moreover, π is the sum of all irreducible characters of

DSym2 and ϑ is the sum of all non-trivial irreducible characters of DSym2.

Since DSym2 is abelian, the group algebra QDSym2 is isomorphic to the

algebra of class functions Cl(DSym2). Hence the coefficient of idDSymn in

Ξ‡t is 〈π‡t, 1DSymn〉, and the coefficient of idDSymn in ∆‡t is ϑ‡t. The theorem

now follows from Lemma 5.2.

5.3. Eigenvalues of the cheating oriented k-shuffle. For k < n let

Ξ‡k = Ξ‡{αk} and let Ξ‡n = Ξ‡{γ}. The following lemma is the analogue of

Lemma 4.8 and generalizes Lemma 5.3. Let S(Γ) denote the support of

Γ ∈ QBSymn.

Lemma 5.4. Let k ≤ n − 2. Let σ ∈ DSymn. Then σ is in the support of

Ξ‡k if and only if σ−1 is a cheating k-shuffle.

Proof. Let σ ∈ BSymn. The sets Φ+ and Ψ+ agree except with respect to

β = εn and γ = εn−1 + εn. Since k ≤ n − 2, it is clear that σ ∈ S(Ξ‡k) and

nσ ∈ {1, . . . , n} if and only if σ ∈ S(Ξ†k) ∩ DSymn. By Lemma 4.8, this is

the case if and only if σ−1 is a cheating k-shuffle that leaves the bottom card

unflipped.

Suppose that nσ ∈ {−1, . . . ,−n}. Then γσ ∈ Ψ+ if and only (n− 1)σ <

|nσ|; in this case, as seen in the proof of Lemma 5.3, we have β(−n, n)σ ∈
Φ+ and αn−1(−n, n)σ = ε(n−1)σ − ε|nσ| ∈ Φ+. Hence σ ∈ S(Ξ‡k) and

nσ ∈ {−1, . . . ,−n} if and only if (−n, n)σ ∈ S(Ξ†k) and σ ∈ DSymn. By

Lemma 4.8, this is the case if and only if σ−1 is a cheating k-shuffle that

flips the bottom card. �

We remark that if σ ∈ DSymn then σ−1 is a cheating (n − 1)-shuffle if

and only if σ ∈ S(Ξ‡{αn−1,γ}) and σ−1 is a cheating n-shuffle if and only if

σ ∈ S(Ξ‡{αn−1,γ})\{σ ∈ DSymn : αn−1σ ∈ −Φ+ and γσ ∈ −Φ+}. For exam-

ple (n−1,−(n−1))(n,−n) is a cheating (n−1)-shuffle having two descents;

this shuffle is obtained from the oriented (n− 1)-shuffle that flips card n− 1

(while fixing all other cards) by the cheating flip.

Under the canonical epimorphism Des(DSymn)→ Cl(DSymn), the image

of Ξ‡k is the permutation character π‡k of DSymn acting on the cosets of the

parabolic subgroup
(
Symk×(C2 oSymn−k)

)
∩DSymn. Thus π‡k = π†k ↓DSymn .

Let P ‡(k) be the transition matrix of the Markov chain on DSymn in

which each step is given by choosing one of the 2k
(
n
k

)
cheating k-shuffles

uniformly at random. Let P ‡
′
(k) be the analogous chain where only non-

identity shuffles are chosen. The same argument used in §3 now proves the

following proposition.
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Proposition 5.5. Let k ≤ n−2. The eigenvalues of P ‡(k) are π‡k(τ)/2k
(
n
k

)
and the eigenvalues of P ‡

′
(k) are (π‡k(τ) − 1)/(2k

(
n
k

)
− 1), both for τ ∈

DSymn. �

In particular, we observe that the eigenvalues of the Type D shuffle

are exactly the eigenvalues of the Type B shuffle coming from elements

of DSymn ≤ BSymn.

6. Generating functions and asymptotics

For t ∈ N0 and n ∈ N, the Stirling number of the second kind
{
t
n

}
satisfies{

t
n

}
= Bt(n)− Bt(n− 1). By analogy we define

{
t
n

}′
= B′t(n)− B′t(n− 1),{

t
n

}†
= B†t (n) − B†t (n − 1) and

{
t
n

}†′
= B†′t (n) − B†′t (n − 1). When n = 0

each generalized Stirling number is defined to be 1 if t = 0 and otherwise 0.

Theorem 1.1 and Theorem 4.3 give several combinatorial interpretations

of these numbers. In particular, we note that
{
t
n

}
is the number of sequences

of t random-to-top shuffles that leave a deck of n cards invariant while

lifting every card at least once, and
{
t
n

}†
is the number of such sequences

of oriented random-to-top shuffles. Moreover
{
t
n

}′
and

{
t
n

}†′
have similar

interpretations, considering only sequences of non-identity shuffles.

In this section we give generating functions and asymptotic results on

the generalized Bell and Stirling Numbers. Along the way we shall see a

number of relationships between these numbers. Some of these results are

obtained using basic arguments from residue calculus: we refer the reader

to [23, Section 5.2] for an account of this method.

6.1. Relating Bt(n) to B′t(n) and the asymptotics of B′t(t). The num-

bers B′t(t) are considered by Bernhart [1], who describes the associated set

partitions as cyclically spaced. The following lemma generalizes a result

in §3.5 of [1]. The bijective proof given therein also generalizes, but we

give instead a short algebraic proof as an application of Theorem 1.1 and

Lemma 2.2.

Lemma 6.1. If t, n ∈ N then B′t(n) +B′t−1(n) = Bt−1(n− 1).

Proof. By Theorem 1.1 it is equivalent to prove that M ′t(n) + M ′t−1(n) =

Mt−1(n−1). Let π be the natural permutation character of Symn and let ϑ =

χ(n−1,1), as in Lemma 2.2. Note that ϑ↓Symn−1
is the natural permutation

character of Symn−1. Since restriction commutes with taking products of

characters, it follows from Lemma 2.2 that Mt−1(n − 1) = 〈ϑt−1↓Symn−1

, 1Symn−1
〉. By Frobenius reciprocity, 〈ϑt−1↓Symn−1

, 1Symn−1
〉 = 〈ϑt−1, π〉.

Now

〈ϑt−1, π〉 = 〈ϑt−1, ϑ〉+ 〈ϑt−1, 1Symn〉 = 〈ϑt, 1Symn〉+ 〈ϑt−1, 1Symn〉

which is equal to M ′t(n) +M ′t−1(n), again by Lemma 2.2. �
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We note that the quantity B′t(n) +B′t−1(n) appearing in Lemma 6.1 has

a natural interpretation: it counts set partitions which are spaced, but not

necessarily cyclically spaced. To prove this we use the associated Stirling

numbers: for t ∈ N and n ∈ N0 define
{
t
n

}?
=
{
t
n

}′
+
{
t−1
n

}′
.

Proposition 6.2. For t ∈ N and n ∈ N0,
{
t
n

}?
is equal to the number of

set partitions of {1, . . . , t} into n parts, such that i and i+ 1 are not in the

same part for any i.

Proof. The set partitions of {1, . . . , t} into exactly n sets counted by
{
t
n

}?
but not by

{
t
n

}′
are those with 1 and t in the same part. But in this

case t − 1 cannot also be in the same part as 1, and so deleting t gives a

bijection between these extra set partitions and the set partitions counted

by
{
t−1
n

}′
. �

We now use Lemma 6.1 to get the exponential generating function for

the B′t(t).

Proposition 6.3.
∞∑
t=0

B′t(t)

t!
xt = exp

(
exp(x)− 1− x

)
.

Proof. Taking t ∈ N and n ≥ t, Lemma 6.1 gives B′t(t) + B′t−1(t − 1) =

Bt−1(t − 1). It follows that if F (x) =
∑∞

t=0B
′
t(t)x

t/t! is the exponential

generating function for B′t(t) then

F (x) + F ′(x) =
∞∑
t=0

Bt(t)

t!
xt = exp(exp(x)− 1).

Since exp(exp(x)−1−x) solves this differential equation, and agrees with F

when x = 0, we have F (x) = exp(exp(x)− 1− x). �

Thus
∑∞

t=0B
′
t(t)x

t/t! = exp(−x)
∑∞

t=0Bt(t)x
t/t!. As an immediate corol-

lary we get B′t(t) =
∑t

s=0

(
t
s

)
(−1)t−sBs(s) and Bt(t) =

∑t
s=0

(
t
s

)
B′s(s); these

formulae are related by binomial inversion. Using this formula for B′t(t) and

the standard result

(3) Bt(t) =
1

e

∞∑
j=0

jt

j!

(see for example [23, Equation (1.41)], or sum Equation (7) below over all

n ∈ N0) we obtain

(4) B′t(t) =
1

e

∞∑
j=0

(j − 1)t

j!
.

This equation appears to offer the easiest route to the asymptotics of B′t(t).

Let W (t) denote Lambert’s W function, defined for x ∈ R≥0 by the equation

W (x)eW (x) = x.
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Corollary 6.4. We have

B′t(t)

Bt(t)
∼ W (t)

t
as t→∞.

Proof. Let m(t) = bexpW (t − 1/2)c. The solution to Exercise 9.46 in [11]

can easily be adapted to show that

B′t(t) = em(t)−t−1/2m(t)t−1

√
m(t)

m(t) + t

(
1 + O(t−1/2 log t)

)
.

Comparing with the analogous formula for Bt(t) proved in [11] we obtain

B′t(t)/Bt(t) ∼ 1/m(t) as t→∞. We now use the fact that

m(t) ∼ expW (t− 1/2) =
t− 1/2

W (t− 1/2)
∼ t

W (t)
as t→∞,

where the final asymptotic equality follows from the elementary bounds

log t− log log t ≤W (t) ≤ log t. �

We also obtain the following result on the number Wt of set partitions of

{1, . . . , t} into parts of size at least 2.

Corollary 6.5. If t ∈ N0 then B′t(t) is equal to Wt.

Proof. Since exp(x)−1−x is the exponential generating function enumerat-

ing sets of size at least two, the corollary follows from Proposition 6.3 using

[23, Theorem 3.11]. �

This result is proved in [1, §3.5], as a corollary of two explicit bijections

showing that B′t(t) + B′t+1(t+ 1) = Bt(t) (as noted earlier, this is a special

case of Lemma 6.1) and Wt +Wt+1 = Bt(t). It would be interesting to have

a direct bijective proof of the corollary.

It is worth noting that Corollary 6.5 does not extend to the Stirling num-

bers
{
t
n

}′
. For example, if t ≥ 2 then

{
t
1

}′
= 0, whereas the unique set

partition of {1, . . . , t} into a single part obviously has all parts of size at

least 2.

6.2. Generating functions and asymptotics for
{
t
n

}′
and B′t(n). Let

t, n ∈ N. By definition we have
{
t
n

}′
= B′t(n)−B′t(n− 1). Provided n ≥ 2,

Lemma 6.1 applies to both summands, and we obtain
{
t
n

}′
+
{
t−1
n

}′
=
{
t−1
n−1
}

.

From the ordinary generating function
∑∞

t=0

{
t
n

}
xt = xn

∏n
j=1 1/(1−jx) (see

for example [23, (1.36)]) we now get

(5)

∞∑
t=0

{
t

n

}′
xt =

xn

1 + x

n−1∏
j=1

1

1− jx

for n ≥ 2. (When n = 1 we have
{
t
1

}′
= 0 for all t ∈ N, so the generating

function is zero.) A simple residue calculation now shows that provided
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n ≥ 3, we have {
t

n

}′
∼ (n− 1)t

n!
as t→∞.

(When n = 2 we have
{
t
2

}′
= 1 if t is even, and

{
t
2

}′
= 0 if t is odd.) It

easily follows that same asymptotic relation holds for B′t(n). Thus if n ≥ 3

then 1
n

{
t

n−1
}

,
{
t
n

}′
, 1
nBt(n − 1) and B′t(n) are all asymptotically equal to

(n− 1)t/n! as t→∞. Moreover, by calculating all residues in (5) we obtain

the explicit formula

(6)

{
t

n

}′
=

1

n!

n−1∑
k=0

(−1)k
(
n

k

)
(n− k − 1)t +

(−1)n+t

n!

valid for n ≥ 2. (The summand for n − 1 is included so that the formula

holds also when t = 0.) This formula may be compared with the well known

identity

(7)

{
t

n

}
=

1

n!

n∑
k=0

(−1)k
(
n

k

)
(n− k)t,

valid for all t, n ∈ N0, which has a short direct proof using the Principle

of Inclusion and Exclusion. When n ≥ 3, an easy corollary of (5) is the

recurrence
{
t
n

}′
=
{
t−1
n−1
}′

+ (n − 1)
{
t−1
n

}′
, analogous to the well known{

t
n

}
=
{
t−1
n−1
}

+ n
{
t−1
n

}
. However, while the recurrence for

{
t
n

}
has a very

simple bijective proof, the authors know of no such proof for the recurrence

for
{
t
n

}′
.

6.3. Generating function and asymptotics of B†t (t). The exponential

generating function enumerating non-empty sets with an even number of

their elements marked is 1
2(exp 2x − 1). Hence, by [23, Theorem 3.11], we

have
∞∑
n=0

B†t (t)

t!
xt = exp

(
1
2(exp 2x− 1)

)
.

Since there are 2t−n ways to mark the elements of a set partition of {1, . . . , t}
into n parts so that an even number of elements in each part are marked,

we have
{
t
n

}†
= 2t−n

{
t
n

}
. Using this, a routine adaption of the proof of [23,

Equation 1.41] shows that

(8) B†t (t) =
1√
e

∞∑
j=0

(2j)t

2jj!
.

The method used to prove Corollary 6.4 then shows that

B†t (t) = 2te`(t)−t`(t)t

√
`(t)

`(t) + t

(
1 + O(t−1/2 log t)

)
where `(t) is defined by the equation (log `(t) + log 2)`(t) = t− 1/2.
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6.4. Relating B†t (n) to B†′t (n) and the asymptotics of B†′t (n). Lemma 6.1

has the following analogue in Type B.

Lemma 6.6. For t, n ∈ N we have

B†′t (n) +B†′t−1(n) =
t−1∑
s=0

(
t− 1

s

)
B†s(n− 1).

Proof. Let π†(n) = 1BSymn−1
↑BSymn and ϑ†(n) = π†(n)−1BSymn . By Lemma 4.4,

B†′t (n) +B†′t−1(n) =
〈(
ϑ†(n)

)t−1
π†(n), 1BSymn

〉
.

Recall from §4.2 that

π†(n) = χ((n),∅) + χ((n−1,1),∅) + χ((n−1),(1)).

By the Branching Rule for BSymn stated in Lemma 4.4 we have

ϑ†(n)
y
BSymn−1

= 2χ((n−1),∅) + χ((n−2,1),∅) + χ((n−2),(1)) = π†(n−1) + 1BSymn−1
.

A straightforward calculation using Lemma 4.4 now shows that

B†′t (n) +B†′t−1(n) =
〈
(ϑ†(n))

t−1π(n), 1BSymn

〉
=
〈(
ϑ†(n)

y
BSymn−1

)t−1xBSymn , 1BSymn

〉
=
〈(
π†(n−1) + 1BSymn−1

)t−1xBSymn , 1BSymn

〉
=
〈(
π†(n−1) + 1BSymn−1

)t−1
, 1BSymn−1

〉
=

t−1∑
s=0

(
t− 1

s

)〈
(π†(n−1))

s, 1BSymn−1

〉
,

and the result follows. �

In order to state a Type B analogue of Proposition 6.2, we define a further

family of Type B Stirling numbers by
{
t
n

}†?
=
{
t
n

}†′
+
{
t−1
n

}†′
for t ∈ N and

n ∈ N0.

Proposition 6.7. For t ∈ N and n ∈ N0,
{
t
n

}†?
is equal to the number of

marked set partitions of {1, . . . , t} into n parts, such that an even number

of elements of each part are marked, and such that if i and i+ 1 are in the

same part then i+ 1 is marked.

Proof. By definition of
{
t
n

}†′
, the marked set partitions of {1, . . . , t} into

exactly n parts counted by
{
t
n

}†?
but not by

{
t
n

}†′
are those with 1 and t

in the same part, but with 1 unmarked. The following procedure defines

a bijection between these partitions and those counted by
{
t−1
n

}†′
: if t is

marked then transfer the mark to 1; then delete t. �

Continuing the analogy with Type A, we now use Lemma 6.6 to get the

generating function for B†′t (t).
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Proposition 6.8.

∞∑
t=0

B†′t (t)

t!
xt = exp

(
1
2(exp 2x− 1− 2x)

)
.

Proof. Taking t ∈ N and n ≥ t, Lemma 6.6 gives B†′t (t) + B†′t−1(t − 1) =∑t−1
s=0B

†
s(s)

(
t−1
s

)
. Observe that if G(x) =

∑∞
t=0 atx

t/t! then xkG(x)/k! =∑∞
t=0 atx

t+k
(
t+k
k

)
/(t+ k)!. It follows that if H(x) =

∑∞
t=0B

†′
t (t)xt/t! then

H(x) +H ′(x) =
∞∑
k=0

xk

k!

∞∑
t=0

B†t (t)

t!
xt = exp

(
x+ 1

2(exp 2x− 1)
)
.

Since exp
(
1
2(exp 2x − 1 − 2x)

)
solves this differential equation, and agrees

with H when x = 0, we have H(x) = exp
(
1
2(exp 2x− 1− 2x)

)
. �

Thus
∑∞

t=0B
†′
t (t)xt/t! = exp(−x)

∑∞
t=0B

†
t (t)x

t/t!. As an immediate

corollary we getB†′t (t) =
∑t

s=0

(
t
s

)
(−1)t−sB†s(s) andB†t (t) =

∑t
s=0

(
t
s

)
B†′s (s);

again these formulae are related by binomial inversion. Using this formula

for B†′t (t) and (8), we obtain

(9) B†′t (t) =
1√
e

∞∑
j=0

(2j − 1)t

2jj!
.

This equation has the same relationship to (8) as (4) has to (3), and the

same method used to prove Corollary 6.4 gives

B†′t (t) = 2t−1/2e`(t)−t`(t)t−1/2

√
`(t)

`(t) + t

(
1 + O(t−1/2 log t)

)
and

B†′t (t)

B†t (t)
∼ 1√

2`(t)
as t→∞

where `(t) is as defined in §6.3.

We also obtain the expected analogue of Corollary 6.5. The example of{
t
1

}†′
shows that, as before, this corollary does not extend to the correspond-

ing Stirling numbers.

Corollary 6.9. If t ∈ N0 then B†′t (t) is the number of set partitions of

{1, . . . , t} into parts of size at least two with an even number of their elements

marked. �

Proof. As in the Type A case, this follows from [23, Theorem 3.11] since
1
2

(
exp(2x)−1−2x

)
is the exponential generating function enumerating sets

of size at least two with an even number of their elements marked. �
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6.5. Relating B†t (n) to B†′t (n) and the asymptotics of
{
t
n

}†
,
{
t
n

}†′
,

B′t(n) and B†′t (n). Let t, n ∈ N. Since
{
t
n

}†
= 2t−n

{
t
n

}
, Equation (7)

implies that

(10)

{
t

n

}†
=

1

2nn!

n∑
k=0

(−1)k
(
n

k

)(
2(n− k)

)t
.

Moreover, the ordinary generating function for
{
t
n

}†
is

(11)

∞∑
t=0

{
t

n

}†
xt = xn

n∏
j=1

1

1− 2jx

and so
{
t
n

}†
and B†t (n) are both asymptotically equal to (2n)t/2nn! as t→

∞. Lemma 6.6 implies that
{
t
n

}†′
+
{
t−1
n

}†′
=
∑t−1

s=0

(
t−1
s

){
s

n−1
}†

provided

n ≥ 2. The generating function for the right-hand side is

∞∑
t=0

t−1∑
s=0

(
t− 1

s

){
s

n− 1

}†
yt =

∞∑
s=0

{
s

n− 1

}† ys

(1− y)s+1

=
yn

1− y

n−1∏
j=1

1

1− (2j + 1)y

where the second line follows by substituting y/(1− y) for x in (11), with n

replaced with n− 1. Hence

(12)
∞∑
t=0

{
t

n

}†′
xt =

xn

1 + x

n∏
j=1

1

1− (2j − 1)x

provided n ≥ 2. A residue calculation then shows that{
t

n

}†′
∼ (2n− 1)t

2nn!
as t→∞.

provided n ≥ 2. (When n = 1 we have
{
t
1

}†′
= 1 if t is even and

{
t
0

}†′
= 0

if t is odd.) It easily follows that if n ≥ 2 then
{
t
n

}†′
and B†′t (n) are both

asymptotically equal to (2n− 1)t/2nn! as t→∞. Moreover, by calculating

all residues we obtain the explicit formula

(13)

{
t

n

}†′
=

1

2nn!

n−1∑
k=0

(−1)k
(
n

k

)(
2(n− k)− 1

)t
+

(−1)n+t

2nn!

valid for n ≥ 2. This formula has a striking similarity to (6). We remark

that an alternative derivation of (9) is given by summing this formula over

all n ∈ N0, using the identity

∞∑
n=0

(−1)n

2nn!

(
n

j

)
=

1√
e

(−1)j

2jj!
,
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which can easily be proved by comparing coefficients of xj in

∞∑
j=0

∞∑
n=0

(−1)n

2nn!

(
n

j

)
xj =

∞∑
n=0

(−1)n

2nn!
(1 + x)n = exp

(
−1

2(1 + x)
)

=
exp(−1

2x)
√
e

.

The recurrences for
{
t
n

}†
and

{
t
n

}†′
obtained from (11) and (12) are

{
t
n

}†
={

t−1
n−1
}†

+2n
{
t−1
n

}†
for n ≥ 1 and

{
t
n

}†′
=
{
t−1
n−1
}†′

+(2n−1)
{
t−1
n

}†′
for n ≥ 3.

6.6. Stirling numbers in Type D. It is possible to define Stirling num-

bers for Type D, by
{
t
n

}‡
= M ‡t (n) − M ‡t (n − 1) and

{
t
n

}‡′
= M ‡′t (n) −

M ‡′t (n − 1). However, just as the set partitions corresponding to Type D

shuffles have no apparent natural description, these Type D Stirling numbers

(which take negative values in many cases) have no obvious combinatorial

interpretation. We shall say nothing more about these quantities here. We

note however that there is an analogue of Lemmas 6.1 and 6.6 in Type D,

namely

M ‡′t (n) +M ‡′t−1(n) =

t−1∑
s=0

(
t− 1

s

)
M ‡t (n)

for t, n ∈ N. This has a similar proof to Lemma 6.6, replacing Lemma 4.4

with Lemma 5.2. We also note that S†t (n) = S‡t (n) if t < n, since no

sequence of t oriented random-to-top shuffles leaving the deck fixed can lift

the bottom card, and evenly many card flips occur in any such sequence.

Moreover S†t (t) + 1 = S‡t (t); the exceptional sequence lifts the bottom card

to the top t times, flipping it every time.

7. Earlier work on shuffles and Kronecker powers, and an

obstruction to an explicit bijection between the sequences

counted by Bt(n) and Mt(n)

The connection between the random-to-top shuffle (or its inverse, the

top-to-random shuffle) and Solomon’s descent algebra is well known. See

for example the remark on Corollary 5.1 in [8].

In [10] the authors study the powers of the irreducible character χ(n−1,1).

Suppose that t ≤ n. The special case λ = ∅ of Lemma 2 of [10] gives a

bijection between the sequences of partition moves counted by M ′t(n) and

permutations π of {1, . . . , t} such that every cycle of π is decreasing, and π

has no fixed points. Such permutations are in bijection with set partitions

of {1, . . . , t} into non-singleton parts, and so, using the result of Bernhart

mentioned earlier, we obtain a bijective proof thatM ′t(t) = M ′t(n) = B′t(n) =

B′t(t). The restriction t ≤ n, which allows the use of the Bernhart result,

arises from the use of the RSK correspondence for oscillating tableaux, and

appears essential to the proof in [10].

In [9] Fulman defines, for each finite group G and each subgroup H of G,

a Markov chain on the irreducible representations of G. In the special case
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when G = Symn and H = Symn−1 this gives a Markov chain J on the set

of partitions of n in which the transition probability from the partition λ to

the partition µ is
M1(λ, µ)

n

χµ(1)

χλ(1)
.

The relevant special case of his Theorem 3.1 is as follows.

Proposition 7.1 (Fulman). Let λ be a partition of n. Starting at (n), the

probability that J is at λ after t steps is equal to the probability that a product

of t random-to-top shuffles is sent to a pair of tableaux of shape λ by the

RSK correspondence.

Fulman’s theorem relates partitions and shuffle sequences, but it is qual-

itatively different to Lemma 2.3. In particular, we note that Lemma 2.3

has no very natural probabilistic interpretation, since choosing individual

moves uniformly at random fails to give a uniform distribution on the set of

sequences of all partition moves from (n) to (n).

Despite this, it is very natural to ask whether the RSK correspondence

can be used to give a bijective proof of Lemma 2.3, particularly in view

of the related RSK correspondence used in [10], and the fact that if τ ∈
Symn then the RSK shape of τσm differs from the RSK shape of τ by

a move. (This follows easily from Greene’s characterization of the RSK

shape of a permutation by increasing subsequences: see [12].) The following

proposition shows that, perhaps surprisingly, the answer to this question is

negative. The proof is a brute-force verification, which to make this paper

self-contained we present in Figure 1 overleaf.

Proposition 7.2. Let sh(τ) denote the RSK shape of the permutation τ

and let

(λ(0), . . . , λ(8)) =
(
(5), (4, 1), (3, 2), (4, 1), (3, 2), (2, 2, 1), (3, 2), (4, 1), (5)

)
.

There does not exist a sequence (τ1, . . . , τ8) of random-to-top shuffles such

that sh(τ1 . . . τi) = λ(i) for all i ∈ {0, 1, . . . , 8}. �

Computer calculation show that if t ≤ 7 then taking shapes of RSK

correspondents gives a bijection proving Theorem 1.1 whenever n ≤ 12.

When t = 8, similar examples to the one above exists for 5 ≤ n ≤ 8.

(These claims may be verified using the Magma [6] code available from the

second author’s website1.) Since a shuffle sequence counted by St(n) never

moves a card that starts in position t + 1 or lower, taking shapes of RSK

correspondents fails to give a bijective proof of Theorem 1.1 whenever t = 8

and n ≥ 5. It is therefore an open problem to find a bijective proof of

Theorem 1.1 that deals with the case t > n not covered by Lemma 2 of [10].

Finding bijective proofs of Theorems 4.3 and 5.1 are also open problems.

1See www.ma.rhul.ac.uk/~uvah099/.
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3

4
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3

3

4

3

2

2

2

4

5

5

5

4

5

2

3

2

3

3

3

12345

21345

31245

41235

51234

24135

34125

25134

35124

45123

12435

13425

23451

12534

21435

31425

21534

31254

41253

52143

53142

42153

32154

23154

13254

24153

14253

12453

12354

(5) (4, 1) (3, 2) (4, 1) (3, 2) (2, 2, 1) (3, 2) (4, 1) (5)

Figure 1. All sequences (τ1, τ2, . . . , τr) of random-to-top shuffles such that

sh(τ1, . . . τi) = λ(i) for each i ∈ {0, 1, . . . , r}, where λ(1), . . . , λ(8) are as defined

in Proposition 7.2. Labels on vertices show the inverses of the permutations

τ1 . . . τi and so give the order of the deck; an arrow labelled m corresponds to

the random-to-top shuffle σm.

8. Occurrences of Type A and B Bell and Stirling numbers in

the On-Line Encyclopedia of Integer Sequences

The numbers studied in this paper have been submitted to the Online

Encyclopedia of Integer Sequences (OEIS) [17]:
{
t
n

}′
, B′t(n), B†t (n),

{
t
n

}†′
,

B†
′

t (n) for t ∈ N and n ≤ t are now present as the ‘triangular’ sequences

A261139, A261137, A261275, A261318 and A261319, respectively. Here we

discuss the appearances prior to this submission.

The numbers B′t(t) appear as sequence A000296; the interpretations at

the start of §6.1 and in Corollary 6.5 are both given. We have B′t(2) = 1

if t is even and B′t(2) = 0 if t is odd; this is sequence A000035. By (6)

we have
{
t
3

}′
= 1

6(2t − 3 − (−1)t); this is sequence A000975. It follows

that B′t(3) = 1
6(2t + 2(−1)t); this is sequence A001045. The sequence

{
t
4

}′
appears as A243869, counting the number of set partitions of {1, . . . , t} into

four parts, satisfying our condition.

The Type B Stirling numbers
{
t
n

}†
appear as sequence A075497; they are

defined there by their characterization as ordinary Stirling numbers scaled

by particular powers of 2. They do not appear to have been connected before

with Type B Coxeter groups or descent algebras.

The other statistics introduced here for types B and D have not hitherto

appeared in OEIS in any generality, and appear not to have been defined

prior to this investigation. They appear in OEIS only for certain very partic-

ular choices of parameters, usually those for which the numbers have partic-

ularly simple expressions. For instance, we see from (10) that
{
t
1

}†
= 2t−1,

and that
{
t
2

}†
= 2t−2(2t−1 + 1), giving sequences A000079 and A007582

respectively .
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The sequence B†t (3) also appears, as sequence A233162. Let C be a set

of 2n unlabelled colours arranged into n pairs. Let A be an s × t array of

boxes. Define Qs,t(n) to be the number of ways of colouring A with colours

of C, so that no two horizontally or vertically adjacent boxes receive colours

from the same pair. (Since the colours are unlabelled, two colourings of A

that differ by a permutation of the n pairs, or by swapping colours within a

pair, are regarded as the same.) The sequence A233162 gives the numbers

Q1,t(4). However the coincidence with the Type B Bell numbers extends to

any number of colours, as follows.

Proposition 8.1. Q1,t(n) = B†t−1(n− 1) for all t ≥ 1.

Proof. Let the boxes be labelled 0, . . . , t − 1 from left to right. We shall

show that the number of colourings using exactly n colour pairs (though not

necessarily using both colours in each pair) is
{
t−1
n−1
}†

; this is the number

of marked partitions of a set of size t − 1 into exactly n − 1 parts. Since

B†t−1(n− 1) =
∑n−1

k=0

{
t−1
k

}†
, this is enough to prove the proposition.

Suppose we are given a colouring of the boxes using exactly n colour pairs,

such that consecutive boxes receive colours from distinct pairs. We label the

colour pairs with the numbers 1, . . . , n in order of their first appearance in

the colouring, reading from left to right. Let ci be the label of the colour of

box i. We define a function f on {1, . . . , t− 1} by

f(i) =

{
ci if ci < ci−1,

ci − 1 if ci > ci−1.

(By assumption, the case ci = ci−1 does not occur.) We notice that if the

first occurrence of the colour pair k occurs in box i, where i > 0, then cj < k

for all j < i. It follows that f(i) = k − 1, and hence that the image of f

is {1, . . . , n − 1}. Now the kernel congruence of f defines a set partition of

{1, . . . , t− 1} into exactly n− 1 parts; it remains to determine the marks.

Within each colour pair, we now distinguish a marked and an unmarked

colour: the marked colour is the one which first appears in our colouring.

(It is not necessary that the unmarked colour should appear at all.) Let X

be a part of the partition just described, and let x be the least element of X.

We add marks to the elements of X as follows: for each element y ∈ X other

than x, we add a mark to y if box y receives a marked colour. Then we add

a mark to x if necessary to make the total number of marks in X even.

Given a marked partition of {1, . . . , t − 1} into exactly n − 1 parts, it

is easy to reverse the procedure just described in order to reconstruct the

unique colouring of t boxes with n unlabelled colour pairs with which it is

associated. So we have a bijective correspondence, and the proposition is

proved. �
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respondence for oscillating tableaux, Séminaire Lotharingien de Combinatoire, B20b

(1988).

[8] P. Diaconis, J. A. Fill, and J. Pitman, Analysis of top to random shuffles, Combina-

torics, probability and computing 1 (1992), 135–165.

[9] J. Fulman, Card shuffling and the decomposition of tensor products, Pacific J. Math.

217 (2004), 247–262.

[10] A. Goupil and C. Chauve, Combinatorial operators for Kronecker powers of repre-
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